
A Generic Approach to Pathological Lung Segmentation

Awais Mansoor [Member, IEEE],
Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda 
MD 20892.

Ulas Bagci [Member, IEEE],
Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda 
MD 20892.

Ziyue Xu,
Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda 
MD 20892.

Brent Foster,
Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda 
MD 20892.

Kenneth N. Olivier,
Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases National Institute of 
Allergy and Infectious Diseases, NIH, Bethesda MD 20892.

Jason M. Elinoff,
Critical Care Medicine Department, Clinical Center, NIH, Bethesda MD 20892.

Anthony F. Suffredini,
Critical Care Medicine Department, Clinical Center, NIH, Bethesda MD 20892.

Jayaram K. Udupa [Fellow, IEEE], and
Department of Radiology, University of Pennsylvania, Philadelphia PA 19104.

Daniel J. Mollura
Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda 
MD 20892.

Abstract

Accurate segmentation of pathological lungs from computed tomography (CT) scans remains 

unsolved because available methods fail to provide a reliable generic solution for a wide spectrum 

of lung abnormalities. In this study, we propose a novel pathological lung segmentation method 

that takes into account neighbor prior constraints and a novel pathology recognition system. Our 

proposed framework has two stages; during stage one, we adapted the fuzzy connectedness (FC) 

image segmentation algorithm to perform initial lung parenchyma extraction. In parallel, we 

estimate the lung volume using rib-cage information without explicitly delineating lungs. This 

rudimentary, but intelligent lung volume estimation system allows comparison of volume 
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differences between rib cage and FC based lung volume measurements. Significant volume 

difference indicates the presence of pathology, which invokes the second stage of the proposed 

framework for the refinement of segmented lung. In stage two, texture-based features are utilized 

to detect abnormal imaging patterns (consolidations, ground glass, interstitial thickening, tree-

inbud, honeycombing, nodules, and micro-nodules) that might have been missed during the first 

stage of the algorithm. This refinement stage is further completed by a novel neighboring 

anatomy-guided segmentation approach to include abnormalities with weak textures, and pleura 

regions. We evaluated the accuracy and efficiency of the proposed method on more than 400 CT 

scans with the presence of a wide spectrum of abnormalities. To our best of knowledge, this is the 

first study to evaluate all abnormal imaging patterns in a single segmentation framework. The 

quantitative results show that our pathological lung segmentation method improves on current 

standards because of its high sensitivity and specificity and may have considerable potential to 

enhance the performance of routine clinical tasks.
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I. Introduction

Pulmonary diseases and disorders are one of the major causes of deaths and hospitalization 

around the world. The American Lung Association estimates that about 400,000 deaths 

occur per year in the United States from lung diseases [1]. For non-invasive detection and 

diagnosis of lung diseases, quantification of the disease severity, and therapy/surgery 

planning, radiological imaging techniques, particularly computed tomography (CT), are the 

current standard in the routine clinics. In parallel to the technological advances in imaging, 

automated computer analysis and decision support systems are often sought by clinicians 

and radiologists to further assist their diagnostic tasks. Specific to radiological quantification 

of lung diseases, efficient and robust image analysis tools are required for extracting 

information pertaining to lung pathology and morphology in a reliable and efficient way. 

The lung volume of interest containing abnormalities is often the subject of further analysis 

and; therefore, precise lung segmentation is a precursor to the deployment of such tools for 

pulmonary image analysis.

Although current state-of-the-art lung segmentation algorithms work well for certain lung 

pathologies present in moderate amounts, they fail to perform when dense pathologies exist. 

Accurate segmentation of the pathological lung is challenging since lung pathologies hold 

appearances different from the normal lung tissue. Fig. 1 highlights common abnormal 

imaging patterns and pleura pertaining to different lung diseases. CT scans of patients with 

severe lung diseases often include diverse imaging patterns. Thus, it is difficult to adapt the 

current state-of-the-art lung segmentation methods due to their limited ability to be applied 

to diverse imaging patterns with dense pathologies. Our aim in this work is to target this 

challenge, and provide a generic solution for lung segmentation from CT scans.

Mansoor et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Related work

Most methods reported in the literature evaluated a subset of pathologies when segmenting 

lungs. Therefore, a generic solution that can work in routine clinical environment for a wide 

range of pathologies without expert assistance is not available.

