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Abstract

Background—Ozone is a ubiquitous air pollutant with increasing concentrations in many 

populous regions. Toxicological studies show that ozone can cause oxidative stress and increase 

insulin resistance. These pathways may contribute to metabolic changes and diabetes formation. In 

this paper, we investigate the association between ozone and incident type 2 diabetes in a large 

cohort of African American women.

Methods—We used Cox proportional hazards models to calculate hazard ratios (HRs) for 

incident type 2 diabetes associated with exposure to ozone in a cohort of 45,231 African American 

women living in 56 metropolitan areas across the United States. Ozone levels were estimated 

using the U.S. EPA Models-3/Community Multiscale Air Quality (CMAQ) predictions fused with 

ground measurements at a resolution of 12 km for the years 2007–2008.

Results—The HR per interquartile range increment of 6.7 ppb of ozone was 1.18 (95% CI 1.04–

1.34) for incident diabetes in adjusted models. This association was unaltered in models that 

controlled for fine particulate matter with diameter <2.5 μ (PM2.5). Associations were modified by 

nitrogen dioxide (NO2) levels, such that HRs for ozone levels were larger in areas of lower NO2.
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Conclusions—Our results provide initial evidence of a positive association between in O3 and 

incident diabetes African American women. Given the ubiquity of ozone exposure and the 

importance of diabetes on quality of life and survival, these results may have important 

implications for the protection of public health.
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1.Introduction

Tropospheric ozone (O3) concentrations have increased by twofold since the 19th century, 

due largely to growing O3 precursor emissions associated with human activity (Parrish et al., 

2012). O3 exhibits strong spatial and temporal heterogeneity (Cooper et al., 2014). In the 

United States nearly 130 million people live in areas that fail to comply with O3 standards 

set by the U.S. Environmental Protection Agency (City Rankings - American Lung 

Association|State of the Air, 2015). While other pollutants have shown marked 

improvement, ozone has not seen nearly the same decreases in many parts of the United 

States, particularly in more polluted areas such as Southern California (Gauderman et al., 

2015). Higher and worsening concentrations have also been observed in densely populated 

areas of South and East Asia (Parrish et al., 2012). O3 is also an important greenhouse gas 

that contributes substantially to increased radiative forcing and resulting climate change 

(Intergovernmental Panel on Climate Change (IPCC), 2014). In the troposphere, ozone can 

elicit a wide range of adverse effects on human health, including: pulmonary dysfunction, 

hospitalization for respiratory causes, induction and exacerbation of asthma, and premature 

mortality from several causes, with specific risks observed for diabetic deaths (Berman et al., 

2012; Mustafic et al., 2012; US EPA National Center for Environmental Assessment 

RTPNEMAG & Brown, 2013; Jerrett et al., 2009; Turner et al., 2016).

Growing epidemiological evidence implicates ambient air pollution as a contributor to the 

development of type 2 diabetes. While toxicological evidence suggests that PM2.5 exerts 

pro-diabetic effects, epidemiological data on the association of diabetes with PM2.5 exposure 

is inconsistent (Coogan et al., 2012; Chen et al., 2013; Puett et al., 2011). In addition, some 

studies have found markers of traffic-related air pollution such as NO2 to be associated with 

incident diabetes (Park et al., 2015). Recent meta-analyses reported increased relative risks 

of type 2 diabetes per 10 μg/m3 increase in exposure to PM2.5: 1.10 (95% CI: 1.02, 1.18) and 

to NO2: 1.08 (95% CI: 1.00, 1.17) (Eze et al., 2015). To date, no study has investigated 

whether ozone is associated with the onset of type 2 diabetes in humans.

