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Abstract

We present a numerical method for rapidly solving the Bloch equation for an arbitrary time-

varying spin-1/2 Hamiltonian. The method relies on fast, vectorized computations such as 

summation and quaternion multiplication, rather than slow computations such as matrix 

exponentiation. A toggling frame is constructed in which the Hamiltonian is time-invariant, and 

therefore has a simple analytical solution. The key insight is that constructing this frame is faster 

than solving the system dynamics in the original frame. Rapidly solving the Bloch equations for 

an arbitrary Hamiltonian is particularly useful in the context of NMR optimal control. Optimal 

control theory can be used to design pulse shapes for a range of tasks in NMR spectroscopy. 

However, it requires multiple simulations of the Bloch equations at each stage of the algorithm, 

and for each relevant set of parameters (e.g. chemical shift frequencies). This is typically time 

consuming. We demonstrate that by working in an appropriate toggling frame, optimal control 

pulses can be generated much faster. We present a new alternative to the well-known GRAPE 

algorithm to continuously update the toggling-frame as the optimal pulse is generated, and 

demonstrate that this approach is extremely fast. The use and benefit of rapid optimal pulse 

generation is demonstrated for 19F fragment screening experiments.
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1. Introduction

Optimal control theory can be used to design pulses suitable for specific tasks in NMR 

spectroscopy, such as broadband excitation or inversion, decoupling, coherence transfer, and 

Hadamard encoding [1,2]. In particular, the gradient ascent pulse engineering (GRAPE) 

algorithm, based on the Pontraygin maximum principle [3,4], can generate a pulse sequence 
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which steers spins to a desired final state. The pulse can be generated such that it functions 

correctly in the presence of a range of parameters such as chemical shifts, RF 

inhomogeneities, and couplings. Part of the power of this approach is that NMR experiments 

can be highly tailored to the specific system (i.e. set of chemical shifts) of interest. The 

GRAPE procedure requires repeated solutions to the spin dynamics for each set of 

parameters. These solutions must be generated both forwards and backwards in time. This 

gives the forward and backward trajectories of the density matrix in the presence of the 

pulse, and these jointly determine a correction to the pulse shape. The algorithm is then 

iterated, and generally converges to a pulse shape which produces the desired density matrix 

evolution.

Optimal control was originally applied to magnetic resonance in the context in MRI [5–7], 

and was later rediscovered and developed further for applications in NMR spectroscopy [8–

13] and quantum computing [14,15]. However, the GRAPE algorithm has so far seen fairly 

limited use for highly tailored experiments of small molecules and simple mixtures, e.g. 

pulses designed to work for a particular sample. The GRAPE approach does not fit easily 

into rapid NMR workflows, such as fragment screening or small molecule NMR, since pulse 

generation takes from ~30 min up to several hours [16,13].

Rapid generation of optimal control pulses will extend their applicability to situations where 

pulse generation is required at the spectrometer, tailored to a sample, in an automation setup. 

For example, in 19F fragment screening there are typically 15–30 resonances spread over 

about 100 kHz of spectral bandwidth (in each of up to several hundred samples). General 

broadband excitation pulses wastefully target many empty spectral regions. Furthermore, 

these generally have long pulse durations and require high RF power levels. These pulse 

properties lead to relaxation losses and prohibit experiments such as CPMG that require 

repeated rapid refocusing for milliseconds. It would be useful to generate optimal excitation, 

inversion, and refocusing pulses tailored to each sample. The pulse can ignore unpopulated 

spectral regions, and focus on the specific resonances actually present. Therefore, such 

sample-specific optimal control pulses have shorter durations, lower RF power, and better 

performance. Generating all the optimal control pulses for a practical 19F fragment library is 

a formidable computational task, largely due to the fact that the density matrix trajectories 

need to be calculated many times.

Transforming the Hamiltonian to a different frame of reference can greatly simplify NMR 

calculations. Examples include the standard transformation from the laboratory frame to the 

rotating frame [17], as well as more intricate procedures such as the Magnus expansion 

[18,19] and other coherent averaging techniques [20–24]. Similarly, there have been a 

number of attempts to use frame transformations to simplify spin dynamics without 

completely removing time-dependence, and this has been useful for various pulse design 

schemes [25–27]. It is important to note that frame transformations do not only affect the 

complexity of analytical calculations, but also the computational effort required for 

numerical simulations. Since GRAPE is computationally intensive, it makes sense to ask if 

well-chosen frame transformations can simplify and accelerate the optimization procedure.
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Here, we show that the forwards and backwards density matrix trajectories can be rapidly 

determined using repeated construction of appropriate toggling frames. A toggling frame is a 

generalization of the familiar rotating frame of reference, in which the new frame’s motion 

with respect to the original frame can be more intricate than a simple precession [28,23]. 

The procedure is as follows: The time-varying part of the Hamiltonian is reduced using a 

numerically-constructed toggling frame. This construction requires an integration (i.e. 

cumulative sum of a digital signal), a subtraction, and a rotation of the Hamiltonian—all of 

which are fast, vectorizable numerical operations. With iteration, the original time-varying 

Hamiltonian quickly converges to a time-invariant Hamiltonian, i.e. an average or equivalent 

Hamiltonian. Since the average Hamiltonian is time-invariant, it has a simple analytical 

solution, and the corresponding density matrix trajectory is easily extracted (both forwards 

and backwards in time). These trajectories are then re-expressed in the original frame of 

reference via a rotation operation, and the GRAPE correction to the pulse is calculated. In 

contrast, solving the Bloch equations in the original frame of reference, in which the 

Hamiltonian is time-varying, requires repeated matrix exponentiation, which is 

computationally slow [29,30].

