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ABSTRACT
Background. Rare or narrowly endemic organisms are difficult to monitor and
conserve when their total distribution and habitat preferences are incompletely known.
One method employed in determining distributions of these organisms is species
distribution modeling (SDM).
Methods. Using two species of narrowly endemic burrowing crayfish species as our
study organisms, we sought to ground validate Maxent, a commonly used program
to conduct SDMs. We used fine scale (30 m) resolution rasters of pertinent habitat
variables collected from historical museum records in 2014. We then ground validated
the Maxent model in 2015 by randomly and equally sampling the output from the
model.
Results. The Maxent models for both species of crayfish showed positive relationships
between predicted relative occurrence rate and crayfish burrow abundance in both a
Receiver Operating Characteristic and generalized linear model approach. The ground
validation of Maxent led us to new populations and range extensions of both species
of crayfish.
Discussion. We conclude that Maxent is a suitable tool for the discovery of new
populations of narrowly endemic, rare habitat specialists and our technique may be
used for other rare, endemic organisms.

Subjects Biogeography, Conservation Biology, Environmental Sciences, Natural Resource
Management
Keywords Arkansas, Fallicambarus harpi, Fine scale, Species distribution model, Procambarus
reimeri, Ouachita mountains, Generalized linear model, Zero inflated, Crayfish

INTRODUCTION
Understanding the factors influencing species distributions and habitat selection are
critical to researchers (Baldwin, 2009) because rare species or those with small native
ranges (defined herein as those occurring in a single river drainage or a 1,000 sq. km area),
are difficult to monitor and conserve when their total distribution and habitat preferences
are not completely known. These problems can be addressed using species distribution
models (SDMs), which are correlative models using environmental and/or geographic
information to explain observed patterns of species occurrences (Elith & Graham, 2009).
SDMs can provide useful information for exploring and predicting species distributions

How to cite this article Rhoden et al. (2017), Maxent-directed field surveys identify new populations of narrowly endemic habitat spe-
cialists. PeerJ 5:e3632; DOI 10.7717/peerj.3632

https://peerj.com
mailto:codyrhoden@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3632


across the landscape (Elith et al., 2011). Models estimated from species observations can
also be applied to producemeasures of habitat suitability (Franklin, 2013). This information
can be useful for detecting unknown populations of rare, endemic, or threatened species
(e.g.,Williams et al., 2009; Rebelo & Jones, 2010; Peterman, Crawford & Kuhns, 2013; Searcy
& Shaffer, 2014; Fois et al., 2015). SDMs can also limit search efforts by selecting suitable
sampling areas a priori, leading to a cost-effective and efficient use of sampling effort (Fois
et al., 2015).

One of themostwidely used SDMs in recent years is the programMaxent (Kramer-Schadt
et al., 2013). Maxent is a presence-only modeling algorithm using predictor variables such
as climatic and remotely sensed variables (Phillips, Anderson & Schapire, 2006; Phillips &
Dudík, 2008). These data are used to predict the relative occurrence rate (ROR) of a focal
species across a predefined landscape (Fithian & Hastie, 2013). Recent studies focusing
on the performance of Maxent have revealed it to perform well in comparison to other
SDMs (Elith et al., 2006). Maxent also performs well with small sample sizes (Pearson et al.,
2007; Wisz et al., 2008), rare species (Williams et al., 2009; Rebelo & Jones, 2010), narrowly
endemic species (Rinnhofer et al., 2012), and when used as a habitat suitability index (Latif
et al., 2015).

However, the potential for the inaccurate execution and interpretation of an SDM is well
documented (Baldwin, 2009; Syfert, Smith & Coomes, 2013; Fourcade et al., 2014; Guillera-
Arroita, Lahoz-Monfort & Elith, 2014). Specific issues surrounding the interpretation of
Maxent analyses include sampling bias (Phillips & Dudík, 2008; Syfert, Smith & Coomes,
2013; Fourcade et al., 2014), the lack of techniques to assess model quality (Hijmans, 2012),
overfitting of model predictions (Elith, Kearney & Phillips, 2010; Warren & Seifert, 2011),
or assessment of detection probabilities (Lahoz-Monfort, Guillera-Arroita & Wintle, 2014).
Researchers have sought to solve the aforementioned issues by reducing sampling bias
through spatial filtering (Boria et al., 2014), assessing model quality with a null model
approach (Raes & Ter Steege, 2007), utilizing the R package ENMeval (Muscarella et al.,
2014) to balance goodness-of-fit and model complexity, and collecting data informative
about imperfect detectability (Lahoz-Monfort, Guillera-Arroita & Wintle, 2014). The utility
of Maxent has also been burdened with issues of model validation (Hijmans, 2012). Most
model validation methods involve subsets of the input data with the predictions generated
by the models (Rebelo & Jones, 2010). Historically, validation of Maxent predictions has
lacked an independent assessment of model performance (Greaves, Mathieu & Seddon,
2006), such as a novel set of presence locations. Recent studies have found ground
validation of Maxent has been a suitable method to determine the accuracy of predictions
(Stirling et al., 2016). The need for independent validation is especially important for rare
species exhibiting a wider knowledge gap in distribution than more common species
(Rebelo & Jones, 2010). For example, North American primary burrowing crayfishes are a
poorly understood and understudied taxon for which SDMs could provide novel insight
into distributions and habitat relationships and thus provide an excellent case study for
validation of SDMs.