Emerging evidence from animal experiments, however, suggests that O3 exposure may also 

have the capacity to induce metabolic insulin resistance. Vella et al. (2015) recently 

demonstrated that rats exposed to O3 for 16 h (as well as sub-acutely for 4 days at lower 

levels) developed elevations in fasting glucose levels and whole body insulin resistance 

(Vella et al., 2015). The insulin resistance was shown to be due to impaired insulin-signaling 

in muscle tissues as a consequence of oxidative stress-induced endoplasmic reticular stress 

pathways leading to c-Jun N-terminal kinase (JNK) activation. The investigators also 
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provided evidence that these adverse responses to O3 inhalation were likely mediated by the 

formation of pro-oxidative molecules in the pulmonary alveolar fluid capable of 

translocating into the systemic circulation. Additional studies suggest that O3 could induce 

adverse systemic metabolic responses via activation of the sympathetic nervous system, by 

hypothalamic inflammation, or both (Bass et al., 2013). Hence, O3 may also work to induce 

diabetes mellitus through similar pathways as fine particulate matter with diameter <2.5 μm 

(PM2.5) (Rao et al., 2015). Specifically, both pollutants can cause oxidative stress in the 

lungs, which – if sustained over time – may lead to systemic pro-inflammatory and 

autonomic responses linked to numerous adverse health effects.

Based on the evidence from animal models and analogous findings on other common air 

pollutants, we hypothesized that ozone could contribute to the development of diabetes. We 

assessed this hypothesis in a large cohort of African American women.

2. Methods

2.1. Study population

In 1995, the Black Women’s Health Study (BWHS) began when 59,000 black women aged 

21 through 69 were recruited largely though subscribers to Essence magazine, a publication 

targeted to black women (Rosenberg et al., 1995). A baseline questionnaire solicited 

information on demographics, medical conditions, reproductive history, and lifestyle factors. 

Follow up occurred biennially with Web-based and mailed health questionnaires. Follow-up 

of the baseline cohort has been completed for 88% of potential years of follow-up through 

2011. The Institutional Review Board of Boston University School of Medicine approved 

the study protocol. Participants indicate consent by completing and returning the 

questionnaires.

Here we used data from the baseline questionnaire (1995) and eight subsequent follow-up 

cycles (1997–2011), provided by 45,231 women who lived in any of 56 U.S. metropolitan 

areas and who had complete body mass index (BMI) information at baseline. Those 

excluded because they did not live in the 56 metro areas (n = 11.914) did not differ 

statistically from the women included in terms of mean age, prevalence of diabetes or BMI. 

Follow up started at 30 years of age to exclude potential cases of type 1 diabetes, regardless 

of whether the age at enrollment was <30. For example, a woman who was 28 at enrollment 

in 1995 would not add to follow up time until 1997 when she turned 30. We excluded 2228 

women with prevalent diabetes at baseline, which left a total of 43,003 women for analysis.

2.2. Diagnosis of diabetes

Incident cases of type 2 diabetes were ascertained by self-report of doctor-diagnosed 

diabetes at age 30 or older during follow-up. A validation study among 227 participants who 

met the ascertainment criteria confirmed type 2 diabetes in 96% of the women based on the 

data from their medical records or provided by their physicians (Krishnan et al., 2010).
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2.3. Ascertainment of covariates

Self-reported data on alcohol consumption, smoking history, hours per week spent in 

vigorous activity, and weight and height (used to calculate BMI, weight in kg/height in m2) 

were obtained at baseline. All except height were updated with biennial follow-up 

questionnaires. Dietary data were obtained in 1995 and 2001 using a food frequency 

questionnaire modified from the 68-item short form Block-National Cancer Institute 

instrument (Block et al., 1990). We used factor analysis to identify two dietary patterns, one 

characterized by high intake of meat and fried food and the other by high intake of fruits and 

vegetables (Boggs et al., 2011). Educational attainment, household income, and parental 

history of diabetes were reported on various follow-up questionnaires.

We geocoded residential mailing addresses from 1995 to 2009 using TeleAtlas Road 

coverage as the reference layer. Geocoded addresses were then linked to U.S. Census data 

(block group level). Using factor analysis, we developed a neighborhood socioeconomic 

status (SES) score based on census variables indicating wealth, education, and income as 

described in detail elsewhere (Coogan et al., 2015).