Threshold-based methods [2], [3] are often used for their efficiency. However, such methods 

have limited applicability as they fail to consider the intensity variations due to pathologies 

or even under normal conditions. Region-based methods, such as region growing [4]–[6], 

watershed transform [7], [8], graph search [9], [10], and FC [11], [12], are found useful in 

catering for the intensity changes. However, with the presence of dense pathology in the 

lung field, the intensity alone is not enough for successful delineation. As an example, Fig. 1 

(c) and (d) show substantially different intensity values of consolidation and cavity regions 

from normal lung parenchyma. Therefore, these areas are often falsely excluded by 

thresholding–based lung segmentation methods.

For more advanced methods, the use of prior models has been found to be beneficial for 

cases with moderate amount of abnormality. For instance, anatomical shape models have 

been used in [13]–[18]. Basically, these methods fit a statistical shape model of an 

anatomical structure to the image of interest using an optimization procedure. However, as 

commonly known, the primary drawbacks of the model-based approaches are the 

requirement of large training data with high variations and accurate anatomical 

correspondences among the shape instances.

Atlas-based methods, on the other hand, transfer a priori object information from a reference 

image to the target image through image registration. They have been widely used in 

abnormal segmentation of organs including lungs [5], [19]–[21], abdomen [22], and brain 

[23]. Although atlas-based methods show promising results in lung segmentation, a 

representative atlas is often difficult to create due to high shape and intensity variability of 

the lung pathologies. Furthermore, atlas-based methods may fail to accommodate small 

details if registration is not designed to handle local variations.

Recently, machine learning approaches have gained growing interest in segmenting 

abnormal organs due to their strong abilities to exploit intensity, shape, and anatomy 

information. These approaches mostly focus on extracting suitable features (shape and/or 

texture) for a pre-defined classifier such as support vector machines, random forests, neural 

networks etc. Extracted features vary depending on the imaging modality and the body 

region. A number of feature sets for classification of lung pathologies have been proposed: 

3D adaptive multiple feature method (AMFM) [24], texton-based approach [25], intensity-

based features [26], gray level co-occurrence matrix (GLCM) [27], wavelet and Gabor 

transform [28], shape and context-based attributes [29], [30], local binary patterns (LBP) 

[31], and histogram of gradients (HOG) [29]. The most challenging aspect of these 

approaches is the selection of feature set appropriate for the task at hand, which is still an 

active area of research, however.
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B. Our contributions

In this paper, we present a novel approach that, to the best of our knowledge, is the first fully 

automated pathological lung segmentation method spanning almost the entire spectrum of 

commonly encountered pathologies in pulmonary CT scans. Moreover, the study has been 

performed on the largest data set (> 400 CT scans) so far reported in the literature from 

diverse sources that contain different amounts and types of abnormalities. We developed a 

rough but intelligent pathology recognition system that automatically switches into the 

refinement step of the proposed framework when certain type of dense abnormalities are 

identified. Not only this switching system between the two stages of the proposed 

framework decreases the computational time, but it also allows users to be aware of the 

context of the pathologies in a similar fashion to most CAD (computer-aided detection) 

systems. The performance of our generic pathological lung segmentation (PLS) method was 

evaluated through: (i) submission to lung segmentation challenge for evaluation against the 

current state-of-the-art approaches on an unbiased platform, where the results were provided 

by organizers; and (ii) surrogate truths obtained by expert observers’ manual segmentations. 

The performance analysis was further divided into 4 categories: normal controls (no 

pathologies), minimum, medium, and large amount of pathologies. Note that all image sets 

were divided into subgroups based on the severity of cases, read and evaluated by 

participating expert radiologists prior to computer-based evaluation. We evaluated the 

accuracy of the algorithm separately for each category to demonstrate the robustness of the 

proposed system.

The remainder of manuscript describes and discusses the details of the PLS method and its 

performance. Section II gives a glossary of the abnormalities present in pulmonary CT scans 

and explains basic principles of the FC image segmentation algorithm. Section III introduces 

different modules of the proposed PLS technique. The results are presented in Section IV. 

Section V discusses performance aspects and future directions followed by a conclusion in 

Section VI.