North America has the highest diversity of crayfishes worldwide (Taylor et al., 2007).
Within North America, 22% of the species listed as endangered or threatened in a
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conservation review of crayfishes were primary burrowing crayfishes (Taylor et al., 2007). It
is hypothesized all crayfishes have the ability to construct refugia by way of burrowing down
into the soil or substrate (Hobbs Jr, 1981; Berrill & Chenoworth, 1982). Primary burrowing
crayfishes differ from stream dwelling crayfishes in their life history traits, they spend
most of their life cycle underground, leaving their burrows only to forage and find a mate
(Hobbs Jr, 1981). This difference in life history traits allow primary burrowing crayfish to
persist in areas that are not connected to above-ground sources of water. This persistence
allows primary burrowing crayfish to use habitats such as seeps, perched wetlands, and
even roadside ditches.

Amongst the three types of burrowers, the least is known regarding the natural history of
primary burrowing crayfishes (Taylor et al., 2007;Moore, DiStefano & Larson, 2013) due to
the challenges in sampling these largely fossorial animals (Larson & Olden, 2010). However,
the narrowly endemic nature of North American crayfishes is well documented (Page,
1985; Taylor et al., 2007; Simmons & Fraley, 2010; Morehouse & Tobler, 2013). Primary
burrowing crayfishes in Arkansas are no exception (Robison et al., 2008). Of the 12 species
of primary burrowers in Arkansas (Fallicambarus dissitus, F. fodiens, F. gilpini, F. harpi,
F. jeanae, F. petilicarpus, F. strawni, Procambarus curdi, P. liberorum, P. parasimulans,
P. regalis, and P. reimeri) six (50%) are known from only one ecoregion. The limited
geographic distribution of any taxa makes them more vulnerable to localized extirpation.
Because these animals occur at such a constrained geographic scale, it is important to
understand and document their existing distribution to manage and preserve current
populations.

The rarity of and difficulties surrounding the collection of natural history information,
specifically habitat suitability, make primary burrowing crayfishes ideal candidates for
SDMs. To test the ability of Maxent to predict the distribution of suitable habitat for
two narrowly endemic habitat specialists, we constructed SDMs for Fallicambarus harpi
and Procambarus reimeri and validated the models using sampling data collected after
completion of each SDM. These species are vulnerable to population declines and
are currently recorded under the Endangered (P. reimeri) and Vulnerable (F. harpi)
conservation status categories (Taylor et al., 2007) based on modifications to or reductions
of habitat in their already restricted ranges. Both crayfishes are endemic to the Ouachita
Mountains Ecoregion (OME;Woods et al., 2004), which is characterized by remnant pine-
bluestem (Pinus-Schizachyrium) communities and silty loam soil (Hlass, Fisher & Turton,
1998).We used these two narrowly endemic species to reinforce the performance ofMaxent
with small sample sizes and rare species along with addressing problems associated with
Maxent to maximize the accuracy of our predictions. We also sought to investigate the use
ofMaxent to identify suitable habitat and locate new occurrences of both species of crayfish.

MATERIALS AND METHODS
Presence data and environmental variables
To determine habitat requirements of F. harpi and P. reimeri, we queried natural history
museums or databases (Illinois Natural History Survey Crustacean Collection, the National
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Table 1 Environmental variables.Description, origin, resolution, general statistics, and units of environmental variables used in the Maxent analy-
sis of two primary burrowing crayfish species (Fallicambarus harpi and Procambarus reimeri) in western Arkansas.