2.4. Estimation of ozone

We estimated O3 concentrations from a Bayesian space-time fusion model known as the 

Downscaler, which was developed by the U.S. Environmental Protection Agency (Berrocal 

et al., 2012). The model estimates daily 8-hour maximum O3 concentrations for each census 

tract centroid in the contiguous United States. The model fuses data from the ground-based 

monitoring network with Community Model for Air Quality (CMAQ) model estimates with 

output on 12 * 12 km grids. We extracted daily estimates and averaged these for the years 

2007–2008 to approximate the long-term average at all residential locations reported by 

BWHS participants over follow-up.

The Downscaler model underwent several validation steps (Berrocal et al., 2012). In brief, 

maps of the model output were produced for sub-regions of the United States and compared 

quantitatively and visually to monitoring locations, which showed the spatial patterns of 

predictions were largely consistent with monitored levels. The model performance was also 

assessed using the predictive mean absolute error (PMAE) of the space-time prediction, 

which showed the Downscaler outperformed either ordinary kriging models or CMAQ 

models alone. Correlations with hold-out cross-validation locations for daily predictions 

ranged from 0.61–0.86. These validation analyses suggested that the model predicted 

ambient ozone concentrations well.

2.5.Estimation of PM2.5

We used a hybrid modeling approach to estimate ambient PM2.5 for the years 1999–2008 at 

all participant residential addresses. Methods have been described in detail elsewhere 

(Beckerman et al., 2013). Briefly, we employed a two-stage modeling strategy that 

incorporated a land use regression (LUR) approach and a Bayesian Maximum Entropy 

(BME) approach. The model used data on traffic density and green space as fixed predictors. 

Validation of the final LUR-BME model in the cross-validation dataset showed strong 
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agreement between observed and predicted PM2.5 levels with no evidence of bias; the cross-

validation R2 ~ 0.79.

2.6. Estimation of NO2

We estimated annual NO2 levels for census block groups covering the years 2000–2010 with 

a land use regression model, (Novotny et al., 2011) and assigned them to all participant 

residential locations. The model used fixed-site ambient NO2 monitoring station data as the 

dependent variable and satellite-derived estimates of ground-level NO2 concentrations and 

ground-based datasets of land uses. The spatial LUR was derived from annual-average NO2 

concentrations at 369 monitoring stations and from 81,670 satellite-derived ground-level 

NO2 estimates. The spatial model had good predictive power (R2 ~ 0.78). Temporal 

modeling incorporated 48,886 monthly-average monitoring station values to provide 

monthly averages by block. The R2 for the final spatiotemporal model was 0.80.

2.7. Estimation of temperature and heat

Given earlier findings on temperature modifications of ozone health effects (Jerrett et al., 

2009), we assessed whether an interaction existed between ozone effects and temperature. 

Data were extracted from county-level estimates derived by the Centers for Disease Control 

(2014) North America Land Data Assimilation System (NLDAS) Daily Air Temperatures 

and Heat Index. We used the 10-year mean annual maximum temperature and heat indices 

(2000-2010) for each county and assigned this to study participants’ locations 

(Environments Outdoor Air - CDC Tracking Network, n.d.).

2.8. Statistical methods

We fit Cox proportional hazards models stratified by age in 1-year intervals, 2-year 

questionnaire cycle, and metro area (n = 56). We estimated hazard ratios (HR) and 95% 

confidence intervals (CI) to assess the association between air pollution and diabetes per 

interquartile range (IQR) of O3 (6.7 ppb). We calculated person-time from the start of 

follow-up in 1995 to the first occurrence of diabetes, loss to follow-up, death, or end of 

follow-up, whichever happened first. We assessed the proportional hazards assumptions by 

analyzing Schoenfeld residuals.