We demonstrate that the toggling-frame method of generating the trajectories is about two 

orders of magnitude faster than working in the original frame of reference.

Moreover, this framework provides additional speedup opportunities. Suppose we have a 

time-varying Hamiltonian and have extracted the corresponding toggling frame and average 

Hamiltonian. We now add a small perturbation to the Hamiltonian; for example, we apply a 

correction based on the GRAPE algorithm. The same toggling-frame will now leave the new 

Hamiltonian very nearly time-invariant, since the Hamiltonian has only changed a little. In 

this case the toggling frame can be adjusted to remove the small additional time-variation, 

without having to start over from the original frame. The GRAPE algorithm requires a 

sequence of small directed changes to the pulse shape, so this method can be used to rapidly 

complete the GRAPE algorithm using only a few fast calculations at each step. This is 

significantly faster than using a full simulation of the Bloch equation at each step.

As a demonstration, we apply the toggling-frame method to the problem of in-phase 

excitation and refocusing of an arbitrary set of 19F resonances. These are sampled from a 

large spectral bandwidth. The optimal pulse shape is generated using GRAPE (in the 

toggling frame) in around 10 s. We show that this is much faster than what would be 

possible without the use of toggling frames. The performance of the optimal tailored pulse 

is, as one would expect, a significant improvement over more general broadband methods. 

The main point is the speed with which the optimal pulse is created by running GRAPE in 

the toggling frame.

2. Solution of the Bloch equation by toggling frames

In this section we briefly review the dynamics of spin-1/2 nuclei. We then explain how to 

use numerically constructed toggling frames to rapidly solve the system dynamics for 

arbitrary time-dependent Hamiltonians.
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2.1. Dynamics of spin-1/2

The state of an isolated nuclear spin-1/2 is described using a basis of Pauli spin operators, Ix, 

Iy, and Iz, obeying the commutation relation [Ix, Iy] = iħIz and cyclic permutations. A state 

ρ(t) = mx(t)Ix + my(t)Iy + mz(t)Iz can be thought of as a classical unit vector m⃗(t) evolving 

on the Bloch sphere. The Hamiltonian is also expressed in this basis. Since the Hamiltonian 

encodes the potential energy of each state, it determines the evolution of the system. Both 

the density matrix and Hamiltonian are, in general, time-varying. According to quantum 

mechanics the evolution of the density matrix is given by the von Neumann equation

(1)

where the Hamiltonian H(t) is expressed in frequency units. In the case of uncoupled spins, 

this is usually referred to as the Bloch equation. This can be integrated from any initial time t 
= t1 to final time t = t2 to form a unitary transition matrix V(t2, t1),

(2)

where

(3)

Since V(t2, t1) does not depend on the density matrix it can be calculated directly from the 

Hamiltonian and applied to any initial state ρ(t1). The unitary transition matrix corresponds 

to a (nonunique) effective or average time-invariant Hamiltonian

(4)

Clearly, when the Hamiltonian is time-invariant, i.e. H(t) = Heff, the unitary solution to the 

von Neumann equation V(t2, t1) is given in closed form by a matrix exponential. For time-

varying Hamiltonians, the solution can be found by discretization of the time-axis between 

t1 and t2 into n small intervals dt over which H(t) ≈ Hk is approximately constant. Then

For long and temporally-intricate pulse sequences, this can be a time-consuming calculation.
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The Hamiltonian and density matrix can also be expressed in a different frame of reference, 

for example a rotating frame, encoded by a unitary transform U(t). If we transform the 

density matrix into a new frame by ρ1(t) = U(t)ρ(t)U†(t), then the equivalent Hamiltonian is

(5)

One common strategy for finding the solution V(t2, t1) is to find a frame U(t) that removes 

the time-dependence from the Hamiltonian. This can sometimes be done analytically. 

However, for sufficiently complicated Hamiltonians, finding a closed form U(t) is 

prohibitively difficult. The toggling-frame algorithm constructs U(t) and Heff numerically.

2.2. Toggling frame solution

Next we describe the toggling-frame method for finding the solution to the von Neuman 

equation for an isolated spin-1/2. Consider an arbitrary time-varying Hamiltonian on t ∈ [0, 

T] of the form

(6)

Suppose we wish to remove the time-dependence of the z-component. We separate hz(t) into 

the direct-current (average) part  and the zero-mean oscillating part . Note that 

hz(t) can be expressed as a Fourier series with fundamental frequency f = 2π/T, so that 

 comprises sinusoids at frequencies nf for positive integers n. We integrate the 

oscillating part to form

Next set up a unitary change of frames, i.e. a toggling frame,

(7)

That is, the time-variation has been removed from the z-component of H(t). The remaining 

two axes of the Hamiltonian have been rotated. Crucially, P(0) = P(T) = 0, so that U(0) = 
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U(T) is the identity; the toggling frame aligns with the original frame at the beginning and 

end of the pulse duration.