Variable Description Source Resolution Min/max(unit) µ(sd)

Canopy cover Percent tree canopy cover National Land Cover Database
2011 USFS

30 m 0/100(% cover) 52.23(43.48)

Elevation Digital elevation model of the
study site

USGS National Elevation Dataset 10 m 50.50/818.96 (m) 229(100.85)

Distance to
nearest wa-
terbody

Euclidean distance to nearest
permanent waterbody across the
study site

ESRI Spatial Analyst Tools; Na-
tional Hydrology Dataset com-
posed of stream segments of
study site

10 m 0/1740.26(m) 187.48(161.04)

Compound
topographic
index

A function of slope and the up-
stream contributing area per unit
width orthogonal to the flow di-
rection (Evans et al., 2010)

ArcGIS Geomorphometry and
Gradient Metrics Toolbox 2.0
(Evans et al., 2010); National El-
evation Dataset

10 m 2.67/27.58(index
value)

7.58(1.94)

Solar radia-
tion

Incoming solar radiation value
(watt hours per m2) based on di-
rect and diffuse insolation from
the unobstructed sky directions

ESRI Spatial Analyst Tools; Na-
tional Elevation Dataset

10 m 3542.41/64134
(watt hours/m2)

5955.14(116.01)

Museum of Natural History Smithsonian Institution, and the Arkansas Department of
Natural Heritage) for historic locations of both species, and a subset of those locations
were visited in 2014 (Rhoden, Taylor & Peterman, 2016). We sampled only those sites with
confirmed presences in the past 20 years that were not based on obvious misidentifications
occurring well outside of the known range of each species known in 2014 and were able to
be located given historical information associated with respective collection events. At each
location, we measured habitat variables hypothesized to determine burrow placement:
percent tree canopy cover, percent herbaceous ground cover, stem density, the number of
burrows, presence of standing water at the site, remotely sensed variables and the presence
or absence of hydrophilic sedges. We found canopy cover and the presence of hydrophilic
sedges were the most important factors in predicting crayfish abundance (Rhoden, Taylor
& Peterman, 2016).

The presence locations used for the Maxent analysis, based on the field surveys of 2014,
consisted of 58 locations for F. harpi (of which 56 were used for the SDM analysis) and 53
locations for P. reimeri (of which 50 were used for the SDM analysis). To minimize spatial
autocorrelation, a subset of the original presence data was used. All duplicate presence
locations falling within the same cell of a 30 m resolution raster were removed before the
SDM analysis. The selected presence locations used for the SDM analysis were near (<90m)
primary, secondary, and tertiary roadways. The environmental variables used for the SDM
analysis consisted of canopy cover, elevation, distance to nearest waterbody, compound
topographic index value (CTI), and solar radiation value (Table 1). These habitat variables
reflect habitat characteristics associated with F. harpi (Robison & Crump, 2004) and
P. reimeri (Robison, 2008), and other primary burrowing crayfish species (Hobbs Jr, 1981;
Welch & Eversole, 2006; Loughman, Simon &Welsh, 2012). Canopy cover was estimated
using a United States Forest Service percent canopy raster (National Land Cover Database
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2011; 30 m). Elevation was estimated using a United States Geological Survey digital
elevation map (DEM; 10 m). Distance to nearest water body was estimated by constructing
a raster of the Euclidean distance from all permanent waterbodies. Compound topographic
index values were determined using the Geomorphometry and Gradient Metrics (version
a1.0; Evans et al., 2010) toolbox; this metric is a representation of surface wetness across
the landscape (Evans et al., 2010). CTI is a steady state wetness index, where a larger CTI
value represents areas topographically suitable for water accumulation. We measured
solar radiation by calculating the watt-hour/m2 of the delineated sampling area using the
Area Solar Radiation tool in ArcMap (Table 1). These values were calculated using digital
elevation maps (National Elevation Dataset: http://ned.usgs.gov/, accessed 07/21/2014)
and surface water maps (National Hydrography Dataset: http://nhd.usgs.gov/index.html,
accessed 07/21/2014). The entire OME was used as a delineation for both species of crayfish
in the SDM analysis. Each surface was resampled to a common resolution of 30 m to match
the resolution of the canopy surface.

Maxent analysis
We created species-specific distribution models using Maxent (version 3.3k; Phillips,
Anderson & Schapire, 2006). For each species, we generated 2,500 random background
points within 10 km2 polygons that were situated around the historic museum localities for
which we confirmed species presence in the field in 2014. This approach follows Peterman,
Crawford & Kuhns (2013) and was implemented to reduce model bias described by Phillips
(2008). We fit a full model for each species, and used the ENMeval package (Muscarella
et al., 2014) in program R (R 3.1.1; R Development Core Team, 2014) to tune the Maxent
model parameter settings minimizing the SDM model AICc. ENMeval automatically
executes Maxent across a range of settings and outputs evaluation metrics to aid in
identifying settings balancing model fit and predictive ability (Muscarella et al., 2014).
Using jackknife and the standard settings, this analysis suggested the F. harpi model
should be fit with a betamultiplier of 2.5 and linear, quadratic, and hinge features, and the
P. reimerimodel should be fit with a betamultiplier of 1.5 and linear, quadratic, and hinge
features to provide the most parsimonious fit to our data. We then re-ran each species’
model using the refined regularization multiplier and feature classes to increase the rigor in
building and evaluating the distributionmodel for each species based on presence only data.