We began with a basic model including age, questionnaire cycle, and metro area in the strata 

statement. We then added covariates that individually changed the ozone coefficient by at 

least 10%: education (≤12,13–15, 16, ≥17); diet pattern as indicated by vegetable/fruit diet 

pattern score (quintiles) and meat/fried foods diet pattern score (quintiles); hours/week 

vigorous exercise (none, <5, ≥5); parental history of diabetes; body mass index (BMI = 

weight in kg/height2 in m as <25, 25–29,30–34, 35–39, ≥40); smoking status (never, past or 

current), and neighborhood SES (continuous based on factor analysis of census data). We 

subsequently included the co-pollutants, PM2.5 and NO2, as potential confounders. We 

tested for interactions between ozone and the variables included in the final model or the co-

pollutants. Finally we conducted sensitivity analyses by excluding the three largest cities in 

the cohort (New York City, Los Angeles, and Chicago).
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2.9. Assignment of the exposure surfaces

We assigned all air pollutant exposure to the residential addresses of the women. We then 

assigned the modeled exposure as the average of the pollutant concentration over the 2 years 

at the residential address lived at prior to diagnosis or the last follow up. We used this 

“proximate mean” approach to minimize the exposure classification that could result from 

using the baseline residential address for the entire follow up period. Due to the limited 

temporal resolution on some of the exposure models, we based the exposure assignment for 

the 2-year proximate mean on the overall mean of all years available for each pollutant (i.e., 

2000–2010 for NO2, 2007–2008 for O3, and 1999–2008 for PM2.5).

After assignment, we conducted a series of descriptive analyses to ensure estimates were in 

likely ranges and distributions of the various exposures. We assessed the concentration-

response function by plotting the hazard ratios against the ozone concentrations using a 

spline function with three degrees of freedom. All analyses were conducted using SAS v 9.3.

2.10. Role of the funding sources

The work presented in this paper was funded by the U.S. National Institute of Environmental 

Health Science and the U.S. Centers for Disease Control Environmental Public Health 

Tracking Program. None of the funding agencies played a direct role in the writing of this 

manuscript or the decision to submit it for publication.

3. Results

Table 1 shows the descriptive statistics of the analytic cohort by quintile of ozone exposure. 

As ozone levels increased, the proportion of smokers decreased and the proportion of never 

drinkers increased. There was little difference in mean BMI but the prevalence of obesity 

was slightly lower in the more highly polluted quintiles. In the lower quintiles of ozone, 

women were more likely to be at the lowest levels of income, education, and neighborhood 

SES.

Table 2 shows the association of ozone with incident diabetes in a basic model that included 

age, questionnaire cycle, and city, and in the fully adjusted model that included variables that 

met our confounding inclusion criteria. We observed no association between ozone and 

incident diabetes in the basic model. There was, however, an association between ozone and 

incident diabetes in the fully adjusted model (HR = 1.18, 95% CI 1.04, 1.34 over the IQR of 

ozone). Neighborhood SES was the variable most responsible for the increase in the adjusted 

HR (see Table 1S in the Online Appendix for the effect of individual variables on the ozone-

diabetes association). The HR estimate increased to 1.20 (95% CI 1.05–1.37) with additional 

control for PM2.5. With further control for NO2, the estimate was reduced and included unity 

(HR = 1.13,95% CI 0.97–1.31).

We assessed whether any of the more important predictors of or risk factors for diabetes 

modified the effect of ozone on diabetes onset (Table 3). There were no interactions that met 

the criteria for rejection of the null hypothesis. We found no evidence of effect modification 

by temperature or heat. For co-pollutants there was no interaction between PM2.5 and ozone 

(data not shown). We did, however, observe borderline evidence of an interaction between 
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ozone and NO2 when the models were run with both pollution variables in continuous form 

(p = 0.09). Fig. 1 shows the effects of ozone by level of NO2, with generally decreasing 

effects as NO2 increased.

There was no indication of the violation of proportional hazards assumption (p = 0.63 for 

ozone). Removal of New York City alone resulted in slightly higher hazard ratios, while 

removal of New York City and Los Angeles or New York City, Los Angeles and Chicago 

together more than doubled the HR to 1.48 (95% CI 1.18–1.85) (see Table 2S in the Online 

Appendix).

Fig. 2 presents the concentration-response model. The plot suggests a monotonic response 

function over the range of ozone exposures.