II. Background

A. Fuzzy connectedness image segmentation

FC defines the “hanging togetherness” between any two voxels p and q within an image 

[32]. A binary adjacency relationship (µα) determines adjacent voxels in α-adjacency. Then, 

a path π between p and q can be identified as a sequence of adjacent voxels π = 〈p0 = p, p1, 

…, pl = q〉. For any two adjacent voxels pi and pi+1, their local hanging togetherness is 

defined using an affinity function µk (pi, pi+1). The greater the affinity is, the more closely 

related the two voxels are. Then, for an arbitrary path π, the strength of the path is defined as 

the minimum affinity along the path:

(1)

If  (p,q) is the set of all possible paths between p and q, then FC between them is the 

strength of the strongest path:
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(2)

The affinity function for two adjacent voxels under µα is the essential part of FC 

computation. Commonly, it consists of three components: distance-based affinity µd, 

homogeneity-based affinity (µψ), and object-based affinity (µϕ) as:

(3)

A wide range of mathematical functions can be used for affinities [33], [34]. Here, we use 

Euclidean distance for µd, and adopt the following form of µψ and µϕ:

(4)

and

(5)

where σψ and σϕ control the variation, and m controls the expected mean intensity of the 

target object.

FC segmentation is obtained by generating a fuzzy object 𝓞 with regard to a set of seed 

points s ∈ 𝓢 The fuzzy object membership value at a voxel p is determined by the maximum 

FC value to all seed points as:

(6)

The final object is obtained by thresholding over the fuzzy object 𝓞 for strength of 

connectedness.

B. Glossary of abnormal CT imaging patterns in pulmonary diseases

Visual patterns associated with abnormal lung anatomy in CT images carry valuable 

information for improving diagnostic confidence and consistency [35]. Commonly observed 

abnormal imaging patterns associated with lung diseases can be analyzed based on shape, 

texture, and attenuation information derived from CT images. The presence of more than 

one type of abnormality in the same region of interest can cause difficulty in understanding 

and quantifying the nature and extent of the disease. To enlist the common imaging patterns 

pertaining to different lung diseases, Table I provides a glossary of those patterns with short 
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descriptions. Readers are encouraged to refer to [36] for further details from a clinical 

perspective.

III. Methods

The PLS method consists of two primary stages: (i) the initial FC segmentation step for 

normal lung parenchyma, and (ii) the refinement stage triggered by automatic pathology 

identification.

A. Seed selection and FC segmentation

Fig. 2 summarizes the initial lung segmentation process using FC. For this process, FC 

requires two seed points: sl, sr, located within the left and right lungs, respectively. In our 

design, we automatically set seed locations through a pre-processing step, we then sampled a 

set of seeds from the regions obtained after strict thresholding. That is, for any given CT 

image I, we use a thresholding operation  using CT attenuation values for normal lung 

parenchyma (Hounsfield Units (HU): −700 through −400, mean ≈ −550 HU). Thus, I  = 

{I}− 550HU. Finally, we set the seed locations sl and sr after randomly sampling a few seed 

candidates, i.e., 3×3×3 seed window (not the physical size), for each lung from I𝓢 and select 

the voxels with minimum HU value as seeds:

(7)

where 𝓛 denotes the location of the voxel(s), and . Fig. 3 demonstrates the 

approximate lung regions where we sample candidate seeds. Note that we carry out seed 

sampling over the extracted normal lung parenchyma, not the original CT image.

Apart from seeds, FC algorithm also requires approximate mean m and the standard 

deviation σψ and σϕ of the lung region to be used in affinity functions. These values were 

empirically set to normal lung parenchyma as m = −550 HU, σψ = σϕ = 150 HU after 

analyzing hundreds of CT images. Once seeds and affinity parameters for FC are set, 

delineation is performed. The output of the FC segmentation is a binary mask of the lung 

fields containing both the external airways (trachea and bronchi) and the left/right lungs. The 

extent of how well the initial FC segmentation performs depends on the amount and the kind 

of abnormality present in the target image. Fig. 4 illustrates how the performance of FC may 

deteriorate with an increase in the extent of pathology. It should be noted that although FC is 

more robust than region growing, graph-cut, and other region-based segmentation methods 

[37], further refinement is often inevitable for cases with dense pathologies.

B. Pathology presence test

The goal of the pathology presence test was to check the quality of initial segmentation and 

to determine whether any pathological areas were present in the target lung that need to be 

further included in the final lung volumes. The test consisted of two constraints: (i) the 

smoothness of the boundary pertaining to the initially segmented lung volume, and (ii) the 

difference between segmented and lung volumes estimated from rib cage information. Since 
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the rib cage tightly bounds the lung field inside the body region, it can give an approximate 

value for expected lung volume. In other words, we used the pathology presence test to 

understand if the mild or severe amount of pathology present in the scan so then advanced 

machine learning methods can be used for voxel-based classification as a further step. It is 

important to note here that there is no “explicit” volume or spatial information involved in 

this test. Once this pathology recognition system reveals that the advanced machine-learning 

is necessary, then the next stage of our proposed framework is conducted. The details of 

those two constraints are explained in the following.

