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A long-standing challenge for population biology has been to
understand why some species are characterized by populations
that fluctuate in size independently, while populations of other
species fluctuate synchronously across space. The effects of
climatic variation and dispersal have been invoked to explain
synchronous population dynamics, however an understanding
of the relative influence of these drivers in natural populations
is lacking. Here we compare support for dispersal- versus
climate-driven models of interspecific variation in synchrony
using 27 years of observations of 65 butterfly species at 10
sites spanning 2750 m of elevation in Northern California. The
degree of spatial synchrony exhibited by each butterfly species
was used as a response in a unique approach that allowed
us to investigate whether interspecific variation in response
to climate or dispersal propensity was most predictive of
interspecific variation in synchrony. We report that variation in
sensitivity to climate explained 50% of interspecific variation in
synchrony, whereas variation in dispersal propensity explained
23%. Sensitivity to the El Niño Southern Oscillation, a primary
driver of regional climate, was the best predictor of synchrony.
Combining sensitivity to climate and dispersal propensity into
a single model did not greatly increase model performance,
confirming the primacy of climatic sensitivity for driving
spatial synchrony in butterflies. Finally, we uncovered a
relationship between spatial synchrony and population decline
that is consistent with theory, but small in magnitude, which
suggests that the degree to which populations fluctuate in
synchrony is of limited use for understanding the ongoing
decline of the Northern California butterfly fauna.
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1. Introduction
A primary goal of population ecologists is to understand the mechanisms that underlie fluctuations in
the density of natural populations of plants and animals through both space and time. Early studies
suggested that trophic interactions and exogenous forces, such as climatic variability, might play an
important role in driving spatial and temporal population dynamics [1–3]. More recently, population
biologists have integrated larger spatial and temporal datasets to describe the dynamics of spatially
segregated populations. For example, metapopulation models are used to predict the persistence of
subpopulations and understand drivers of metapopulation collapse [4,5]. A key parameter of interest
in such studies is the extent to which subpopulations exhibit correlated spatio-temporal dynamics
(e.g. experience ‘good years’ and ‘bad years’ in parallel) because this type of synchronization can limit
the ability of metapopulations to recover from the loss of sub-populations [4–7]. Here we take a unique,
multi-species approach using long-term data to advance understanding of correlated spatio-temporal
dynamics in insect populations that exist across a heterogeneous landscape.

Three non-mutually exclusive mechanisms are often hypothesized to synchronize population
dynamics among populations: (i) dispersal of individuals among populations, which links the dynamics
of those populations; (ii) synchronization owing to density-independent factors (e.g. climate) that
are correlated across wide areas (i.e. the ‘Moran effect’ [8]); and (iii) interactions with other species
(e.g. natural enemies and pathogens) that are themselves either synchronous or highly mobile [9–11].
Identifying the relative influences of each of these three mechanisms is challenging because all three
may cause similar patterns of synchrony among populations [10,12]. Moreover, it is difficult to directly
measure the contribution of dispersal, which is itself a complex trait, and the product of other interacting
biological characteristics [13]. Furthermore, data describing natural enemy population densities are not
available for the majority of organisms, including our focal species; thus this investigation will focus on
dispersal propensity and sensitivity to climatic variation, but not interspecific interactions.

To compare the relative influence of dispersal propensity and sensitivity to climatic variation on
spatial synchrony, we used data from 27 years of observations collected by a single observer (A.M.S.)
of 65 butterfly species across 10 sites that are separated by 210 km and span an elevational gradient of
2750 m (figure 1a). We characterized each butterfly species in terms of degree of spatial synchrony and a
range of species-specific properties that together acted as an index of dispersal propensity, including:
wingspan, geographical range, elevational range and host breadth (see Methods; [14–20]). We also
quantified the sensitivity of each species to climatic variation (e.g. sensitivity to winter precipitation,
summer temperature and other variables) using a hierarchical linear model implemented in a Bayesian
framework. These data allowed us to compare several drivers of interspecific variation in spatial
synchrony across all 65 butterfly species. We used structural equation modelling (SEM) to address
the following questions: (i) is interspecific variation in spatial synchrony better predicted by dispersal
propensity or sensitivity to climatic variation? (ii) can interspecific variation in spatial synchrony be
modelled through the combined or interacting effects of dispersal propensity and climatic sensitivity?
Finally, given the theoretical expectation that synchrony can predispose metapopulations to collapse,
we ask if an improved understanding of the drivers of spatial synchrony can shed light on declines
in focal butterfly populations [5,21–23]. The portion of Northern California where our study sites are
located has been characterized by dramatic population declines and local extirpations of butterfly taxa
in recent years, particularly at low elevations [24]. These declines have been attributed to a combination
of development, changing land use and pesticides [25,26], but the contribution of spatial synchrony to
these declines has not been studied.