We also examined the within-metro correlations among the pollutants assessed with a focus 

on how O3 related to NO2 and PM2.5. The mean correlation between O3 and NO2 is −0.57, 

but the within-metro correlations range from −0.95 to a maximum of 0.21. Thus, the mean 

correlation is moderate, and there is substantial variation in the correlation between these 

two pollutants within the study cities. The within-metro correlations for O3 and PM2.5 

average is − 0.29, with a wide range from a minimum of −0.8 to a maximum of 0.37. With 

these two pollutants, the average is correlation is moderately low, and there is also wide 

range of correlations among the 56 metros included in our study. Based on this empirical 

assessment, it appears unlikely that correlations of O3 with either PM2.5 or NO2 were likely 

to induce substantial collinearity in the statistical model that used within-metro contrasts as 

the primary exposure assessment.

4. Discussion

Based on analogous evidence of other ambient pollutants with oxidant potential and recent 

animal models indicating increased insulin resistance after exposure to ozone, we 

hypothesized that ambient ozone exposure could contribute to diabetes formation. We found 

initial support for an effect of ozone on incident diabetes in this large cohort of African 

American women. Our examination of the dose-response function suggested a monotonic 

relation between ozone and incident diabetes over the range of exposure. The results were 

changed little by the inclusion of PM2.5 as a co-pollutant. Our results, however, suggest that 

the association of ozone and diabetes incidence may depend partly on the levels of NO2 

present.

Due to atmospheric chemistry processes, ozone is often inversely related to NO2 (Finlayson-

Pitts & Pitts, 1997), and we found a mean within metro-correlation of −0.57. If both 

pollutants are risk factors for diabetes, and one is high in areas where the other is low, it is 

possible that we would see few effects of ozone where NO2 is high because higher rates of 

diabetes due to greater levels of NO2 would mask the effect of ozone. NOx was previously 

related to diabetes incidence among 4204BWHS participants who were residents of Los 

Angeles using a highly-resolved exposure prediction model: over 10 years of follow-up, the 

multivariable incidence rate ratio per 12.4 ppb NOx was 1.25 (95% CI 1.07– 1.46) (Coogan 

et al., 2012). Three other prospective studies have assessed NOx and diabetes incidence, with 
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mixed results. In the Multi Ethnic Study of Atherosclerosis, the HR per 47.1 ppb NOx was 

1.04 (95% CI 0.77, 1.40) (Park et al., 2015). In a German study, the relative risk for incident 

diabetes per 15 3g/m3 of NO2 was 1.42 (95% CI 1.16–1.73) (Krämer et al., 2010). In a 

Danish cohort, a 4% increase in diabetes incidence was observed when the stricter of 2 

diabetes case definitions was used (HR = 1.04, 95% CI 1.00–1.08), with greater increases in 

non-smokers (HR = 1.12, 95% CI 1.05–1.20) and physically active people (HR = 1.10, 95% 

CI 1.03–1.16) (Andersen et al., 2012). Thus, the evidence of direct NO2 effects is only 

partially supported by existing studies, but the suggestive interaction shown here between 

NO2 and ozone merits further investigation in future studies. The finding here of an 

interaction, however, must be tempered by the limitation of temporal misalignment in the 

exposure models used to estimate ozone and NO2 concentration.

We found larger effects when the three biggest cities in the cohort were removed. This 

change in effect size probably occurred because of the lower incidence rates in the largest 

cities. Specifically, the rates for the three cities were: 8.15 in Los Angeles, 9.09 in Chicago, 

and 8.85 in New York; for the other 53 cities (excluding Los Angeles, Chicago, New York) 

the rate was 10.1. Pollution levels in the larger cities tended to be higher, and combined with 

the generally lower incidence rates, this could result in attenuation of the effect size when 

the three largest cities are included in the model.

This study has several strengths. First, we relied on a large, national cohort with well-

validated ascertainment methods and substantial information on individual and 

neighborhood variables that could confound the relationship between ozone and diabetes. 