(i) Smoothness test—This test is based on the observation that the area per slice of a 

normal lung has a smooth transition along the z-axis; whereas in scans with moderate/dense 

abnormalities the 2D areas change abruptly due to the fact that abnormal imaging areas are 

not captured by the conventional segmentation algorithms. Since segmented lung areas may 

change irregularly between slices with the presence of abnormalities, we can track the 

abnormal changes in the lung surfaces by conducting a smoothness test. Let A(i) denotes the 

lung area on a given axial slice i, then the change in segmented area in the direction 

orthogonal to the slice plane can be monitored by C(i) = A(i+1) − A(i), for i = 1 … N − 1.

To quantify how segmented regions change when minimal or no pathology exists in the CT 

images, we selected a set of M control images , and calculated the 

maximal variation for each control image: , where VAR indicates 

variation. Note that the control images were lung scans of healthy subjects containing 

minimal or no abnormalities. Based on the smoothness assumption, any abrupt change in the 

segmented area C(i) > K indicated the presence of a potential abnormality which triggers the 

refinement stage. As an example, Fig. 5 shows a general trend in the area per slice along the 

axial plane for a normal lung scan, compared with the area per slice of a scan with moderate 

amount of pathology. As can be seen, abrupt change in the 2-D areas of lung regions may 

help detecting presence of mild/severe amount of pathology.

(ii) Volume difference test—Estimated lung volume is used as an additional constraint 

for the existence of pathology. The volume of the lung is estimated based on a regression 

analysis that was performed on training scans without abnormalities. First, the approximate 

ribcage volume for the training data was estimated by fitting a 2D convex hull on the 

ribcage. Second, a linear regression analysis was performed. Based on this regressed lung 

volume information from the ribcage volume, one may easily conduct a volume difference 

test using the estimated lung volume from the initial segmented lung volume determined by 

the FC.

A number of approaches in the literature have used ribcage information to estimate the 

location of lung parenchyma [38]–[42]). We used a convex-hull that fit around the rib cage 

for a rough lung volume estimation. As observed from Fig. 6, the rib cage can be used as an 

anchor to estimate enclosed volume that is closely associated with lung volume when no or 

minor pathology exists.
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Fitting a convex-hull to the rib cage structures requires the rib bony structures to be 

extracted. Since bone has relatively high contrast compared to surrounding tissues, 

thresholding allows identification of bonee structures. We chose the commonly used 

thresholding parameter of 300 HU for including all bone structures. Thresholding was 

followed by a connected component analysis in order to retain the largest component and 

remove noise. Although this process provided rib cage, some of the other bone structures 

including sternum and spine may also be often included. However, the scapula should not be 

included in our convex-hull fitting around the rib cage because scapula will falsely increase 

the estimated volume (Fig. 7). In order to remove the scapula, we used shape information of 

the bones – ribs have a tubular geometry while scapula is plate-like. Based on this 

distinguishing information, we utilized Hessian analysis to extract shape features. As shown 

in [43], analyzing the second-order information (Hessian) of a Gaussian convolved image 

provides local information of the structure. Specifically, eigenvalue decomposition was 

performed over the Hessian matrix and the resulting ordered eigenvalues, i.e., (|λ1 ≤ |λ2 ≤ |

λ3|), were examined. For tubular structures, it was expected that λ1 was small and the other 

two were large and of equal sign; while for plate structures, it was expected that both λ1 and 

λ2 were small and λ3 was large. Explicitly, for a bright structure on a dark background, 

ribness can be formulated as

(8)

where RA = |λ2|/|λ3|,  and ; and plateness can be 

formulated as

(9)

where RB = |λ2|/|λ3|, and ;

The ribness and plateness measurements (V and P) above were calculated at different scales 

(σ) and the maximum response was achieved at a scale that matches the size of the structure. 

Therefore, by using a multi-scale approach which covers a range of structure widths and 

finding the maximum value V = max(Vσ), P = max(Pσ), σmin ≤ σ ≤ σmax, we enhanced the 

local tubular and plate structures.