For sufficiently low-amplitude and/or rapidly oscillating , it is clear that P(t) ≈ 0, so 

that the x and y components of the Hamiltonian are essentially unchanged. On the other 

hand, when P(t) is not close to zero, the rotation of the x and y components will be more 

significant, and potentially introduce new time-varying and/or constant terms along these 

axes, depending on the frequency profile of hx(t), hy(t), and P(t).

Next we repeat the procedure, cycling the axes. That is, we generate a second toggling frame 

which subtracts out the time-varying part of the x-axis, and rotates the y and z axes. We then 

do the same for the y-axis. By now, there might be some time-variation reintroduced along 

the z-axis, so we repeat the whole procedure. Any time that the rotation P(t) is small, we 

successfully remove time-variation from the Hamiltonian without reintroducing it anywhere 

else. Similarly, whenever the other two axes contain frequency components in common with 

P(t), these will resolve into additional constant (direct-current) terms.

We repeat this until Htog, the Hamiltonian expressed in the toggling frame, has negligible 

time-dependence (the convergence of the process is derived below). Then the density matrix 

trajectory, expressed in the toggling frame, has a simple analytical form based on the matrix 

exponential function

(8)

where the subscript tog indicates the toggling frame. ρ(0) has no subscript since it is the 

same in any frame; the toggling frame aligns with the original frame at times 0 and T. Note 

that calculation of ρtog(t) for each increment in a discretized time axis requires at most one 

matrix exponential calculation, since each incremental propagator over time dt is the same.

It is computationally simple to keep track of the overall toggling frame. Each U(t) is a 

rotation about either the x, y, or z axis, which can be encoded by a time-varying quaternion 

vector p⃗(t). The overall toggling-frame is the product of every frame change in this 

procedure. It can be adjusted by quaternion multiplication. This means only one set of 

quaternions, q⃗(t), needs to be stored, and each time we subtract a time-varying component 

we update it using quaternion multiplication (denoted by *)

(9)

The initial value of q⃗(t), corresponding to the original frame of reference, is the quaternion 

identity q⃗(t) = [1, 0, 0, 0]. This represents no rotation at all. When we subtract out the time-

dependent part of e.g. hz(t), we must adjust the toggling frame by the quaternion p⃗(t) = 

[cos(P(t)/2), 0, 0, sin(P(t)/2)]. This is the quaternion representation of a rotation by angle 

P(t) about the z-axis.
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A density matrix trajectory can be expressed as a 3D vector, which correspond to a ‘pure’ 

quaternion. These trajectories can be moved in or out of the toggling frame using the 

quaternion rotation formula, for example

(10)

Here, ρ⃗log(t) is the vector of density matrix Ix, Iy, and Iz components in the toggling frame, 

and ρ⃗org(t) is the same vector expressed in the original frame.

In total, each step of this procedure requires extraction of the oscillating part of a signal, 

integration/summation, rotation of the other two Hamiltonian components, and a quaternion 

multiplication to keep track of the toggling frame. These are all vectorizable operations, and 

are fast compared with matrix exponentiation of each time-increment. The matrix 

exponential is defined by an infinite series, and numerical calculation of a matrix 

exponential requires a time-consuming calculation [29,30].

In Section 4 we demonstrate that the speedup, compared to solving the dynamics in the 

original frame, is substantial. Moreover, in cases where the Hamiltonian undergoes a series 

of small changes, for example in the GRAPE algorithm, there is no need to start over from 

the original frame each time. We can run the GRAPE algorithm in a continuously updated 

toggling frame, in which the Hamiltonian remains time-invariant. The solution (i.e. density 

matrix trajectory) can be rapidly extracted and then expressed in the original frame, and the 

correction to the pulse sequence can be calculated.

2.3. Convergence of the toggling frame procedure

In this subsection we show that the toggling frame procedure is guaranteed to converge to a 

time-invariant average Hamiltonian. Define the total squared-amplitude of the Hamiltonian:

Such a term is known as the signal-energy (distinct from the physical energy of the system). 

The second line follows because any cross-terms between the two parts of hz(t) will average 

out to zero over the duration of the integral.

The toggling frame algorithm removes  entirely, does not affect , and rotates hx(t) 
and hy(t). Note that a rotation cannot change the length of the vector [hx(t), hy(t)], so the 

total squared-amplitude along the x and y axes is unchanged. Of course, there may be some 

exchange of amplitude between these two axes (x and y), and between DC and oscillating 

terms, depending on the frequency profile of the various terms, but the total signal-energy 

along these two axes is preserved exactly. After removing the oscillation along the z-axis 

using (7), J is reduced by the integral of . That is, the total signal-energy is reduced 
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by exactly the total squared-amplitude of the removed oscillations. The same argument 

applies when removing time-varying terms along any axis (z, x, or y), so J is strictly non-

increasing under the toggling frame procedure. In fact, if there are any non-zero oscillations 

in the Hamiltonian, then J is decreasing over a set of three applications of (7) - one along 

each axis. This is because we will necessarily reduce J by the total squared-amplitude of any 

time-varying terms.

Obviously, J is bounded from below by zero, which guarantees convergence of this 

approach. However, the algorithm can terminate with J > 0 once all the squared-amplitude is 

confined to DC (time-invariant) terms.