Second, we assigned exposures to three of the most common pollutants with well-validated 

models, all of which have potential to generate health effects. This allowed us to assess 

confounding and effect modification among the pollutants. Finally, we focused on African 

American women, who are at much higher risk of developing diabetes than the general 

population. While this allowed us to assess risks with some precision, focusing on this 

population also limits the generalizability of our findings.

Several weaknesses should also be noted. First, although the exposure models represent the 

best available for a national study, they offer different spatial resolutions, and for ozone the 

12 km grid may be too coarse to capture micro-scale variation near roadways where ozone 

tends to be lower due to reactions with NO2 (Beckerman et al., 2008), or in areas without 

NO2 emissions, such as parks. This could introduce exposure:is classification that would 

tend to inflate confidence intervals or bias effects toward the null (Zeger et al., 2000). 

Second, we had only the residential addresses for the women, and it is likely that other 

exposures occurred at or around places of work or while the women were moving about 

outside their homes. This might be particularly important for ozone: other studies have 

found adverse respiratory effects from participation in outdoors sports in high ozone 

communities, suggesting that time outdoors exercising might be an important exposure 

window (McConnell et al., 2002). Finally the recruitment strategy may have resulted in 

selection bias. In BWHS, 97% of participants have at least a high-school education, as 

compared with 83% of the general population of African American women of the same ages 

(Department of Commerce. Education Attainment in the United States: March 1995. 

Washington, DC: Department of Commerce, Bureau of the Census, 1996). Thus the lowest 
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level of education is underrepresented in BWHS. However, the annual incidence of diabetes 

in BWHS over follow-up was 9.5/1000 person-years, comparable to the incidence rate 

estimated for African Americans aged 20–79 in the National Health Interview Survey for 

1997 (9.5/1000 person years) and 1999 (9.9/1000 per thousand person years) (Geis et al., 

1980–2012).

Despite these caveats, our findings suggest initial support for the hypothesis that ozone 

contributes to diabetes incidence, and recent results from animal models support the 

biological plausibility of the association (Vella et al., 2015; Bass et al., 2013; Rao et al., 

2015). Ozone continues to exceed standards in many parts of the United States and Europe 

(City Rankings - American Lung Association|State of the Air, 2015; US EPA National 

Center for Environmental Assessment RTPNEMAG & Brown, 2013; Summer 2014 Ozone 

Assessment —European Environment Agency, n.d.). For instance, recent studies from 

Southern California show that ozone has not appreciably improved over the past 10 years, 

while other pollutants such as PM2.5 and NO2 have declined precipitously (Gauderman et 

al., 2015). Ozone is also present at elevated levels in many parts of the world, particularly in 

heavily populated regions of Asia (Parrish et al., 2012). Our results, if confirmed in other 

U.S. populations and other regions of the world, may have important implications for 

diabetes prevention and for public health protection.
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Fig. 1. 
Interaction between Ozone and NO2.
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Fig. 2. 
Concentration-Response Curve of Ozone and Incident Diabetes.
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Table 2

Hazard ratios for incident diabetes per 6.7 ppb ozone with control for confounders and co-pollutants (4387 

cases/453,221 person years).

Model HR (95% CI)

Basic modela 1.00 (0.88, 1.13)

Basic + 10% criteriab 1.18 (1.04, 1.34)

Basic + 10% criteria + PM2.5 1.20 (1.05, 1.37)

Basic + 10% criteria + NO2 1.13 (0.97, 1.31)

Basic + 10% criteria + PM2.5 + NO2 1.13 (0.97, 1.31)

a
Basic model contains age, period, and city.

b
Covariates that met the 10% criteria include smoking status (never, past, current b15 cigarettes/day, current ≥15 cigarettes/day), years of education 

(≤12, 13–15, 16,≥17), hours/week vigorous exercise (none, <5, ≥5), vegetable/fruit diet pattern (quintiles), meat/fried food diet pattern (quintiles), 

parental history of diabetes (yes, no), BMI (weight in kg/height in m2 in m as <25, 25–29, 30–34, 35–39, ≥40) neighborhood SES (continuous 
based on factor analysis of census data).
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Table 3

Hazard ratios for incident diabetes per 6.7 ppb O3 stratified by covariatesa.