We assessed the performance of the tuned models using the null model approach of Raes
& Ter Steege (2007) with package ENMtools (Warren, Glor & Turelli, 2010). We generated
two groups of 999 random data sets containing 56 and 50 samples, which correspond to the
number of presence locations used for F. harpi and P. reimeri (respectively) in the initial
model. These points were drawn without replacement from the OME delineation used in
the initial model. Both model Area Under the Curve (AUC) values were compared to the
95th percentile of the null AUC frequency distribution.

The final Maxent models were calculated with the maximum number of iterations set
to 5,000 and the analysis of variable importance was measured by jackknife and response
curves. The formof replication usedwas bootstrap. These settings, the refined regularization
multiplier and feature classes, and the recommended default values were used for our final
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Maxent model runs. Due to the endemic nature of both species and the small amount of
presence locations in the initial model, we did not include a bias file or spatial filtering.

Field sampling and validation
The refined Maxent models (one for each species) were used to select 80 semi-random
sampling sites for each species within the OME. These sites were semi-random because we
restricted our sampling to areas of public access (roadside ditches). We sampled thirteen
counties encompassing the known range of both species of primary burrowing crayfish:
from east to west, those counties were Pulaski, Saline, Perry, Garland, Hot Spring, Clark,
Yell, Montgomery, Pike, Scott, Howard, Polk, and Sevier (Fig. 1). The Maxent output
for both species was discretized into four categories based on the relative occurrence rate
(ROR; Fithian & Hastie, 2013). The Maxent output is considered a relative occurrence rate
because the presence data are proportional but not equal to occurrence. The first category
ranged from an ROR of 0 to the lowest presence threshold (LPT = minimum training
presence threshold of Maxent software; Wisz et al., 2008) of each species. The LPT is the
smallest logistic value associated with one of the observed species localities. The second
class ranged from the LPT to 50% of the maximumROR of each species. The third category
ranged from 50% of the maximum ROR to 75% of the maximum ROR of each species.
The fourth category ranged from 75% of the maximum ROR to the maximum ROR of
each species.

The final Maxent model outputs for both species were placed into the described
categories in ArcMap. The projection of the Maxent model onto the environmental
variables was converted into polygons in ArcMap, which represented each category. Any
polygon representing a single pixel or island (one 30 m × 30 m area in original output
raster) was removed. All category polygons were then overlaid with a layer representing
public right of ways and other public areas (state parks, natural areas, etc.).

We generated 40 random points in each category polygon using the final polygon layer.
All points within each category polygon had a spatial buffer of 2 km and were checked
before sampling to ensure accessibility. If a point was inaccessible in the field, the next
closest accessible point within the respected category was chosen and sampled. To assess
the accuracy of the Maxent predictions, we calculated the receiver operating characteristic
(ROC) and the AUC for the average ROR of occupied transects vs. the average ROR of
unoccupied transects (Fawcett, 2006) with the pROC package in program R (Robin et al.,
2011). A ROC graph is a technique for visualizing, organizing and selecting classifiers
based on their performance (Fawcett, 2006), and displays the performance of a binary
classification method (presence/absence) with a continuous (Maxent prediction) ordinal
output (Robin et al., 2011). Furthermore, the ROC plot shows the sensitivity (proportion
of correctly classified positive observations) and specificity (the proportion of correctly
classified negative observations) as the output threshold is moved over the range of all
possible values (Robin et al., 2011).

To assess how the number of burrows encountered on a transect related to habitat
variables and ROR, we fit zero-inflated (package:pscl; Zeileis, Kleiber & Jackman, 2008)
and negative binomial generalized linear models (package:MASS; Venables & Ripley, 2002)
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Figure 1 Sampling sites.Map depicting the location of sites sampled in western Arkansas in the spring
of 2015 based on the predictions from a Maxent analysis of two primary burrowing crayfish species
(Fallicambarus harpi and Procambarus reimeri).

for F. harpi and P. reimeri, respectively. Zero-inflated models were fit for both species,
however model selection suggested that the negative binomial was a better fit for the
P. reimeri data. The response variable was the number of burrows in each transect for
the F. harpi and P. reimeri models. We modeled excess zeros in F. harpi data by including
‘‘sedge’’ as a predictor in the zero-inflation logit model (Table 2). The sedge variable
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Table 2 Model variables.Variables and their descriptions for generalized linear model analysis of two
primary burrowing crayfishes in Arkansas (Fallicambarus harpi and Procambarus reimeri). Quadrats were
1 m2 and transects were 50 m in length.

