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Abstract

Hypoxia-inducible factor 1 (HIF-1) is the founding member of a family of transcription factors 

that function as master regulators of oxygen homeostasis. HIF-1 is composed of an O2-regulated 

HIF-1α subunit and a constitutively expressed HIF-1β subunit. This review provides a 

compendium of proteins that interact with the HIF-1α subunit, many of which regulate HIF-1 

activity in either an O2-dependent or O2-independent manner.
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Cells of metazoan species require a constant supply of O2 as a substrate for metabolic 

reactions, principally mitochondrial oxidative phosphorylation. Hypoxia-inducible factors 

(HIFs) regulate the transcription of hundreds of genes in order to maintain a balance 

between O2 supply and demand in every cell. The founding member of the HIF family, 

HIF-1, is composed of HIF-1α and HIF-1β subunits, each of which contains basic helix-

loop-helix (bHLH) and Per-ARNT-Sim homology (PAS) domains that together mediate 

dimerization and DNA binding [1,2]. HIF-1β, which is also known as the aryl hydrocarbon 

nuclear translocator (ARNT) protein, heterodimerizes with several different bHLH-PAS 

proteins, whereas HIF-1α is the HIF-1-specific and O2-regulated subunit. HIF-1 activity is 

regulated by the interaction of HIF-1α with many other proteins [3–156], which are listed in 

Table 1. This list, which continues to grow rapidly, is intended to be illustrative rather than 

comprehensive. For many of these proteins, the site of interaction has been localized to 

specific amino acid residues or to a particular domain within HIF-1α, such as the bHLH-

PAS domain (amino acid residues 1–390 approximately), PAS-B subdomain (residues 200–

330 approximately), O2-dependent degradation domain (residues 390–575 approximately), 

or C-terminal transactivation domain (residues 786–826).

The majority of HIF-1α-interacting proteins that have been identified thus far regulate the 

stability of HIF-1α in either an O2-dependent or O2-independent manner. O2-dependent 

degradation is triggered by the prolyl hydroxylase domain proteins PHD1-3 [88,102]. 

Hydroxylation of HIF-1α at proline residue 402 or 564 facilitates binding of the von Hippel-

Lindau protein (VHL), which recruits an E3 ubiquitin-protein ligase complex that catalyzes 

the covalent linkage of ubiquitin to lysine residues in HIF-1α, which serves as a signal for 

proteasomal degradation (151).

HIF-1α-interacting proteins that facilitate O2-dependent degradation may do so by 

stabilizing interactions between components of the hydroxylation complex or by stimulating 
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ubiquitination of hydroxylated HIF-1α (Table 2). Many HIF-1α-interacting proteins that 

inhibit O2-dependent degradation do so by blocking the action of the VHL-E3 ligase 

complex or by catalyzing deubiquitination (Table 3). Other HIF-1α-interacting proteins 

facilitate O2-independent degradation (Table 4) by stimulating ubiquitination, SUMOylation, 

proteasomal degradation, or chaperone-mediated autophagy (lysosomal degradation). 

HIF-1α-interacting proteins that inhibit O2-independent degradation do so by altering 

ubiquitination or by catalyzing deSUMOylation (Table 5). Another large group of HIF-1α-

interacting proteins serve as co-activators or co-repressors to regulate transactivation 

mediated by HIF-1α (Table 6).

Many of the proteins that interact with HIF-1α regulate HIF-1 activity by either promoting 

or inhibiting the interaction of HIF-1α with other proteins, as described above. In contrast, 

other HIF-1α-interacting proteins have a catalytic activity, such as acetylation, 

deacetylation, demethylation, phosphorylation, or ubiquitination, leading to post-

translational modification of HIF-1α that alters its stability, subcellular localization, or 

transactivation function (Table 7).

In the era of Big Data Science, it is often frustrating that large projects to characterize gene 

expression, transcription factor binding, or protein-protein interactions often do not include 

HIF-1 because the experiments were performed using tissue culture cells cultured at 20% 

O2. The data presented here represent a compilation of studies using many different cell 

types and the observed protein interactions will of course only be observed in those cell 

types in which both proteins are expressed. In addition, the interaction of HIF-1α with its 

interacting proteins may be regulated by post-translational modification of one or both 

proteins, which may occur in a cell-type or stimulus-specific manner. Finally, it should be 

noted that many HIF-1α-interacting proteins are the products of HIF-1 target genes and 

participate in feed-forward or feedback loops that serve to amplify or extinguish cellular 

responses to hypoxia [163].
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Table 1

Proteins that interact with hypoxia-inducible factor 1α (HIF-1α).