3. GRAPE with toggling frames

In this section we first review the GRAPE algorithm. We then translate it into the toggling 

frame, and show that the additional calculations required to solve for the density matrix 

trajectory at each step can be very simple and fast.

3.1. Introduction to the GRAPE algorithm

The grape algorithm has been extensively studied, for ensembles of isolated spins as well as 

ensembles of coupled spin systems. More rigorous derivations are available in the literature 

[1,2]. Here, we present a simple derivation which captures the essential intuition. Recall that 

V(t2, t1) is the unitary solution to (3) from t = t1 to t = t2.

Suppose we wish to design a pulse to drive the density matrix from initial state ρ(0) to target 

final state λ(T). That is, we want the dynamics to be such that ρ(T) = V(T, 0)ρ(0)V†(T, 0) = 

λ(T). The reason for including a time-dependence in the target state λ will become apparent 

below. We can measure the performance of a candidate pulse sequence via the figure of 

merit Φ:

Clearly, Φ is maximized when the desired transition is achieved. Φ depends on the applied 

controls (pulse sequence). In order to improve Φ, we would like to know how to change the 

shape of the applied pulse. The GRAPE algorithm applies gradient ascent to this problem. 

We can calculate , where uk(t) is the amplitude of the kth available control variable at 

time t. For an ensemble of isolated spins, there are two available controls, the x and y 
components of the B1 field. Changing uk(t) in the direction indicated by this gradient 

increases Φ so that it can be driven towards a local maximum.

We first express the Hamiltonian as a fixed drift part, and a part that can be freely chosen 

(within practical limits) by setting the control amplitudes uk(t)

(11)
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Typically in solution-state NMR, the drift Hd is not time-dependent; however, for the 

GRAPE formalism this is not essential. We factor the unitary transition matrix into the part 

up to an arbitrary time t1, and the part from t1 to T:

That is to say, V(t1, 0) accounts for the dynamics up to t1, and then V(T, t1) accounts for the 

dynamics from then until the pulse sequence is finished at time T. Taking the derivative with 

respect to uk(t1) gives

One way of seeing this is to consider a small duration dt beginning at t = t1. For sufficiently 

small dt, H(t) remain constant and the evolution during dt is given analytically by a matrix 

exponential,

from which the derivative of V(T, 0) with respect to the control amplitude uk(t1) follows. We 

can now use this to calculate the gradient of Φ with respect to the control amplitude:

By the cyclic property of the trace, the term V†(T, t1) can move in front of λ(T). Then 

observe that V(t1, 0)ρ(0)V†(t1, 0) is the initial state evolved under the Bloch equation up to 

time t1, i.e. ρ(t1). Moreover, V†(T, t1)λ(T)V(T, t1) is the desired final state evolved 

backwards in time via the Bloch equation from time T to time t1, i.e. λ(t1). This simplifies 

the previous expression considerably,

(12)

This is the component of [ρ, λ] that aligns with Hk. For example, in the typical case where 

we can choose the B1 field in the x and y directions, and apply the control Hamiltonian
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then the gradient for u1(t1) is the x-component of i[ρ(t1), λ(t1)], and the gradient for u2(t1) is 

the y-component of i[ρ(t1), λ(t1)].

Crucially, the argument so far applies for any value of t1. We only need to evaluate the 

trajectory ρ forwards in time, and the trajectory λ backwards in time from the target state, 

and we can retrieve the gradient for the control amplitudes simultaneously at every time t ∈ 
[0, T]. Depending on how the time axis is discretized, this could amount to many thousands 

of independent parameters—the values of the B1 field at each time increment—all being 

optimized in concert. Note that for an isolated spin-1/2, (12) has stationary points only when 

ρ(t) = ±λ(t). For multi-spin systems or ensembles, more stationary points are possible.

To apply the GRAPE algorithm we adjust the control amplitudes by a small step in the 

direction indicated by the gradient. We then recalculate ρ(t) and λ(t) under the new, adjusted 

Hamiltonian. This, in turn, updates the gradient. Proceeding in this way, we can find a local 

maximum of Φ, which for reasonable tasks typically corresponds to extremely good 

performance [1].

Note that an alternative to calculating the trajectories ρ(t) and λ(t) separately is to evolve 

only the correction term, i.e.

However, this still requires two simulations of the Bloch equations, forward and backward in 

time, since we need to know λ(0) before evolving the correction term.

For an ensemble of spins with different parameters (such as chemical shifts and RF 

inhomogeneity factors), we can sum our figure of merit Φ over all parameterizations. We can 

weight the sum to emphasize certain parameterizations over others, for example to match a 

probability density of RF inhomogeneities. In this case, it is clear that the gradient, and 

therefore the correction at each time, sums in the same way. Therefore, we need to calculate 

the forwards and backwards solution to the Bloch equation for each parameterization to 

derive an overall gradient for the ensemble. For a reasonable sampling of parameters, this is 

a time-consuming calculation.