Let S denote the scapula to be excluded and S̄ denote the bones useful for lung volume 

estimation such that B = S ∪ S̄. S can be characterized by high P and low V responses, while 

S ̄ features high V and moderate P values. Therefore, thresholding was applied to extract 

candidate scapula voxels SdS ∈ S and rib voxels SdS̄ ∈ S̄. Since SdS and SdS̄ usually cover 

only part of the entire rib and scapula, these points were used as seed points to initiate a 

geodesic distance transform (GDT) within the initial bone segmentation B using a fast-
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marching algorithm [44]. The final step was to detach the scapula S from whole bone 

segmentation B based on the distance map, all voxels satisfying GDT(SdS) > GDT(SdS̄) 

were excluded from convex-hull generation.

Once the rib cage was segmented, a 2D convex-hull was fitted over the rib cage along the 

axial axis to estimate the lung volume. Let S̄(i) denote the set of all candidate voxels on slice 

i and hull(i) denote its convex-hull. From a boundary perspective, hull(i) can be regarded as 

the inside of the polygon formed by deforming a contour, which initially encloses S̄(i), so 

that the deformation simulates that of a rubber band contraction until it becomes taut by the 

outermost anchor points (Fig. 7). That is, hull(i) consists of all possible linear combinations 

of pj ∈ S̄(i) as

(10)

for all possible linear combination weighting scheme αj such that ∀j, αj ≥ 0 and .

After rib cage segmentation and convex-hull fitting, the volume enclosing the convex-hull 

was estimated. In the refinement step, when indicated by the pathology presence test, the 

PLS method used the random forest classification algorithm at the voxel level. Furthermore, 

the method has additional modules for segmenting cavities and pleural diseases due to their 

unique appearances. In the following subsections, we describe the refinement process of the 

PLS method with its specific modules: FC based cavity segmentation, random forest-based 

pathology identification, and neighboring anatomy guided pleural effusion detection.

It is important to mention here that the parameters in both the smoothness test and volume 
difference test are chosen to minimize the type-II error, i.e. the probability of rejecting to 

proceed to the refinement stage when the target scan needs one at the expense of the type-I 

error.

C. Cavity detection and segmentation

Cavities occur in multiple lung diseases and are a primary marker of tuberculosis (TB) 

infection [45], [46]. Severe cavities and blebs have a high contrast boundary separating them 

from the surrounding lung parenchyma (for a reference see Table I) and are therefore usually 

not captured within the initial FC segmentation phase. A separate mechanism has been put 

in place in the PLS method to ensure that the cavities are detected and included in the final 

segmentation. Fig. 8 provides an overview of the automatic cavity segmentation technique 

used in the PLS method. Briefly, we automatically search the candidate cavity regions by 

applying thresholding operation with strict HU level (< −990 HU) denoting gas-filled 

regions within the lung parenchyma. Our search was confine to the regions enclosed by 

convex-hull thus eliminating gas-filled regions. Next, amongst all the regions detected as 

cavities within the convex-hull, we select the voxels that had minimum HU values as seeds 
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with which we initiated the FC segmentation. Fig. 9 shows a detected cavity region in (a), its 

FC segmentation in (b), and 3-D surface rendering in (c).

D. Pathology detection via random forest classification

Following cavity detection, the pathology presence test was repeated. If the resulting 

smoothness and volume difference tests still indicated the existence of pathologies, the 

random forest classification of lung tissues at the voxel level was conducted. With voxel-

wise classification, it is possible to determine different abnormal imaging patterns within the 

lungs. Fig. 10 illustrates the second module of the PLS method in which we recognize the 

general abnormal imaging patterns pertaining to the lung diseases other than pleural and 

cavity patterns.

Although machine learning classification methods are very useful for detecting pathology, it 

is not trivial to extract discriminative feature sets to drive the detection process. Moreover, 

assessing every voxel’s class dependency may be computationally expensive. To address 

these two challenges, we integrated rib cage extraction and convex-hull fitting processes into 

the random forest classification algorithm in order to restrict the search space to rib cage 

area only. For random forest voxel classification of lung tissues, we employ feature sets 

commonly used in various lung CAD systems: gray-level run length matrix (GLRLM), gray-
level co-occurrence matrix (GLCM), and histogram features. Justification of the use of 

GLCM, GLRLM, and histogram features is based on the visual analysis of CT lung 

pathologies [47]. Various studies have shown that texture, intensity, and gradient are the key 

discriminative features for automatically detecting abnormal imaging patterns. Thus we 

designed a patch-wise feature set encompassing texture, intensity, and gradient for our study.