2. Methods
2.1. Study system, data robustness and calculation of synchrony
Butterfly data were collected by A.M.S. at 10 locations in Northern California from 1972–2013 (figure 1a).
These sites include a variety of habitat types, spanning a 2750 m elevational gradient, and are separated
by 210 km from the most western to the most eastern location. A fixed transect was walked every two
weeks as per [27], and incidence of taxa noted (for maps of transects see http://butterfly.ucdavis.edu/).
Surveys were conducted in spring, summer and autumn on sunny days with little wind, and thus
suitable for butterfly flight. From these records, we calculate a fraction of days per year in which a species
was seen at a particular site (specifically, the number of positive observations was divided by the number
of visits to account for variation in sampling effort; henceforth this index is referred to as fractional day

http://butterfly.ucdavis.edu/
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Figure 1. (a) Map of Northern California (inset) showing our 10 study sites, along with a portrayal of the elevational relief present.
(b) Histogram displaying the frequency distribution of synchrony indices for the 65 butterfly taxa included in this study. (c–f ) Time
series (1999–2014) of four butterfly taxa representative of the variation in synchrony among species: (c) Vanessa cardui (synchrony index:
0.82); (d) Papilio zelicaon (index: 0.07); (e) Junonia coenia (index: 0.56); and (f ) Glaucopsyche lygdamus (index: 0.09)). All photos used by
permission from http://www.butterfliesofamerica.com/ (photographers: Kim Davis, Mike Strangeland, AndrewWarren).

positives (FDP)). Previous analyses have shown that variation in FDP effectively represents variation
in butterfly abundance [28]. To confirm the previous finding, our primary analyses (described below)
were repeated using count data for a subset of taxa and sites (those in the central valley of California
only) for which counts of individuals were available. In all cases, results obtained with count data were
similar to results obtained with occurrence data, despite counts of abundance being inherently more
variable than incidence records. Considering the congruence of results with incidence and abundance
data, and the fact that a single observer collected all data across years and sites, we infer that the results
reported here are robust to variation in detectability, which (similar to many other insect monitoring
programmes) has not been separately quantified in our system. Moreover, analyses were repeated while
omitting observations for randomly selected taxa (see below), and results were similar; confirming that
variation in detectability among taxa has not confounded our analyses.

For each combination of site and taxon, the previous year’s FDP was subtracted from the current
year’s FDP to calculate a change in FDP between years (�FDP). Correlation coefficients were then
calculated between �FDPs from different sites in a pairwise fashion (Pearson’s r), as has been done
with a variety of taxa in studies of spatial synchrony [9,29]. For each pairwise correlation, data from the
sites with the longer histories of observation were truncated to match the site with the shortest record
(all sites considered had at least 25 years of observations). The resulting correlation coefficients were
averaged across all pairwise comparisons among sites to give a taxon-specific index of synchrony. If a
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species was absent for eight or more years at a site, then that site was not included in the analysis for that
species. Finally, for a species to be included in this study it had to occur at three or more sites. In total,
synchrony indices for 65 butterfly species were generated (electronic supplementary material, table S1).

2.2. Structural equation models
To compare specific hypotheses for the drivers of synchrony, we used SEM. This method facilitates
the testing of causal relationships among variables, including comparison of direct and indirect causal
structures [30]. A total of six SEMs were constructed to compare a priori hypotheses about potential
drivers of spatial synchrony, based on insights gained from previous work with these butterflies and sites
[24,31–33]. Two SEMs were generated to independently compare the influence of dispersal propensity
and sensitivity to climatic variation on synchrony, and a third SEM was assembled to investigate the
combined influence of both drivers. For each species, the average number of sites occupied (to account
for variation in number of time series available to calculate synchrony indices), the average FDP across
sites (‘abundance’; to account for variation in population density), and the average inter-annual change
in FDP across sites (henceforth ‘trend’, as a measure of population increase or decrease, see Forister
et al. 2010 [24]) were calculated, z-standardized, and included as covariates in SEMs to account for
their influence on spatial synchrony. The inclusion of trend in each model allowed us to quantify the
association between interspecific variation in synchrony and rate of inter-annual population change (for
most species, populations were in decline).