3.2. GRAPE in the toggling frame

In this section, we show that repeatedly calculating i[ρ(t), λ(t)], the therefore the GRAPE 

correction to the pulse shape, can be achieved rapidly using the toggling frame approach. We 

note that both ρ and λ can be moved in and out of the toggling frame using the quaternion 

rotation formula (10). Recall that the toggling frame transform is a time-dependent unitary 

U(t). Then
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In the toggling frame, the Hamiltonian is time-invariant, and therefore the trajectories of ρtog 

and λtog can be calculated along a discretized time axis with at most one matrix exponential 

calculation. Specifically, for time-step dt which divides the time axis into n points,

This can be calculated considerably faster than with many matrix exponentials in the 

original frame. In fact, we can save further time by using a very coarse discretization of the 

time axis for this calculation, since any rapid modulations in Horg(t) are not present in Htog. 

We can then interpolate this trajectory onto the more finely discretized time axis on which 

Horg(t) and U(t) were defined.

The accessible control fields are typically limited to the x and y components of the applied 

B1 field (defined in the original frame of reference). The pulse may also be subject to other 

constraints, for example on maximum or peak amplitude, or on smoothness. Moreover, if we 

are treating an ensemble of spins with different parameters, the gradient terms must be 

summed, and this must occur in a common frame. Therefore, we need to convert the 

gradient term [ρtog(t), λtog(t)] back into the original frame of reference before proceeding. In 

practice, this can be achieved very fast using quaternion rotation.

We now show that after calculating the correction to the pulse shape, the corrected 

Hamiltonian should be transformed again, putting in back into the toggling frame. 

Specifically, we consider two Hamiltonians, H(t) and H(t) + ΔH(t), where the GRAPE 

gradient was extracted from H(t) and used to generate the correction term ΔH(t). In the 

toggling frame given by U(t), Htog is time-invariant:

When H(t) + ΔH(t) is placed in the same toggling frame U(t),

so that when the correction Hamiltonian is rotated into the toggling frame it can be added to 

time-invariant effective Hamiltonian from the previous iteration of the GRAPE algorithm. 

The key insight it that since this is a gradient ascent setting, the correction ΔH(t) is typically 

small, especially near the end of the GRAPE procedure. Therefore, the updated 

Hamiltonian, expressed in the toggling frame, has only low-amplitude time-varying terms. 

The toggling frame algorithm does not need to begin over from the original frame, 

potentially dealing again with high-amplitude modulations found in H(t). Rather, a small 

number of iterations of the toggling frame approach can remove any additional time-
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dependence introduced by U(t)ΔH(t)U†(t). The toggling frame is updated, leaving the 

Hamiltonian, once again, time-invariant.

In the computational section below, we demonstrate that as GRAPE converges the number 

of iterations of the toggling frame algorithm—that is, the effort required to extract the 

forward and backward trajectories—is dramatically reduced.

4. Numerical implementation and speed analysis

4.1. Simulation of one Hamiltonian

Firstly, we provide a simple concrete example to clarify the ideas presented so far. We test 

the toggling frame method to solve a time-varying Hamiltonian. Our example Hamiltonian 

contains multiple high-amplitude oscillations and a range of frequency components. This 

Hamiltonian is difficult to solve analytically and must be simulated numerically. We 

compare the result to the standard simulation method (a product of unitary propagators, each 

of which captures the evolution over a small time interval dt). The Hamiltonian is

(13)

with t ∈ [0,π]. Since the duration is T = π (in arbitrary units) any u(t) and v(t) have a 

fundamental frequency f = 2π/T = 2 in the sense of Fourier series analysis, and therefore 

could be expressed using only even-integer frequencies. To keep this example simple, we 

have chosen to include only a few such modulations.

A discretization time must be chosen. For both methods, the choice of dt affects both the 

computation-time and the faithfulness with which high-frequency components are 

synthesized; to capture the effects of rapid oscillations dt has to be fairly small. In this case, 

we test a range of values of dt.

For practical implementation of the toggling frame method, the algorithm is considered to 

have converged to a time-independent average Hamiltonian when the maximum amplitude 

of the time-dependent part is less than one ten-thousandth of the inverse pulse duration. For 

our example Hamiltonian, the toggling frame method returns the average Hamiltonian after 

12 iterations (4 along each axis), irrespective of dt. In fact, in this case the overall effect of 

the Hamiltonian is a very high fidelity x-phase excitation pulse, which steers the 

magnetization from ρ(0) = Iz to ρ(π) ≈ −Iy. Interestingly, in this case any Bloch–Siegert 

shifts, and other off-resonance effects, seem to have been removed/refocused by the end of 

the duration.

Fig. 1 shows the Hamiltonian H(t) expressed in successive toggling frames, after 0, 3, and 9 

iterations of the toggling frame algorithm. This corresponds to 0, 1, and 3 iterations about 

each of the three axes. After one more iteration about each axis, the maximum amplitude of 

the oscillating part has become negligible and the algorithm terminates. The density matrix 
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trajectory was then straightforwardly extracted from the average Hamiltonian, and converted 

back into the original frame of reference using (10). Fig. 1E shows the x, y, and z 
components of the density matrix expressed in the original frame.

The standard simulation method of calculating the unitary propagator for each dt and 

multiplying these all together takes considerably longer, especially for small dt. Table 1 

summarizes the computational time for various values of dt. These were measured using the 

Matlab function timeit, which runs the code multiple times and calculates an estimate of the 

average run-time. Clearly, the toggling frame method is much faster, especially for finely 

discretized pulse shapes. The computational time using matrix exponentiation appears to 

grow linearly with the number of time points, whereas the time grows sub-linearly for the 

toggling frame method, at least up until around ~215 time-points (incidentally, this is around 

the maximum number of points in a shaped pulse that can be loaded into a spectrometer). 