Variable Description

Sedge Presence of hydrophilic sedge in transect (binary: yes/no)
Herb % herbaceous ground cover measured in each quadrat, averaged across each transect
Solar Incoming solar radiation value (watt-hour/m2) averaged across each transect location

based on direct and diffuse insolation from the unobstructed sky directions (ArcGIS, En-
vironmental System Research Institute, Redlands, California)

Water_dist Euclidean distance to nearest waterbody calculated at central point (25 m) of each tran-
sect location (National Hydrography Dataset; http://nhd.usgs.gov/index.html)

CTI Average compound topographic index value calculated for each transect location (Evans
et al., 2010)

Soil1, Soil2 Transformed soil composition (% sand, silt, clay) value calculated for each soil sample
averaged across each transect (Van den Boogaart, Tolosana & Bren, 2014)

Mxnt Average relative occurrence rate (ROR) calculated for each transect

Table 3 Candidate models. Candidate models in the generalized linear model analysis for Fallicambarus
harpi and Procambarus reimeri in Arkansas. The response variable used in each model was burrow abun-
dance/presence in each 50 m transect. See Table 2 for variable names.

Model name Variables

Mod 1(global) herb + solar + water_dist + cti + soil1 + soil2 + mxnt
Mod 2 mxnt + soil2
Mod 3 soil2 + soil1
Mod 4 solar + water_dist
Mod 5 cti + mxnt
Mod 6 herb + water_dist + cti
Mod 7 mxnt
Mod 8 mxnt + soil1

indicated the number of quadrats in a transect that contained sedges. Sedge was modeled
in this manner due to its significant relationship with the presence of both crayfish species
across the landscape (see Rhoden, Taylor & Peterman, 2016), as well as our inability to
accurately identify sites with sedges from spatial GIS data. The predictor variables for both
analyses were based on averages of habitat data collected at each transect during the search
of burrows in each quadrat (Table 2).

We assessed model convergence and fit and then adjusted the optimization algorithm
as needed. The full candidate model set is shown in Table 3. We compared candidate
models with Akaike Information Criterion corrected for small sample sizes (AICc; Akaike,
1974) with the package MuMIn (Barton, 2014) by means of model selection and averaging
described by Burnham & Anderson (2002) and Luckacs, Burnham & Anderson (2009).

Field sampling occurred in March and April of 2015, the period of peak activity for
both F. harpi and P. reimeri (Robison & Crump, 2004; Robison, 2008). Field sampling was
conducted under funding agency Scientific Collection Permit number 030620151. At each
sampling point, one 50-m linear transect was searched for the presence of burrows in six
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Table 4 Maxent results. Percent contribution and permutation importance of each environmental vari-
able analyzed in the final Maxent models for two primary burrowing crayfish species (Fallicambarus harpi
and Procambarus reimeri) in western Arkansas.

Variable Percent contribution Permutation importance

Fallicambarus harpi
Canopy 48.8 15.7
Elevation 37.9 56.3
CTI 7.6 2
Solar 4 25.4
Distance to nearest waterbody 1.8 0.6

Procambarus reimeri
Canopy 47.2 27.5
Elevation 39.8 41.9
Distance to nearest waterbody 7.1 16.8
CTI 5.5 9
Solar 0.4 4.9

1-m2 quadrats placed at 10 m intervals along each transect. Within a sampling polygon,
the area surrounding the transect was also thoroughly searched for burrows. If burrows
were present along the transect, quadrat, or within the vicinity of the transect, animals were
captured with hand excavation by using a hand shovel to slowly dig around the burrow
entrance and inserting one’s arm into the burrow feeling for the crayfish. This method was
chosen over other methods due to the success rate and limited amount of time spent at
each burrow location (Ridge et al., 2008).

RESULTS
Maxent analysis
The AUC converged to 0.959 and 0.976 for the final F. harpi and P. reimeri models,
respectively. The model for F. harpi converged after 520 iterations and the model for
P. reimeri converged after 420 iterations. Both models were significantly better than the
random AUC estimations from the null models (p< 0.01). Of the parameters included in
the model, canopy cover was the variable with the highest percent contribution for both
species (48.8% and 47.2% F. harpi andP. reimeri, respectively; Table 4). Both species showed
a steady decline in the probability of presence as canopy cover increased. The variable with
the highest gain when used in isolationwas elevation for both species (Table 4). An elevation
between 150 m and 200 m was most suitable for F. harpi and between 300 m and 350 m was
most suitable for P. reimeri. The concentration of the highest ROR was centered around
the presence locations for both species (Fig. 2). The LPT was 0.07 for F. harpi and 0.26 for
P. reimeri. In the F. harpimodel, 10% of the area in the OME was predicted to be above the
LPT. In the P. reimerimodel, 2% of the OME was predicted to be above the LPT (Table 5).
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Figure 2 Projection of Maxent results. Projection of the Maxent models for (A) Procambarus reimeri
and (B) Fallicambarus harpi onto the environmental variables (Table 1) used for analysis in western
Arkansas. The total shaded area represents the Ouachita Mountains Ecoregion (OME). Cooler colors
show areas with better predicted conditions (relative occurrence rates [ROR]).