Protein Also known as HIF-1α Residuesa Other Partner (s): Reference(s)

ARD1 NAA10 401–603 [3,4]

ARNT HIF–1β 1–390 [1,2]

ARNTL BMAL1, MOP3 ND [5,6]

ARNTL2 BMAL2, MOP9 ND [7]

ARRB1 Arrestin-β1 ND p300 [8,9]

ATP6V0C 1–16 [10]

BCL2 ND HSP90 [11]

BHLHE41 DEC2, SHARP1 ND 20S proteasome [12]

BRG1 SMARCA4 ND [13]

CBP CREBBP 531–584, 786–826 [14–17]

CBX4 Chromobox 4 299–604 PRC1 [18]

C/EBPα CEBPA 1–302 [19,20]

CDC6 1–329 MCMs [21]

CDK1 ND [22,23]

CDK2 ND [23]

CDK5 ND [24,25]

CDK8 ND Mediator [26]

CJUN (non-phospho) 345–787 [27,28]

CK1δ PAS-Bb [29]

COMMD1 1–300 HSP70 [30,31]

CRM1 616–658 [32]

CTNNB1 β-catenin 1–344 [33]

DROSHA ND [34]

E2F7 1–80 [35]

EAF2 (HIF–1α only)c VHL [36]

ERα ESR1 ND [37]

ERK1/2 MAPK3/1 616–658 [32]

ERRα,β,γ ESRRA/B/G HIF-α: HIF–1β SRC–1/2; PGC–1α/β [38,39]

ETV4 786–826 [40]

FBP1 604–786 [41]

FHL2 429–608 [42]

FIH–1 757–826 VHL [43]

FLNA (HIF–1α only) [44]

FOXA2 1–390 p300 [45]

FOXP3 ND VHL [46]

GR NR3C1 85–153, 238–346 [47]

GPD1L ND [48]

GSK3β GSK3B ND [49]

HAF SART1 298–400 [50,51]

Exp Cell Res. Author manuscript; available in PMC 2018 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Semenza Page 14

Protein Also known as HIF-1α Residuesa Other Partner (s): Reference(s)

HBV X 1–400 [52]

HDAC1 ODD [53]

HDAC3 ODD [53]

HDAC4 ND [54,55]

HDAC6 ND [54]

HDAC7 601–785 [56]

HDM2 MDM2 bHLH; 776–826 p53 [57]

HEXIM1 ND [58]

HHV–8 vIRF bHLH [59]

HNF4 106–526 [60]

HPV E7 ND excludes HDACs [61]

HSPA8 HSC70 1–329; 529NEFKL CHIP, LAMP2A [62,63]

HSP70 331–427 CHIP [64]

HSP90 81–200 [65]

Importin 7 bHLH-PAS-A [66]

ING1b ING ND [67]

IRF1 ND [68]

JAB1 COPS5, CSN5 401–603 [69]

JMJD2C KDM4C 575–786 [70]

KAT5 TIP60 ND [71]

KDM1A LSD1 ND [72,73]

KSHV LANA 300–530 [74]

KSHV vIRF ND [75]

LAMP2A ND HSC70 [62]

MAX ND [76]

MCM2 ND [77]

MCM3 531–826 [77]

MCM5 ND [77]

MCM7 201–329 VHL, Elongin C [77]

MGCRACGAP ND [78]

MTA1 401–603; 576–785; 786–826 HDAC1 [79]

MUC1 ND p300 [80]

MYC 1–329 [81]

NBS1 1–400 [82]

NECDIN ODD [83]

NEMO ND IKKβ [84]

NOTCH ND [85]

NOTCH3 ND [86]

NQO1 331–575 [87]

OS-9 692–826 PHD2, PHD3 [88]

OTUD7B ND [89]

P14ARF 1–199, 463–452 [90]
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Protein Also known as HIF-1α Residuesa Other Partner (s): Reference(s)

P16 ND [91]

P53 TP53 1–330 [92–94]

P300 786–826 [95,96]

PARP1 ND (HIF-–1α and HIF-2α) [97,98]

PCAF ND [99]

PER1 ND [100]

PER2 ND [101]

PHD1 ND [88,102]

PHD2 531–610 OS-9 [88,102]

PHD3 531–826 OS-9 [88,102]

PIASY 211–330, 331–698 (phosphorylated HIF–1α) [104]

PIN1 [105]

PKM2 81–200; 201–329; 331–427;575–786 PHD3 [106]