We also considered including maximum distance between sampling sites as a covariate, but found
that it was highly correlated with average number of sites occupied (Pearson’s correlation = 0.76);
suggesting that average number of sites occupied served as a good proxy for distance between sites.
Furthermore, the incorporation of maximum distance between sites did not improve model performance
or change the overall conclusions drawn from each model; therefore we did not include maximum
distance between sampling sites in SEMs.

For all models, we further investigated the influence of dispersal by removing nine butterfly species
that undergo annual migrations (including latitudinal and elevational migrations) and observed changes
in model fit and path coefficients (electronic supplementary material, table S1). Since these migratory taxa
are known to be extreme dispersers, they represent a subset of species whose variation in synchrony is
likely to be influenced by traits predictive of dispersal propensity and thus their removal can provide
an informative contrast to analyses solely encompassing more sedentary butterflies. To understand
how the removal of nine species from our analysis affected the variance explained, each SEM was
performed 1000 times with a random set of 56 butterfly species (dropping nine each time). The mean
and standard error of variance explained were calculated for each separate model (e.g. dispersal, climate,
combined). Details of SEM construction are provided below. Model fit was assessed using χ2, and model
comparison performed using the Akaike information criterion (AIC) [34]. All SEM and path analyses
were constructed using the lavaan package v.0.5-17 [35] in R v.3.1.1 [36].

2.3. Modelling the influence of dispersal propensity on synchrony
Given that dispersal is difficult to quantify and often comprised of several variables, a maximum-
likelihood factor analysis was used to reduce the dimensionality among correlated data that together
characterize dispersal propensity among taxa (R package: psych v.1.4.8.11; [37]). Wingspan, geographical
range, diet breadth (number of plant genera consumed), and elevational range were selected to represent
dispersal propensity within this butterfly assemblage. These variables were chosen because interspecific
variation in butterfly dispersal ability has been linked to wingspan (e.g. [17,19,20], geographical range
and diet breadth [14–16,18]. Geographical range (km2) for each taxon was taken from [38,39] and diet
breadth was taken from [40]. Diet breadth included only those larval hosts used in Northern California.
Wingspan was taken from [41] and was the mean value of the range reported for each species.

Two factors were calculated that respectively explained 30% (‘Dispersal 1’) and 15% (‘Dispersal
2’) of the variance in underlying variables. ‘Dispersal 1’ included all four variables, but was most
heavily weighted by geographical range, diet breadth and elevational range. ‘Dispersal 2’ included all
variables except diet breadth, and was primarily associated with wingspan and geographical range (see
the electronic supplementary material, tables S2 and S5 for loadings). These two factors were input
into SEMs and served as latent variables. Latent variables are used to model unobservable, or highly
multidimensional phenomena (e.g. dispersal propensity) using information from more easily measurable
phenomena (e.g. wingspan, geographical range).
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2.4. Modelling response to weather
A hierarchical Bayesian linear modelling framework was used to model the response to climatic variation
by each butterfly species. This approach allowed us to account for the hierarchical structure within our
data (i.e. sites nested within transect) and to leverage information from those sites with more occurrences
for a given taxon when determining parameter estimates for sites with fewer occurrences. These
responses were subsequently used during calculation of factors characterizing variation in sensitivity to
climate among taxa (see below). Climate information was extracted from the PRISM dataset [31], which
interpolates data from weather stations with respect to site-specific topography. Data were converted
to seasonal values following a ‘water year’ format, so that spring consisted of March, April, and May;
summer of June, July, and August; autumn of September, October, and November of the previous year;
and, winter of December of the previous year, and January and February of the current year. This
‘water year’ corresponds to the post-summer increase in precipitation typically observed beginning
in September through much of Northern California. Prior to model construction, all seasonal weather
variables were converted to z-scores. To identify responses to the El Niño Southern Oscillation (ENSO;
a primary driver of long-term natural climatic variation in Northern California [42]) we used the sea-
surface temperature anomaly (SSTA) dataset from 1981–2010 in the ‘Niño 3.4’ region of the Pacific Ocean
(Climate Prediction Center of the National Oceanographic and Atmospheric Administration). The SSTA
is defined as a departure from the long-term SST mean, and is a commonly used index of the strength
of ENSO. The mean values of SSTA of December, January, and February from a given ‘water-year’ were
used in analyses because they correspond to the peak of ENSO [43]. All weather variables were chosen
because previous work has shown the response to these weather conditions to be important drivers
of butterfly population dynamics in Northern California [31–33]. The average pairwise correlation of
principle components from a principle component analysis of all weather variables considered in this
study was 0.82. In addition, year was included as a covariate in each model to describe inter-annual
trends in population density [24].