This means that for a wide range of relevant dt values, the toggling frame approach is 1–2 

orders of magnitude faster than solving the dynamics in the original frame of reference.

Finally, note that very small values of dt are often needed in order to analyze the effects of 

high-frequency terms. We explored this by adding a fast modulation to our test Hamiltonian, 

i.e. H(t) + 15 cos(300t)Ix + 15 sin(300t)Iy. This introduces a large Bloch–Siegert shift, and 

so the pulse no longer performs an x-phase excitation. Moreover, it requires a reasonably 

small dt to capture these oscillations (around 213 time points are needed). The toggling 

frame algorithm now takes 15 iterations (5 per axis) to converge. However, the speedup 

compared to the standard product-of-unitaries method is maintained; the toggling frame 

approach is around 90 times faster. We have tested the toggling frame and exponentiation 

speeds on many different time varying Hamiltonians, and the qualitative conclusions of this 

section do not depend on the specific choice of H(t).

4.2. Heuristic explanation of the toggling frame method

A simple thought experiment can help explain why the toggling frame method can solve the 

dynamics more quickly than standard approaches. Suppose we set out to simulate a simple 

on-resonance hard pulse, but that we were working in the laboratory frame instead of the 

rotating frame. In this case, we would have to deal with oscillations in the Hamiltonian of 

hundreds of MHz. Therefore, we would require a very fine discretization of the time axis; 

we would need to calculate the incremental propagator for many short intervals to capture 

the resonant effect of the rapidly oscillating B1 field. In contrast, a transformation to the 

rotating frame simplifies matters considerably. The Hamiltonian becomes time invariant, and 

the solution is easily found in closed-form [17]. Crucially, the effort required to change the 

frame is surprisingly little - in practice it involves multiplying together a few sinusoids 

which resolve into constant terms. Yet this foundational idea makes it possible to understand 

and calculate spin dynamics very easily, and indeed, quickly. This is why NMR simulations 

are never constructed in the laboratory frame.

The toggling frame method applies the same logic to arbitrary time-varying Hamiltonians. 

Rapid oscillations require finely discretized time axes to track accurately in simulation. 

However, rapid oscillations are in fact the terms that are most easily removed by frame 
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transformations. Therefore, just as for the familiar rotating frame, constructing a new frame 

in which the Hamiltonian is time-invariant is surprisingly easy.

4.3. GRAPE in the toggling frame for broadband 19F control

In this section, we use the GRAPE algorithm implemented in the toggling frame in a 

practical pulse-design problem. Recall that the toggling frame does not need to be 

recalculated from scratch at each step of the GRAPE algorithm. Rather, we convert the 

forwards and backwards density matrix trajectories into the original frame to calculate the 

pulse correction, and then apply constraints on the pulse. We then convert the correction into 

the toggling frame. If the correction is small, the Hamiltonian remains very nearly time-

invariant in the toggling frame, reducing the number of calculations required to solve for the 

density matrix trajectories of the new Hamiltonian.

Near convergence of GRAPE, the size of the correction ΔH(t) tends to zero, and so the pulse 

and Hamiltonian are not changing much. Therefore, a traditional simulation using matrix 

exponentials is essentially repeating the same calculation at each additional epoch of the 

GRAPE algorithm. In contrast, the toggling frame method has already made this 

Hamiltonian time-invariant by appropriate frame construction, and is not repeating this 

process each epoch. Instead, the Hamiltonian is being expressed in the same toggling frame 

as in the previous epoch of GRAPE. Therefore, near convergence, we expect GRAPE in the 

toggling frame to be extremely efficient.

We use 15 different Hamiltonians: this corresponds to the chemical shift frequencies we 

observe in a mixture of fluorinated small molecules used in our fragment screening 

operations. We initialize the GRAPE algorithm with a random starting point. We choose an 

excitation time of 150 μs, a maximum RF amplitude of 13.5 kHz, and discretize the time 

axis into 210 points. Within about 10 s, GRAPE in the toggling frame has produced a pulse 

shape which is at least 99% efficient at exciting these 15 spins to the y-axis.

Fig. 2A shows the average number of iterations for toggling frame, which decreases near 

convergence. Fig. 2B shows the time taken to complete the GRAPE algorithm. We also show 

a rough extrapolation (dashed line) from the first few epochs. This shows how long the 

procedure might take if the toggling frame algorithm were starting over from the original 

frame each epoch. However, the toggling frame algorithm does not begin each epoch from 

the original frame (which would mean repeating a lot of calculations). Instead, it begins 

from the time-invariant effective Hamiltonian from the previous GRAPE epoch, and adds a 

low amplitude correction. This correction tends to zero near convergence of GRAPE. In 

total, there are two speedups at play: firstly, the togging frame method avoids matrix 

exponentiation and therefore has the speedups cataloged in Table 1. Secondly, the toggling 

frame method does not repeat the same calculations over and over near convergence, and 

therefore has the speedup depicted in Fig. 2B.

Fig. 2C and D show the figure of merit converging to one, both on average and for the worst-

performing spin. We chose to terminate the GRAPE algorithm when the worst-case spin is at 

least 99% aligned with the y-axis at the final time.