Field sampling and validation
All sites were sampled in the right of way of primary, secondary, and tertiary roadways
(Fig. 3). Most (89% for F. harpi and 98% for P. reimeri) of the land area in the OME was
in the first (lowest ROR) category (Table 5). No individuals of either species were caught
in areas predicted below the LPT (category 1). Most (74%) of the presence locations for
F. harpiwere in category 4 (Table 5). The presence locations for P. reimeriwere more evenly
distributed between categories 2, 3, and 4 (Table 5). Fallicambarus harpi was captured in 19
of 480 quadrats within 5 of the 80 transects surveyed for the species. Procambarus reimeri
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Table 5 Ground validation statistics. (A) Threshold values (relative occurrence rate; ROR), land area
(ha), and percentage of Ouachita Mountains Ecoregion (OME) of each relative occurrence category; and
(B) number of presence and absence quadrats, average canopy cover (%) of quadrats sampled in each
relative occurrence category, and percentage of quadrats in each relative occurrence category with sedges
present from the field sampling based on Maxent models for two primary burrowing crayfish species
(Fallicambarus harpi and Procambarus reimeri) in western Arkansas.

A
Species Category 1 Category 2 Category 3 Category 4

Thresholds (ROR)
Fallicambarus harpi 0.00–0.07 0.07–0.44 0.44–0.66 0.66–0.88
Procambarus reimeri 0.00–0.26 0.26–0.42 0.42–0.64 0.64–0.85

Land area (ha)
Fallicambarus harpi 1374105 143139 21894 4996
Procambarus reimeri 1515441 15209 9756 3728

Percentage of OME
Fallicambarus harpi 89 9 1 <1
Procambarus reimeri 98 1 1 <1

B
Variable Category 1 Category 2 Category 3 Category 4

Fallicambarus harpi
Present 0 0 5 14
Absent 121 120 115 105
Average Canopy Cover 34 26 16 7
Percent Quad w/ Sedge 27 73 44 46

Procambarus reimeri
Present 0 12 14 15
Absent 122 106 106 105
Average Canopy Cover 38 18 19 15
Percent Quad w/ Sedge 51 55 63 45

was captured in 41 of 480 quadrats within 15 of the 80 transects surveyed for the species.We
counted 70 burrows each for F. harpi and P. reimeri. The updated range of F. harpi extends
2.8 km to the north and 2 km to the south of its historical range while the updated range
of P. reimeri extends 51.6 km to the east, 12.1 km to the south, and 19.2 km to the west of
its historical range. Thus, the total range for both species was approximately 265 km2 for
F. harpi and 1467 km2 for P. reimeri using a minimum convex polygon approach in ArcGIS
encompassing all known capture localities from both years and historic museum data.

The AUC for the F. harpi field validation was 78.67 (63.29–94.04). The AUC for the
P. reimeri field validation was 69.54 (56.16–82.92). The threshold values (prediction with
the highest specificity and sensitivity) were 0.48 and 0.29 for F. harpi and P. reimeri,
respectively. In both the F. harpi and P. reimeri models, the variable of ROR (Mxnt;
Table 3) was in the top (AICc ≤ 4) models and was shown to have a positive relationship
with the abundance of crayfish burrows in each transect (Table 6). Sedge was an important
predictor of excess zeros in our F. harpi data (Table 7). As the number quadrats in a transect
containing sedges increased, the likelihood of an excess zero decreased.
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Figure 3 Map of ground validation.Map representing the sampling scheme based on the predictions
from a Maxent analysis of two primary burrowing crayfish species (Fallicambarus harpi and Procambarus
reimeri) in western Arkansas in the spring of 2015. Each color represents a relative occurrence category
upon which the field validation sampling procedure was based. The black lines in the lower graphic de-
pict 50-m transects used to assess presence or absence of the target species at each site. The linear, focused
colors in the bottom graphic represent the accessible polygons in which the transect sampling was carried
out.