For each taxon, a binomial response consisting of day positives and visits was modelled. This response
was linked to the predictor variables of a hierarchical linear model using an inverse logit link function:
pij = 1/(1 + e−αij ), where pij is the proportion of occurrences out of total visits in year i and at site j, and
αij is the output of the linear model for year i at site j. The linear model was of the form:

αij = μj + β1j winter tempij + β2j spring tempij + β3j winter precipij

+ β4j spring precipij + β5j summer precipij + β6jSSTAij + β7j yearij.

The mean estimate of FDPs for a given taxon at a given site is given by the intercept term μ, and
regression coefficients for each model term by β1–7. Normal distributions with means and precisions
equal to transect-wide parameters were used as sampling pools for site-specific intercepts and beta
coefficients:

μj ∼ N(μμ, τμ)

and

βKj ∼ N(μβK τβK ),

where k is the number associated with each model term. We used uninformative hyperpriors for these
parameters defined by:

μμ ∼ N(0, 1.0e−5),

μβK ∼ N(0, 1.0e−5),

τμ ∼ Gamma(0.1, 1.0e−3)

and τβK ∼ Gamma(0.1, 1.0e−3).

Posterior probability distributions (PPDs) for the transect-wide impact of each model term were
approximated via Markov chain Monte Carlo sampling using RJAGS (v.3.4.0, [44]). Two sampling chains
were run for 30 000 iterations following a burn-in of 1000 iterations. Effective sample sizes and trace plots
were examined to ensure adequate mixing and convergence on a suitable approximation of PPDs. The
mean of the PPD for the transect-wide estimate of each regression coefficient was used as an estimate
of the response to that term. The outputs of this approach were estimates of species-specific responses
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to weather variables that were informed by responses across all study sites (electronic supplementary
material, table S1).

2.5. Modelling the influence of climate on synchrony
A maximum-likelihood factor analysis was used to reduce the dimensionality of data describing how
taxa respond to climatic variation as output from hierarchical linear modelling described above [37]. We
calculated two factors from the analysis of responses to precipitation in spring, summer, and winter and
temperature in spring and winter, which explained 28% and 21% respectively of the variance in analysed
variables. We included ENSO (as measured by response to SSTA; see above) into our SEM as a standalone
variable to compare the influence of regional climate versus local weather on synchrony, and therefore
sensitivity to ENSO was not included in the factor analysis. Factor one (‘Climate 1’) was composed of
responses to all five climatic variables, but was most heavily weighted by spring temperature and to a
lesser degree, spring precipitation. Factor two (‘Climate 2’) included all climate variables except response
to summer temperature, and was primarily weighted by responses to winter temperature (electronic
supplementary material, tables S3 and S4).

2.6. Modelling the combined influence of natural history and sensitivity to weather on
synchrony

We also examined the combined influence of variation in dispersal propensity and sensitivity to weather
on spatial synchrony via SEM. Both sets of latent variables used in the previous analyses were included
in our ‘combined’ model. This allowed us to compare the relative influence of sensitivity to weather and
dispersal propensity on synchrony in the same model. We hypothesized a priori that dispersal propensity
and sensitivity to climate might interact to influence spatial synchrony, therefore we generated models
linking the latent variables characterizing both of these drivers. We compared performance among
models (using AIC and χ2) to determine which combination of latent variables improved model fit.