Briefly, GLCM and GLRLM were calculated using 4-orientations (0°, 45°, 90°, 135°), and 

for 8,16,32,64,128 bins [48]. For every voxel within the search region, we extract the 

features considering a patch (i.e., ROI) around that voxel with 7×7×7 neighborhood. The 

complete list of 24 distinct features is shown in Table II

Since, our aim in this study was to segment pathological lungs, we considered all 

pathological regions as a single label (i.e., Tp) rather than sub-categorization of the 

abnormality types such as consolidation, GGO, etc. Assuming FC segmented the normal 

lung parenchyma in the initial delineation (ℛnlp), and cavities and pleural effusion regions 

are indicated by ℛcavities and ℛpe (segmentation of pleural effusion regions is discussed in 

the next section), respectively, then the pathological regions ℛrf which require voxel 

classification via random forest method can be defined as ℛrf = ℛhull \ (ℛcavities ∪ ℛpe ∪ 
ℛnlp). All the voxels belonging to ℛrf were classified into two classes: pathological (Tp) or 

non-pathological (Tn) regions. In particular, neighboring structures of the lung were 

considered as non-lung and/or non-pathological structures and labeled as Tn.

Any machine learning algorithm with the ability to separate normal lung parenchyma and 

neighboring anatomical structures from known abnormal imaging patterns of lung disease 

can be used in the refinement process. However, random forest has been shown to be 

powerful for this kind of classification tasks due to its high accuracy, efficiency, and 

robustness. In training a random forest classifier, two experienced observers annotated 
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various pathology patterns from randomly selected CT scans (21 CT scans from different 

subjects). A total of 997 non-overlapping ROIs were extracted from those annotations such 

that 507 observations belong to Tp while 490 observations belong to Tn. A random forest 

classification model was constructed using those observations with the corresponding labels. 

Table III summarizes the set of parameters used for feature extraction and random forest 

classifier training.

E. Neighboring anatomy-guided pleural effusion detection

The final module of the proposed PLS method was the detection of pleural abnormalities. 

Pleural effusion is an accumulation of fluid in the pleural cavity. Similar to cavity formation, 

we considered the existence of pleural effusions as a separate detection problem due to its 

unique challenges. For example, pleural fluids usually has similar textural and intensity 

properties with the surrounding soft tissues (see Fig. 11 for pleural effusion and plaque 

examples). Recent studies [49], [50] on the discriminative role of CT intensity values in 

characterizing the pleural fluid concluded that the CT numbers of pleural effusions do not 

hold enough discriminative information to accurately detect/delineate pleural effusions. 

Existing attempts such as [51] do not solve the lung segmentation problem because, 

detection of the pleural effusion using the existing methods paradoxically requires a 

complete lung segmentation prior to its detection. In contrast, we would like to detect pleural 

effusion as a part of pathological lung segmentation.

To address the challenge of pleural fluid detection, we used neighboring anatomy 

information of the pleural region as a stable marker for lung boundary. For neighboring 

anatomy, ribs, heart, and liver can also be used as potential markers. Hence, we extracted the 

feature sets from the anatomical location of these organs and their relative positioning 

information. Note that the heart, liver, and other neighboring structures are not segmented 

but rather considered as a single unit. Their relative spatial location in normal (healthy) 

scans were annotated by participating expert observers using the ROIs in the training step. in 

contrast to the pathology classification module, the feature set here consists of the relative 

position of the neighboring organs in ℝ3 rather than the textural features.

In other words, for neighboring anatomy-guided classification to detect pleural regions, we 

use normalized spatial coordinates as feature set. Normalized spatial coordinates in our 

method were obtained by dividing the spatial coordinates by the estimated total rib cage 

volume, the latter obtained by using the convex-hull method. The random-forest algorithm 

was used to classify the target region ℛp̂e = ℛhull \ (ℛcavities ∪ ℛrf ∪ ℛnlp)) into two 

classes: pleura (Tpe and neighboring-anatomy (Tna)). In training the classifier, two expert 

observers annotated lung-field and neighboring organs from randomly selected CT scans (27 

CT scans from different data sets) and a random-forest classifier was constructed using the 

training data with the corresponding labels. Based solely on the knowledge of anatomical 

location, the method divides the region ℛp̂e into Tpe and Tna. The proposed framework for 

detecting pleural effusion is summarized in Fig. 12.
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F. Automatic trachea extraction