PLD1 1–401 PHD2 [107]

PLK3 ND [108]

PONTIN ND p300 [109]

PRDX1 ND [110]

PRDX2 575–786 [110]

PRDX4 531–826 [110]

PRDX6 ND [110]

PRKACA 1–200; 531–826 PRKAR1A [111]

PS1-NTF 1–364 PS1-CTF/Aph1a, Nct, Pen2[112]

PSMA7 726–785 [113]

RACK1 GNB2L1 81–200 Elongin C, RHBDF1 [114]

RAPTOR ND [115]

RB 530–694 [116]

REF-1 531–584, 776–826 [14]

REPTIN ND HDAC1 [117]

RHOBTB3 ND PHD2, VHL, LIMD1 [118]

RND3 RHOE ND [119]

RON ND [120]

RSUME ND UBC9, VHL [121,122]

RUNX1 AML1 ND [123]

RUNX2 ODD [124]

RUNX3 603–826 PHD2 [125]

SENP1 ODD [126]

SEPT9_V1 SEPT9 HLH (HIF-1α only) comp RACK1 [127,128]

SET7 1–80, 201–330, 400–575, 576–785 [71,129]

SIRT1 600–826 [99,130]

SIRT2 ND [131]

SIRT6 ND [132]

SIRT7 ND [133]
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Protein Also known as HIF-1α Residuesa Other Partner (s): Reference(s)

SMAD3 ND [134]

SP1 PAS-B [81,135]

SPRY2 ND VHL [136]

SRC-1 776–826 [14]

SSAT1 201–329 RACK1 [137]

SSAT2 81–200 VHL, Elongin C [138]

STAT3 (HIF-1α only) CBP, P300 [139]

STUB1 CHIP 201–329 HSP70 [64]

SUMO-1 ND [140]

TAp63 ND [141]

TAp73 1–330 MDM2 [142]

TAZ ND [143]

TIF2 ND [14]

TRAF6 ND [144]

TSGA10 1–401(mHIF-1α I.2);PAS-B;TAD-C [145,146]

UCHL1 ND [147]

USP7 HAUSP ND [148]

USP8 ND [149]

USP19 bHLH-PAS SIAH1, SIAH2 [150]

VDU2 USP20 ND [151]

VHL 402+ND; 549–582 [152]

WWOX ND [153]

XBP1s (HIF-1α only) [154]

YAP ND [155]

YY1 ND [156]

a
ND, not determined.

b
In some papers, interacting proteins were shown to bind to truncated recombinant proteins containing only a certain domain or subdomain within 

HIF-1α (e.g. bHLH-PAS, ODD, or PAS-B) but the specific amino acid residues were not stated.

c
HIF-2α was tested and did not bind to the HIF-1α-interacting protein.
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Table 2

Interacting proteins that stimulate O2- and PHD/VHL-dependent degradation of HIF-1α.

Protein Mechanism of action Reference

HEXIM1 Increased hydroxylation [58]

MCM7 Increased ubiquitination [77]

OS9 Increased hydroxylation [88]

PLD1 Increased hydroxylation [107]

RHOBTB3 Increased hydroxylation [118]

RUNX3 Increased hydroxylation [125]

SIRT2 Increased hydroxylation [131]

SPRY2 Increased ubiquitination [136]

SSAT2 Increased ubiquitination [138]

WWOX Increased hydroxylation [153]
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Table 3

Interacting proteins that inhibit O2-dependent degradation of HIF-1α.

Protein Mechanism of action Reference

ATP6V0C Competes with VHL for binding [10]

NQO1 Competes with PHDs for binding [87]

OTUD7B Mediates deubiquitination of HIF-1α [89]

RSUME Inhibits VHL-E3 ligase complex [122]

RUNX2 Competes with VHL for binding [124]

SENP1 Mediates deSUMOylation of HIF-1α [126]

UCHL1 Mediates deubiquitination of HIF-1α [147]

USP8 Mediates deubiquitination of HIF-1α [149]

USP20 Mediates deubiquitination of HIF-1α [151]
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Table 4

Interacting proteins that mediate O2-independent degradation of HIF-1α.

Protein Mechanism of action Reference

BHLHE41 Interaction with proteasome [12]

CDK2 Chaperone-mediated autophagy [23]

CHIP/HSP70 Ubiquitination [64]

CHIP/HSC70/LAMP2A Chaperone-mediated autophagy [62,63]

HAF Ubiquitination [50,51]

P53 MDM2-dependent ubiquitination [94]

PIASY SUMOylation [104]

RACK1 Ubiquitination [114]

SIRT1 ND [130]

SIRT7 Proteasome/lysosome-independent degradation [133]

SSAT1 RACK1-dependent ubiquitination [137]

TAp73 MDM2-dependent ubiquitination [142]
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Table 5

Interacting proteins that inhibit O2-independent degradation of HIF-1α.