3. Results
Our index of spatial synchrony, which measures the correlation of changes in yearly abundances across
populations [9], identified 44 out of the 65 butterfly species as having synchrony indices greater than 0.1;
only seven taxa had negative synchrony indices, which indicated asynchronous fluctuations (minimum
index value was −0.11) (figure 1b). By visual inspection, index values greater than 0.2 represented fairly
synchronized population dynamics, and values greater than 0.4 highly synchronized dynamics (for
examples see figure 1b–f ). Out of all species studied, 25 had synchronized dynamics (more than 0.2)
and five species had indices over 0.4 (electronic supplementary material, table S1).

Our models successfully explained variation in spatial synchrony among Northern California
butterflies (figure 2). We confirmed the contribution of dispersal propensity to interspecific variation
in spatial synchrony using SEM (figure 3a; χ2

4 = 1.41, p = 0.84, n = 65; higher p-values signify better
fit; electronic supplementary material, table S6). This SEM explained 23% of the variance in spatial
synchrony among taxa, and 59% of the variation in the average number of sites occupied across the
elevational gradient. The latter result suggests that our latent variables captured meaningful biological
variation pertaining to dispersal ability. The influence of dispersal propensity on patterns of spatial
synchrony was restricted to the positive influence of a single latent variable (‘Dispersal 1’), which
was primarily weighted by diet breadth and geographical range. Removing migratory species from
the SEM reduced the explanatory power of the model (figure 3b; χ2

4 = 4.42, p = 0.35, n = 56; electronic
supplementary material, table S7), which subsequently only explained 3% of the variance in spatial
synchrony.

Our ‘climate’ SEM was well supported, and revealed that sensitivity to climate, especially to the
large-scale climate pattern ENSO, was strongly, positively associated with variation in spatial synchrony
among butterfly taxa (figure 3c; χ2

9 = 5.41, p = 0.80, n = 65; electronic supplementary material, table S8).
This SEM explained 50% of the variation in spatial synchrony among butterflies. ENSO drives regional
climate patterns and the response to ENSO was the strongest predictor of spatial synchrony for the entire
fauna, with butterflies more sensitive to ENSO exhibiting greater synchrony. We also observed that those
butterfly species most responsive to ENSO were less responsive to local climatic conditions.
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Figure 2. Explained variance in spatial synchrony among Northern California butterfly species by SEM: limited to dispersal propensity
(‘dispersal’), sensitivity to climate (‘climate’), or the combined influences of both drivers of spatial synchrony (e.g. dispersal and climate)
(‘combined’). Dark grey bars represent SEM models from which migrants were excluded (leaving 56 species), while light grey bars
represent variance explained when all species were considered (65 species). The ‘random’ bar represents variance explained for each
model when nine species were randomly removed from the original 65 species. Models were permuted 1000 times and the mean and
95% confidence interval of variance explained is plotted (see Methods).

When excluding migratory butterflies, which are especially sensitive to ENSO fluctuations [33,43],
SEM performance decreased (figure 3d; χ2

9 = 16.36, p = 0.06, n = 56; electronic supplementary material,
table S9) and the role of ENSO as a driver of spatial synchrony was diminished. This is consistent with
the previously-observed importance of regional weather for the most dispersive and widespread species
[33]. However, model performance was still high and explained 28% of the variance in spatial synchrony
among species. Sensitivity to local weather was the best predictor of variation in synchrony for non-
migratory butterflies. Species with the most asynchronous dynamics were also the most sensitive to
local weather, in particular spring and summer precipitation.

The ‘combined’ SEM, which included both dispersal propensity and climatic sensitivity, was also
strongly supported and explained 53% of the variance associated with spatial synchrony among species
(figure 4a; χ2

18 = 15.19, p = 0.65, n = 65; electronic supplementary material, table S10). In line with results
from our climate SEM, sensitivity to climatic variation was the best predictor of spatial synchrony, and
both sensitivity to local weather and ENSO resulted in more synchronous dynamics among butterflies;
with sensitivity to ENSO being the strongest predictor of synchrony. A significant, direct influence of
dispersal on spatial synchrony was not observed, but we did uncover several indirect effects of dispersal
mediated by sensitivity to climate (figure 4a). Both indirect effects of dispersal propensity positively
influenced spatial synchrony, and provide evidence that the role of dispersal propensity on synchrony is
probably mediated by climate. Repeating the ‘combined’ SEM without migratory butterflies resulted
in an unsupported causal structure (figure 4b; χ2