Coote et al. Page 14

J Magn Reson. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Materials and methods

The experiments were performed on a Bruker 500 MHz spectrometer equipped with an 

Avance III HD console and a C/F-H triple resonance probe. The CPMG experiment was a 

modification of the 1H CPMG pulse sequence “cmpg1d” which is a part of the standard 

Bruker package. The CMPG times used ranged from 50 to 500 ms. The hard pulse was at 

18.5 μs. The optimal control pulse had length of 150 μs at the same average RF power levels.

We used two samples in this manuscript. The first was ca. 5 mg of 5-F-Tryptophan dissolved 

in DMSO-d6. This gives a single 19F peak. The other sample was a mixture of 15 

fluorinated compounds used in fragment screening experiments.

6. Experimental demonstration

In this section, we apply two different rapidly-generated optimal pulses to two samples, to 

demonstrate that these pulses function correctly in practice.

6.1. Simple excitation of three resonances

As a first demonstration, we consider a hypothetical sample that contains three resonances, 

at −20, 0, and 100 ppm on the fluorine channel of a 500 MHz (1H Larmor frequency) 

spectrometer. These three values were chosen so that there would be small and large 

unpopulated spaces between resonances, and so that the distribution of resonances would be 

asymmetric. The initial state is Iz, and we wish to excite the spins to Iy. The optimal control 

pulse duration was set to 30 μs, and the maximum amplitude was set to 20 kHz. The pulse 

shown in Fig. 3A and B was returned in about 3 s using the toggling frame algorithm. It 

excites all three resonances to at least 0.997Iy.

Simulated trajectories offer some insight into how this pulse operates. Fig. 3C shows that the 

two nearby resonances (−20 and 0 ppm) follow fairly similar paths to the target state. In 

contrast, the far off-resonance spin (100 ppm) circumnavigates the Bloch sphere during the 

pulse. This is strikingly similar to how analytically designed dual-band pulses work 

[25,31,32]. That is, the optimization procedure has found a fairly intuitive solution to the 

problem of widely separated resonances, while also optimizing the fine details of the pulse 

shape to make sure the specific spins of interest end up in exactly the right place. Often, 

optimal control pulses are highly intricate and unintuitive (e.g. with highly erratic amplitude 

and phase profiles). However, in this simple case the algorithm has produced a smooth shape 

that is fairly easy to understand.

Fig. 3D shows experimental spectra with hard-pulse excitation (lower) and optimal pulse 

excitation (upper). These were found by moving the carrier frequency offset around a single 

isolated 19F peak. For the three values of interest, the maximum signal amplitude is 1.009, 

1.002, and 0.994 respectively (with the hard pulse on resonance value normalized to 1, and 

the noise standard deviation is ~0.01). All processing settings, in particular phase and 

display settings, are the same for all spectra.
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6.2. CPMG-based screening of 19F libraries—refocusing of a 19F mixture

Fluorine based fragment screening has become one of the more successful NMR based 

methods in drug discovery [33]. The 19F NMR spectra of these fragments typically contain 

one single resonance in a range that spans over 100 ppm, allowing the combination of up to 

30 compounds in one screening sample. The CPMG experiment, for measuring T2 

relaxation, is widely used in 1H detected fragment screens. Since binding events slow the 

molecular tumbling of ligands, pronounced changes in T2 in the presence of a target protein 

are indicative of binding. The 19F signal shows a marked dependence of chemical shift and 

T2 relaxation on binding, so the 19F CMPG experiment is the ideal method for screening. 

However, CPMG is not typically used in 19F fragment screening [34]. This is because is it 

difficult to rapidly and repeatedly refocus the fluorine bandwidth—available pulses typically 

have long durations and high RF power. Traditionally 19F screening use dynamic line 

broadening (DLB), or CMPG only on pools of compounds that have a narrow bandwidth of 

resonances. Neither of these methods are optimal. From 1H screening efforts, we know that 

DLB does not capture all binding events. Also, pooling compounds whose resonances occur 

only in a narrow spectral space is not optimal for deconvolution (identification) of a hit.

Here, we demonstrate that the simple optimal pulse tailored to the 15 peaks in the sample is 

sufficient to perform the CPMG experiment. Since this pulse was generated in seconds, it is 

feasible to include CPMG in large scale fragment screens. A new refocusing pulse would be 

generated for each mixture, tailored to peaks actually present. The idea is too take a 1D 

spectrum and automatically extract peak locations, which are the input to the optimal control 

algorithm. An optimized refocusing pulse is then generated on the fly; prior knowledge of 

chemical shift locations in not required.

The first step is to generate a refocusing pulse, starting with an in-phase excitation pulse. 

Specifically, the optimal control pulse is a point-to-point excitation, where as we require a 

universal rotation to refocus the spins. The refocusing pulse is extremely simple to generate, 

provided that the point-to-point excitation leaves all spins in phase. It can be shown that 

repeating the pulse twice, while performing certain symmetry operations on the x and y 
components of the B1 field during the second application, produces a new pulse with twice 

the flip angle (π instead of π/2) and a fixed rotation axis, i.e. a refocusing pulse. The 

appropriate symmetry operations can be derived by consideration of the toggling frame 

algorithm in the case that the x- and y-components are even and odd respectively (though the 

details are beyond the scope of this paper). An alternative derivation can be found in the 

literature [35]. In short, we concatenate two copies of the excitation pulse, we then time-

reverse the second half’s x part, and time-reverse and negate the second half’s y part.