Protein Mechanism of action Reference

BCL2 Inhibits ubiquitination by stabilizing HSP90 binding [11]

CDK1 Inhibits chaperone-mediated autophagy [22,23]

HSP90 Inhibits ubiquitination by RACK1 [65,114]

MUC1 Not determined [80]

SEPT9 Inhibits ubiquitination by RACK1 [127,128]

TRAF6 Stabilizes HIF-1α via K63-linked polyubiquitination [144]
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Table 6

Interacting proteins that regulate transactivation by HIF-1α.

Protein Mechanism of action Reference

CBP Coactivator; binds to non-hydroxylated C-terminal TADa [14–17]

COMMD1 Blocks HIF-1α: HIF-1β heterodimerization [21,22]

EAF2 Disrupts interaction of CBP/p300 with HIF-1α [36]

FBP1 Co-repressor; inhibits C-terminal TAD [41]

FHL2 Co-repressor [42]

FIH-1 Hydroxylates N803 to block binding of CBP/p300 [43,157]

JMJD2C Coactivator; demethylates H3K9me3b at HREsc [70]

KAT5 Coactivator; required for RNA Pol II activation [71]

MCM7 Inhibits transactivation in a hydroxylation manner [77]

MGCRACGAP Blocks HIF-1α: HIF-1β heterodimerization [78]

MUC1 Stabilizes interaction of p300 with HIF-1α [80]

P300 Coactivator; binds to non-hydroxylated C-terminal TADb [95,96]

PARP1 Coactivator [97,98]

PCAF Coactivator; enhances p300 recruitment [99]

PKM2 Coactivator; enhances HIF-1 binding, p300 recruitment [106]

PONTIN Coactivator; increases recruitment of p300 [109]

REPTIN Recruits HDAC1 to a subset of HIF target genes [117]

SET7 Blocks binding of HIF-1 to DNA [71,129]

SIRT1 Deacetylates HIF-1α on K674 to inhibit p300 binding [99]

SIRT6 Co-repressor [132]

SRC1 Co-activator [14]

STAT3 Co-activator [139]

TAZ Co-activator; increases HIF-1α binding to HREs [143]

TIF2 Co-activator [14]

TSGA10 Blocks nuclear localization [145,146]

XBP1s Co-activator; increases RNA Pol II recruitment [154]

a
TAD, transactivation domain.

b
H3K9me3, histone 3, trimethylated on lysine 9.

c
HREs, hypoxia response elements.
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Table 7

Post-translational modification (PTM) of HIF-1α.

Interactor Site of PTM (AA#)
* Type of PTM Consequence Ref

ATM 696 Phosphorylation Stabilization [158]

CBX4 391,477 Sumoylation Transactivation [18]

CDK1 668 Phosphorylation Stabilization [22]

CDK5 687 Phosphorylation Stabilization [25]

CK1δ 247 Phosphorylation Dimerization blocked [29,159]

CK2 796 Phosphorylation Transactivation [160,161]

ERK1/2 641,643 Phosphorylation Nuclear localization [32]

GSK-3β 551.555,589 Phosphorylation Degradation [49]

HDAC4 10,11,12,19,21 Deacetylation Stabilization [55]

LSD1 32 Demethylation Stabilization [161]

P300 709 Acetylation Stabilization [55]

PCAF 674 Acetylation Transactivation [99]

PIASY ND (not 391,477) Sumoylation Degradation [104]

PLK3 576,657 Phosphorylation Degradation [108]

PRKACA 63,692 Phosphorylation Degradation [111]

SENP1 ND Desumoylation Stabilization [126]

SET7 32 Methylation Repression [129]

SET7 32 Methylation Degradation [161]

SIRT1 674 Deacetylation Repression [99]

SIRT2 709 Deacetylation Degradation [131]

STUB1 ND Ubiquitination Degradation [64]

TRAF6 ND Ubiquitinationa Stabilization [144]

VHL 532,538,547
Ubiquitination

* Degradation [162]

*
(AA#), the amino acid number of the HIF-1α residue that is subject to PTM is shown, based on GenBank accession number U22431.1.

*
K48-linked polyubiquitination.

a
K63-linked polyubiquitination.
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