18 = 36.05, p = 0.01, n = 56; electronic supplementary
material, table S11). However, path coefficients were still informative because they represent the output
of pairwise regression, and the model explained 35% of the variation in synchrony associated with
non-migratory butterflies. Without migratory species, the direct influence of sensitivity to ENSO on
synchrony was lessened and an indirect influence of ENSO on synchrony, via local weather, became
evident. In all models, the variance explained when nine random species was removed was equal
to models that included migratory species, supporting the idea that the nine migratory species are
biologically unique among this butterfly assemblage (figure 2).

Finally, we considered the effect of spatial synchrony on trends in inter-annual population change
(figures 3 and 4; electronic supplementary material, tables S6–S11). For each SEM, synchrony explained
only approximately 5% of the variation in inter-annual trend across taxa. However, in all three SEMs the
direct path coefficient from spatial synchrony to population trend was significant (p < 0.05). The strength
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fit was determined using a χ 2 test; non-significant p values denote a supported model. (a) ‘Natural history’ SEM modelling synchrony
as driven by natural history traits with all butterfly species included (χ 2

4 = 1.41, p= 0.84, n= 65). (b) ‘Natural History’ SEMmodelling
synchrony as driven by natural history with migratory butterfly species excluded (χ 2

4 = 4.42, p= 0.35, n= 56). (c) ‘Climate’ SEM to
model synchrony as driven by sensitivity to climatewith all butterflies included (χ 2

9 = 5.41, p= 0.80, n= 65). ENSO refers to sensitivity
of a taxon to the sea surface temperature anomaly, a proxy for the severity of the El Niño Southern Oscillation (ENSO). (d) ‘Climate’ SEM to
model synchronyasdrivenby sensitivity to climatewithmigratorybutterflies excluded (χ 2

9 = 16.36,p= 0.06,n= 56; see theelectronic
supplementary material, table S1 for which species were excluded).

and significance of this path depended on the incidence of migratory species in the model. Removing
migratory species eliminated the path’s significance and narrowly reduced the strength of the coefficient
in all three cases. In all three models, a negative coefficient was observed, suggesting that higher levels of
spatial synchrony are associated with population declines among the butterfly assemblage, particularly
for migratory species.

4. Discussion
In this study we identified relationships between spatial synchrony and both dispersal propensity and
sensitivity to climatic variation, among 65 butterfly species in a region characterized by extreme habitat
heterogeneity (figure 1). Our approach differs significantly from previous investigations that focused
on correlations between climatic fluctuation and population dynamics in that we linked species-specific
climatic sensitivity and dispersal propensity to the degree of synchrony exhibited [45,46]. We have shown
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Figure 4. Structural equation models (SEM) that describe the combined effects of natural history traits and sensitivity to weather on
spatial synchrony. Paths are represented similarly to figure 3. ‘Dispersal 1’ and ‘Dispersal 2’ refer to two factors extracted from a factor
analysis of species-specific dispersal propensity (see Methods). ‘Climate 1’ and ‘Climate 2’ refer to two factors extracted from a factor
analysis of sensitivity to local weather. (a) An SEM constructed using data from all focal species, which was well supported (χ 2

18 = 15.2,
p= 0.65, n= 65). (b) An SEM calculated while omitting migratory taxa (electronic supplementary material, table S1) which was not
supported (χ 2

18 = 36.1, p= 0.007, n= 56), though individual path coefficients remain informative.

that the majority of interspecific variation in spatial synchrony can be explained through sensitivity to
climatic variation, especially to large-scale climate patterns such as ENSO, the effect of which is at least
partially mediated by traits related to dispersal.

In the portion of California where our transect is located, ENSO may lead to either increased or
reduced precipitation, but effects on precipitation are dramatic [42]. Our results support previous efforts
which have shown that large-scale climate patterns can act to synchronize population dynamics across
entire regions [47,48]. The importance of sensitivity to ENSO was driven by the inclusion of migratory
species in models. Indeed, removal of these taxa (n = 9) reduced the explained variance of models and
dramatically altered the strength and direction of associated standardized path coefficients. A possible
explanation for this is that the population dynamics of migratory species are shaped by climate across a
broader spatial scale than more sedentary species.