Since the trachea is contiguous with the lung, it is also included in the lung segmentation 

procedure. However, trachea and airways are typically evaluated separately from the lung 

parenchyma routinely in clinical practice. Hence, it is of interest to remove the trachea from 

the segmented lungs. This procedure can be performed simultaneously with lung 

segmentation, or as an alternative final step once the segmentation has been conducted. In 

our study, instead of increasing the complexity of lung segmentation, we preferred to keep 

trachea removal as an optional tool for users at the end of the final lung segmentation. To 

remove the trachea, we first used 2D Hough transform along the axial plane to detect the 

tracheal region (i.e., a circular region in the top slices of the CT scan) followed by 

conventional FC segmentation that accepts the voxels inside the circular region as initial 

seed points. Meanwhile, the orientation information for identifying the seed point location 

was extracted from the DICOM header, followed by a smoothing filter and 2-D Hough 

transform. Once, the seeding was done, we used FC to finalize trachea segmentation. Next, 

we started estimating trachea volume from the first axial slice that we found the trachea 

region with the Hough transform. Expected maximum capacity of trachea (i.e., < 30 cm3) 

[52] and the rate of change of the volume were used to determine the stopping criteria for 

trachea inclusion/exclusion in the final segmentation. Note that main bronchi were not 

removed due to the capacity constraint feature of the trachea removal tool. Fig. 13 illustrates 

example slices where the removed trachea was shown in red. A block diagram explaining 

the proposed automatic trachea extraction method is provided in Fig. 14 and the 

corresponding pseudo-code is given in Algorithm 1.

Algorithm 1

Automatic trachea extraction algorithm

Require:  MinRadius, MaxRadius. {  = Empirically determined thresh-old on the rate of change of volume per 
unit step. MinRadius/ MaxRa dius = Empirically determined minimum/maximum expected radius of the trachea 
region along the axial axis.}

1: for i = 1 to # of slices along axial plane do

2:   circles=HoughTranform(slice(i))

3:   for j = 1 to # of circles do

4:     if radius(circles(j))>MinRadius and radius(circles(j))<MaxRadius then

5:       TracheaRegion = circles(j)

6:       BREAK

7:     end if

8:   end for

9: end for

10: FCMap = DoFC(TracheaRegion)

11: τ=max(FCMap)

12: repeat

13:   TracheaSeg=Threshold(FCMap, τ)

14:   if Volume(TracheaSeg)> 30cm3 or (Volume(TracheaSeg)-Volume(PrevTracheaSeg))>  then

15:     return PrevTracheaSeg

16:   else
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17:     PrevTracheaSeg = TracheaSeg

18:     τ––

19:   end if

20: until τ > 0

G. Left/right lung separation

Lung separation was performed using a hysteresis approach which utilizes prior information 

from original lung segmentation as well as the background gaps [53]. First, Hessian-filtered 

original segmentation was bifurcated by subtracting gaps between potential left and right 

lungs. Second, a 2D separation manifold in 3D image space was estimated based on the 

information from the distance transform. Finally, the separation manifold was projected back 

to the origin space where segmented object was relabeled as left and right lungs. Fig. 15 

illustrates this operation step by step.

IV. Experimental Results

A. Data and reference standards

To evaluate the performance of our PLS method, we used both publicly available and in-

house acquired data sets. All in-house images were acquired at our institute using 64-

detector row Phillips Brilliance 64 or GE Medical Systems Light Speed Ultra. Scans were 

performed at end-inspiration with 1.0 or 2.0 collimation and obtained at 10 or 20 mm 

intervals from the base of the neck to upper abdomen. After obtaining Institutional Review 

Board (IRB) approval, retrospective cases of human para-influenza (HPIV), necrotic 

tuberculosis (NTB), diffuse alveolar hemorrhage (DAH), influenza A (H1N1) were collected 

from May 2005 through September 2012. Table IV summarizes the data sets used in our 

study.

When biopsy images are not available, manual segmentation by experts is often accepted as 

the gold standard. For segmentation evaluation of in-house CT data, reference standards 

were provided by two experienced observers through manual segmentation. The left and 

right lungs were labeled separately in order to evaluate each lung individually. Dice 

similarity coefficient (DSC) [54], Hausdorff distance (HD) [54], specificity, and sensitivity 

evaluation metrics were used for quantitative analysis. Table V summarizes the quantitative 

evaluation of all 8 data sets segmented with the PLS algorithm. An average overlap score of 

more than 95% was obtained in our analysis of over 400 CT scans.