Fig. 4A shows the refocusing profile overlayed with the original spectrum. This shows that 

the y component of magnetization is being inverted for all spins. Additional simulations 

confirm that the z component is also being inverted, while the x-component is being 

preserved. Clearly, high fidelity refocusing is achieved at exactly the populated frequencies. 

Fig. 4B shows what happens if hard-pulse refocusing is used for refocusing in the CPMG. 

Far off resonance, the refocusing fails and signal is lost and/or dephased. However, using the 

optimal refocusing pulse we can refocus all spins (Fig. 4C). We observe smooth T2 decays, 
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as expected from CPMG theory. Fig. 4D shows the complete CPMG data for the whole 19F 

spectrum, confirming that the CPMG effect is seen in all peaks.

7. Conclusion

The von-Neuman equation for an arbitrary time-varying Hamiltonian can be solved using 

numerically constructed toggling frames. Moreover, we demonstrated that this is a much 

faster way to simulate a temporally intricate Hamiltonian than the standard method of using 

matrix exponentials. The speedup is even more pronounced when the Hamiltonian being 

simulated is only slightly different from one that has already been simulated. This is exactly 

what happens in successive steps of the GRAPE algorithm; therefore, we have re-framed the 

GRAPE procedure so that these computations take place in a continually updated toggling 

frame. A rapidly generated optimal pulse was shown to perform very well in the context of 

NMR 19F fragment screening.

We aim to expand this research in two main directions. Firstly, to generalize the toggling 

frame approach to multi-spin systems. This will allow rapid generation of e.g. optimal pulses 

for magnetization transfer. Secondly, we will explore further applications in which rapid on-

line generation of optimal pulses can be included in NMR work flows, especially in 

fragment screening, small molecule analysis, and metabolomics.
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Fig. 1. 
Systematic removal of time-dependence by toggling frames. A: The Hamiltonian (13) 

expressed in the original frame of reference. B: The Hamiltonian after 3 iterations of the 

toggling frame algorithm (i.e. 1 iteration about each axis). C: The Hamiltonian after 9 

iterations of the toggling frame algorithm (i.e. 3 iteration about each axis). The time 

variation is mostly removed, and the average Hamiltonian is clearly near H(t) ≈ 0.5Ix. 

Equilibrium magnetization ρ(0) = Iz would be excited to the transverse plane at ρ(π) = −Iy 

by this Hamiltonian. D: The magnetization trajectory expressed in the toggling frame, 

depicted on the Bloch sphere. E: The magnetization trajectory expressed in the original 

frame of reference, found by applying the quaternion rotation formula (10) to the trajectory 

in D.
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Fig. 2. 
Grape in the toggling frame. A: The number of iterations of the toggling frame method that 

are needed to solve for the magnetization trajectory at each epoch of the GRAPE algorithm. 

This is the averaged over the 15 resonances in the computation. Clearly, near convergence, 

less computational effort is required. Note that only one toggling frame, q⃗(t), is stored for 

each of the 15 Hamiltonians, and it is being updated to remove time-varying terms 

introduced by Hamiltonian corrections. B: The time taken to find the pulse in terms of the 

number of epochs of GRAPE. If we extrapolate from the first few time points (dashed line) 

then the algorithm would take considerably longer. C: The performance metric ϕ converges 

to 1, both on average and for the worst performing resonance. D: The difference between ϕ 
and its theoretical maximum 1 tends towards zero, and all resonances are at least 99% 

aligned with the target state.
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Fig. 3. 
An example of excitation tailored to three specific resonances. A and B: The pulse shape, 

optimized in under 3 s using the toggling frame method. C: Simulated magnetization 

trajectories for resonances at −20, 0, and 100 ppm, respectively. All three trajectories end up 

with a y-component of at least 0.997. D: Experimental spectra obtained by moving the 

carrier frequency around the single resonance of 5-F-Tryptophan. The upper spectra were 

recorded with the optimal control pulse, and the lower used a hard pulse at the same 

maximum RF field strength (20 kHz). All processing settings, in particular phase and 

display settings, are the same for all spectra. The optimal control pulse is clearly more suited 

to simultaneous in-phase excitation of these three resonances.
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Fig. 4. 
Experimental test of sample-specific 19F refocusing pulse. A: The spectrum of the mixture 

of 19F labeled fragments (lower), overlayed with the simulated y-magnetization after 

application of the pulse from an initial ρ(0) = Iy (upper). Clearly, the y part of the 

magnetization is being inverted for the specific spins in the sample. Further simulations (not 

shown) confirm that the z-component is also inverted, and the x-component is not inverted; 

that is, the pulse functions as a refocusing pulse for this set of resonances. B: CPMG 

experiment using a hard pulse for refocusing. The hard pulse works well near its carrier 

frequency, but we observe loss of signal and dephasing far off resonance, e.g. near −62 ppm. 

C: In contrast, the optimal pulse refocuses all spins. D: The full CPMG spectrum using the 

optimal refocusing pulse. All 15 resonances show smooth CPMG decays.
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