By contrast, variation in spatial synchrony among non-migratory species was best predicted by
sensitivity to localized weather conditions (species that are most sensitive to local weather have the least
synchronized dynamics). Given the elevational range encompassed in this study and the corresponding
breadth of habitat types, the influence of local weather conditions on butterflies may vary between sites,
which may act to desynchronize sub-populations of conspecifics occurring across the transect. Indeed,
previous investigations have shown that butterfly species can differentially respond to the same climatic
variable (e.g. winter precipitation) at different sites [33].
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Interestingly, sensitivity to spring and summer precipitation was indicative of taxa with asynchronous

dynamics, and sensitivity to spring temperature and winter precipitation was representative of taxa
with synchronous dynamics. These results complement previous work showing that species with
highly fluctuating population dynamics are positively influenced by increased spring and summer
precipitation, and negatively influenced by increasing spring temperatures and winter precipitation [32].
Moreover, drier winter conditions have previously been linked to earlier emergence time in California
butterflies [49] while increased winter precipitation has a generally positively influence on the abundance
of butterflies in the region [31]. When taken together, these results suggest that spatial synchrony
for non-migratory taxa is associated with the ability to rapidly increase in abundance under suitable
climate conditions.

Dispersal is thought to be an important contributor to spatial synchrony, yet with the exception
of known migrants, species-specific dispersal propensity was not a strong predictor of interspecific
variation in spatial synchrony (figure 2). Work with other Lepidoptera species also reports that dispersal
plays a minor role in synchronizing populations [50–52]. A possible explanation for why increased
dispersal propensity did not increase spatial synchrony is that non-migratory butterflies (the majority
of species we examined) may rarely move between sites. Our focal sites span 2750 m of elevation and
many habitat types, thus habitat heterogeneity may limit effective dispersal between disparate sites.
This hypothesis is supported by a decline in variance explained when migratory species were omitted
from our model (from 23% to 3% variance explained). This suggests that dispersal can indeed act
as a synchronizing influence, but only for the most mobile taxa. Additionally, we acknowledge that
interactions with natural enemies [53–55] probably account for a portion of the unexplained variance
in our models of spatial synchrony. However, we were unable to assay the influence of natural enemies
because relevant information was unavailable for even a subset of our focal taxa.

The abundances of most butterfly species occurring at lower elevations in our study area are in
decline [24]. We detected these declines using our ‘trend’ index, which measures the inter-annual rate
of population decline for each butterfly species averaged across the entire study area. Theory predicts
that spatial synchrony within a metapopulation will be related to extinction propensity of the entire
metapopulation [22], and there are several mechanisms that potentially link these phenomena. For
example, spatially synchronous dynamics can reduce the beneficial effect of dispersal by making it less
likely that populations experiencing a bad year are rescued by populations in a productive year [56].
Consistent with theory, we detected a significant negative association of increased spatial synchrony
with population trends, such that more synchronized species were characterized by more severe declines
in abundance over the course of the study. Note, however, that our measure of decline is a measure of
population density averaged across focal sites, not a measure of metapopulation occupancy. Thus the
mechanistic connection between synchrony and declining populations at our sites will have to wait on
future studies potentially involving regional population surveys beyond our focal sites.

5. Conclusion
We report that interspecific variation in spatial synchrony among the butterflies of Northern California is
best explained by sensitivity to climatic variation. Sensitivity to the large-scale climate pattern, ENSO was
highly predictive of spatial synchrony, particularly so for the most mobile species (migrants). Dispersal
propensity was less predictive of spatial synchrony than climate, especially for non-migratory species.
However, our analyses revealed that both drivers influenced the degree of synchrony exhibited by
butterflies. Finally, spatial synchrony appears to contribute little to the ongoing declines in butterfly
abundance in this assemblage. In a world ever more characterized by habitat fragmentation, climate
change, and consequent sub-division of populations, understanding the forces that drive variation in
spatial synchrony among species is critical if we wish to understand natural populations and establish a
baseline against which future changes can be measured.
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