DISCUSSION
Wedemonstrate thatMaxent is a useful tool to predict new occurrences and the distribution
of suitable habitats for two narrowly endemic, rare species with unique natural histories
that span both terrestrial and aquatic life styles. Our models were successful in directing
us to new populations of both species. We used a suite of functions to assess model fit
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Table 6 Candidate generalized linear model results.Model name, number of model parameters (K),
Akaike’s Information Criterion adjusted for small sample size (AICc), difference in AICc (1AICc), Akaike
cumulative weights (wc ), and log liklihood (LL) for models from a suite of variables modeled with a gen-
eralized linear model analysis for 2 primary burrowing crayfish species, Fallicambarus harpi (n= 80 tran-
sects) and Procambarus reimeri (n= 80 transects) in Arkansas. See Tables 2 and 3 for a description of each
model and the variables included.

Model K AICc 1AICc wc LL

Fallicambarus harpi
Mod 5a 6 65.5 0 0.69 −26.19
Mod 1a 11 68.9 3.35 0.82 −21.50
Mod 6 7 69.3 3.78 0.92 −26.88
Mod 8a 6 71.1 5.6 0.96 −29
Mod 7a 5 71.9 6.4 0.99 −30.6
Mod 2a 6 74.3 8.8 1 −30.6
Mod 3 6 77.1 11.5 1 −32.0
Mod 4 6 80.8 15.3 1 −33.8

Procambarus reimeri
Mod 7a 3 137.7 0 0.40 −65.68
Mod 4 4 139.3 1.67 0.57 −65.41
Mod 2a 4 139.8 2.12 0.71 −65.63
Mod 5a 4 139.8 2.17 0.85 −65.66
Mod 8a 4 139.9 2.22 0.98 −65.68
Mod 3 4 144.2 6.56 1 −67.85
Mod 6 5 145.5 7.84 1 −67.35
Mod 1a 9 150.5 12.86 1 −64.99

Notes.
aRepresent inclusion of ROR parameter (mxnt).

and safeguard against potential pitfalls associated with the Maxent program (Phillips
& Dudík, 2008; Warren & Seifert, 2011; Elith et al., 2011; Hijmans, 2012; Lahoz-Monfort,
Guillera-Arroita & Wintle, 2014). We also used biologically relevant habitat information
at a constrained geographic scale to increase the accuracy of our predictions (Guisan &
Thuiller, 2005). These habitat variables and the scale at which we delineated them were a
result of previous field sampling and analysis of habitat preference of both species (Rhoden,
Taylor & Peterman, 2016), which revealed both crayfish to be microhabitat specialists;
using open, low-herbaceous microhabitats. We validated the models through a stratified
sampling of our Maxent model predictions based on the LPT and the maximum ROR. We
then equally sampled each category across the entire OME. Both models performed well
in the ROC analysis and subsequent generalized linear models. The ROR was shown to be
positively associated with the number of burrows in a transect (represented as ‘‘mxnt’’ in
Table 7) during the generalized linear models for each species. This analysis revealed that
regions with higher estimated ROR not only are more likely to be occupied, but will harbor
more individuals. This validation resulted in an expansion of both species’ known ranges
and the discovery of new populations. The models performed well by directing sampling
efforts to treeless areas on the landscape that tended to have greater predicted probabilities
of occurrence. However, the models did a poor job of identifying the wet, low-herbaceous
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Table 7 Parameter estimates of generalized linear model analysis. Conditional model-averaged pa-
rameter estimates of the full candidate models (Table 6) for two primary burrowing crayfishes species
(Fallicambarus harpi and Procambarus reimeri) in Arkansas. See Table 2 for a description of the variables
included.

Species and variable Model-averaged estimate (SE) p> |z|

Fallicambarus harpi
Herb −0.75 (1.55) 0.63
Solar 1.45 (5.14) 0.78
Water_dist −1.93 (1.75) 0.23
CTI −0.98 (0.38) 0.01
Soil1 −5.77 (5.43) 0.29
Soil2 2.08 (1.68) 0.21
mxnt 3.96 (1.70) 0.02
Sedge (zero-infl) −0.50 (0.30) 0.10
Count Intercept −1.16 (2.38) 0.63
Zero-infl Intercept 3.51 (1.28) 0.01

Procambarus reimeri
Solar 1.70 (0.69) 0.02
Water_dist 0.11 (0.47) 0.80
Cti 0.11 (0.50) 0.82
Soil1 −0.07 (0.55) 0.90
Soil2 −0.16 (0.56) 0.78
mxnt 1.25 (0.49) 0.01
Intercept −0.61 (0.47) 0.20

microhabitats most frequently associated with occurrence in the field and previous studies
(Robison & Crump, 2004; Robison, 2008; Rhoden, Taylor & Peterman, 2016).