Cases/PYs HRa (95% CI)

Neighborhood SES

Quintile 1 lowest 1081/85,569 1.07 (0.64, 1.78)

Quintile 2 934/86,213 0.80 (0.55, 1.15)

Quintile 3 879/88,921 1.29 (0.96, 1.74)

Quintile 4 833/95,834 1.20 (0.90, 1.60)

Quintile 5 highest 660/96,683 1.69 (1.21, 2.36)

Interaction p-value 0.27

BMI

<25 298/135,021 1.11 (0.64, 1.93)

25–29 1184/154,702 1.08 (0.83, 1.40)

≥30 2905/163,498 1.26 (1.08, 1.48)

Interaction p-value 0.98

Age

<40 655/133,509 1.27 (0.93, 1.72)

40–54 2200/224,159 1.21 (1.02, 1.44)

≥55 1532/95,553 1.16 (0.93, 1.44)

Interaction p-value 0.34

Education

≤HS 980/71,966 1.06 (0.77, 1.48)

Some college 1476/142,585 1.13 (0.89, 1.43)

College graduate 1926/238,024 1.19 (0.98, 1.44)

Interaction p-value 0.65

Parental history of diabetes

Yes 2072/135,222 1.14 (0.93, 1.40)

No 2236/310,344 1.17 (0.99, 1.40)

Interaction p-value 0.71

Presence of hypertension

No 1932/310,669 1.10 (0.90, 1.33)

Yes 2455/142,551 1.22 (1.02, 1.46)

Interaction p-value 0.55

Vigorous exercise

<5 h/week 4157/407,886 1.18 (1.03, 1.35)

≥5 h/week 187/41,596 1.37 (0.69, 2.70)

Interaction p-value 0.66

Smoking

Never 2344/281,409 1.13 (0.95, 1.36)

Past or current 2037/170,892 1.18 (0.97, 1.45)

Interaction p-value 0.51

Meat/fried food diet pattern score
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Cases/PYs HRa (95% CI)

Quintile 1 700/87,221 1.19 (0.82, 1.73)

Quintile 2 755/85,892 1.19 (0.85, 1.67)

Quintile 3 814/86,307 1.21 (0.89, 1.65)

Quintile 4 866/86,104 1.22 (0.89, 1.68)

Quintile 5 965/84,832 1.11 (0.80, 1.54)

Interaction p-value 0.95

Vegetable/fruit diet pattern score

Quintile 1 810/79,953 1.39 (0.98, 1.96)

Quintile 2 835/83,068 0.94 (0.67, 1.33)

Quintile 3 798/86,354 1.26 (0.89, 1.79)

Quintile 4 843/89,243 1.21 (0.88, 1.66)

Quintile 5 814/91,738 1.22 (0.91, 1.64)

Interaction p-value 0.87

Max air temperature

Tertile 1 1456/150,404 1.26 (0.91, 1.77)

Tertile 2 1390/144,718 1.22 (0.87, 1.72)

Tertile 3 1538/157,761 1.16 (0.99, 1.36)

Interaction p-value 0.80

Max heat index

Tertile 1 1429/151,728 1.18 (1.01, 1.39)

Tertile 2 1164/125,095 0.95 (0.67, 1.36)

Tertile 3 1765/173,575 1.35 (0.96, 1.88)

Interaction p-value 0.22

a
We tested effect modification for all variables used as confounders. We also tested for modification with hypertension because there is evidence 

that hypertension increases the risk for diabetes formation. We hypothesized therefore that individuals with hypertension might be more susceptible 
to the effects of air pollution. There is also evidence that hypertension is associated with air pollution exposure, and it could be on the causal 
pathway from air pollution to diabetes. We therefore did not include this disease condition as a confounder, but only as a modifier. We also tested 
the heat stress variables because of prior evidence that the health effects of ozone may be modified by heat stress.
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