The habitat attributes of sites in which animals were present consisted of treeless, wet,
low-herbaceous microhabitats. The average canopy cover for the categories above the LPT
(category 2, 3, and 4) was 17% for both species. Quadrats where we detected our focal
crayfish species had an average canopy cover of 5%. Hydrophilic sedges were present in
over 90% of the quadrats having F. harpi and P. reimeri but were present in less than half of
the quadrats predicted above the LPT (categories 2, 3, and 4). The sites recorded as being
above the LPT (categories 2, 3, and 4) not having the target species were treeless for the
most part, but those sites did not exhibit a moist microhabitat. The Maxent models thus
did not capture the perched water table observed across the landscape associated with other
primary burrowing crayfishes (Welch, Eversole & Riley, 2007). It is likely the model did not
capture these moist, low herbaceous habitats due to the spatial resolution and variables
chosen for the Maxent analysis (canopy cover, CTI, elevation, solar radiation, and distance
to nearest waterbody). Future studies could incorporate remotely sensed data to better
identify these unique habitats.

The use of the LPT to determine the threshold between the probability of presence or
absence at any given predicted output location (Pearson et al., 2007) is well documented
(Rinnhofer et al., 2012; Boria et al., 2014; Fois et al., 2015). We successfully used this value
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in our field validation techniques: no animal was captured in an area predicted below
the LPT (Table 3). The land area above the LPT for the F. harpi model comprised 10%
of the OME and 2% for the P. reimeri model in Arkansas. The ROC analysis identified
threshold values of 0.48 and 0.29 for the F. harpi and P. reimerimodels, respectively, which
optimized the sensitivity (100 for both F. harpi and P. reimeri) and specificity (58.7 and 38.5
for F. harpi and P. reimeri, respectively) of our model (Robin et al., 2011). These values are
far more conservative than the LPT and are based on the field validation results from both
species. Using these threshold metrics, the area predicted as suitable habitat for F. harpi
and P. reimeri is less than 1% of the OME. We recommend the use of this threshold based
on the ROC analysis for a more fine-tuned sampling effort for high-quality habitat for both
species in the future.

Our SDMs used fine-scale (30 m) rasters of biological variables relevant to our two study
species (canopy cover, CTI, solar radiation, elevation, and distance to waterbody). In the
past, it has been common to use coarse (≥1 km) climatic data to construct models (e.g.,
Peterson, 2001; Welch, Eversole & Riley, 2007; Chunco et al., 2013). The use of coarse-scale
habitat variables in Maxent has been addressed in previous studies (Araújo & Guisan,
2006; Jiménez-Alfaro, Draper & Nogués-Bravo, 2012). Others using fine-scale inputs have
found new populations of other rare species such as the discovery of new breeding ponds
for a salamander species in east central Illinois (Ambystoma jeffersonianum; Peterman,
Crawford & Kuhns, 2013). Using fine-scale spatial surfaces of specific habitat variables
for narrowly endemic habitat specialists was more appropriate than the more general
approach of coarse-scale climatic data due to the resolution one gains with specific habitat
information and fine-scale inputs. This fine-scale resolution was necessary to capture
elements of the microhabitat the crayfishes prefer by differentiating between suitable and
unsuitable habitat within anthropogenically altered habitat situated in natural landscapes
(e.g., roadside ditches). However, we note that the specific surfaces or resolution in our
study still failed to completely capture essential habitat features or indicators of preferred
habitat, such as sedges.

Conservation efforts for rare species benefit by narrowing the knowledge gap in
distribution information, adding localities for monitoring persistence in roadside ditches,
and providing habitat preference information. Our study showsMaxent was an appropriate
tool to analyze habitat suitability and discover populations of narrowly endemic, rare
species. Our method of reinvestigating museum localities, verifying species persistence,
and collecting habitat data from verified locations added precision to the presence locations
we used for analysis. Our initial surveys also added valuable information regarding the
habitat preferences of both F. harpi and P. reimeri, which in turn guided the selection of our
habitat variables for both models. Our concentrated search efforts resulted in the discovery
of five new populations of F. harpi and 16 new populations of P. reimeri and known range
expansions of approximately 91 km2 and 1,404 km2, respectively.

CONCLUSION
Recent studies have found ground validation of Maxent has been a suitable method
to determine the accuracy of predictions (Stirling et al., 2016). Our study supports this
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conclusion and offers a unique method, incorporating historic museum localities to
inform an SDMof pertinent habitat variables and validating the localities before conducting
the SDM. We have also shown Maxent works well with narrowly endemic, rare habitat
specialists and fine scale (30 m) raster inputs. Constructing models followed by ground
validation has added valuable habitat information to two spatially restricted, understudied
species and illustrates the potential effectiveness of such a strategy for other rare habitat
specialists.
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