For qualitative evaluation, Fig. 16 indicates the initial FC segmentation of the lungs (shown 

in red) with various pathologies, and our proposed method (shown in green). Results 

obtained for different abnormal imaging patterns consistently indicate the superior 

performance of the PLS method. For a clinical reference, a summary of how various 

pathologies are handled inside our proposed framework is provided in Table VI. The table 

clearly demonstrates the effectiveness of the proposed technique in dealing with most 

commonly encountered pathologies.
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B. Statistical comparison and inter- and intra-observer agreements

Compared to the initial FC segmentation, we observed significant improvement in the 

overlap score with the PLS method when applied to the HPIV data set which contained the 

widest range of abnormalities compared with other data sets. The statistically significant (p 
= 0.018) improvement with the use of the PLS method was observed in the data set (see Fig. 

17).

To quantify the inter- and intra-observer agreements, we compared the DSC values of the 

manually delineated CT scans. Fig. 18 shows the box-plots for intra-observer (a) and inter-

observer (b) agreements. For intra-observer agreements, both observers were asked to repeat 

the manual segmentation of randomly chosen CT scans after a week of initial delineation, 

and segmentation variations were computed through DSC values. These results demonstrate 

that the difference between the overlap scores obtained using the PLS method compared to 

the manual segmentation are not statistically significant and, large intra- and inter-observer 

differences increase in the presence of heavy abnormalities. Automatic delineation methods 

such as the PLS method can be very useful in obtaining precise results in such cases.

C. Comparison to the state-of-the-art methods

To analyze the effectiveness of the PLS method and for an independent evaluation and direct 

comparison of the proposed PLS method with other state-of-the-art techniques, we tested 

our algorithm using the publicly available LObe and Lung Analysis 2011 (LOLA11) 

Challenge data set http://lola11.com/. Submitted results were evaluated against a reference 

standard using overlap measures by the organizers and published online. The results were 

reported in terms of minimum, mean, median, and maximum overlap over the 55 scans for 

left and right lung separately. The final score was the mean over all scans. The evaluation 

provided for our algorithm was reproduced in Table VII. For comparison purpose, scores of 

other algorithms that joined the segmentation challenge are presented in Table VIII with a 

short description of each method. Further details of the methods can be found on the 

challenge website.

Since the medical imaging community lacks consensus on whether pleural fluid should be 

considered as a part of lung field or not, we segmented the LOLA data set including pleural 

field as a part of lung (Table VII (a), a score of 0.968 was obtained) and excluding the 

pleural field as an additional experiment in which we obtained a score of 0.955. Although 

not all segmentations evaluations were available on LOLA11’s website, a few available 

screenshots revealed that there were some inconsistency in creating ground truth by the 

organizers and this may eventually affect the ranking of the methods. For instance, 

screenshots of the LOLA image #37 from the website was reproduced in Fig. 19. The figure 

shows a reference ground truth and our method’s segmentation such that the areas marked 

by circle are falsely included in the wrong lung (i.e., left lung were falsely labeled as right 

lung) while the same region was correctly labeled with our algorithm (b). Fig. 19(c), (d), and 

(e) indicated the incorrect label assignment of LOLA data set, as also confirmed by our 

participant radiologists. As a result, computed overlap measures for this particular CT scan 

was lower than what we expected because of the false calculation of the overlap measure.
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D. Evaluation of the pathology presence test

Regarding the successful detection rate for minimal, mild, and severe cases, we first divided 

the whole data sets into three different groups by expert scores: none/minimal (# of 

scans=53), mild (# of scans=268), and severe (# of scans=87). In all severe cases, our 

pathology recognition system decides to switch into the machine learning classification 

phase (i.e. 100% detection rate). In evaluation of 268 mild cases, our algorithm only missed 

4 scans to be evaluated in the machine learning phase; therefore, a successful detection rate 

of 98% was observed. Among 53 cases with none/minimal pathology, our algorithm has 

chosen 12 scans to be analyzed in the machine learning step, although the next step was not 

necessary. This additional selection was due to the fact that we tuned our pathology 

recognition system to have a tendency to switch into machine learning step when estimated 

volume and initial lung volume difference lies in the decision border. Note that with the 

expense of type II error only contributes to an increase in the computational cost (i.e., 

inclusion of machine learning step for cases which do not really need this step), we reduced 

the type I error considerably. It should be also emphasized that some inconsistencies in 

machine learning classification phase might occur when CT images are low resolution or 

poor quality and as a result of this, extracted texture features can be less effective in finding 

the correct class labels for the voxels. In such cases, our complementary third step (i.e., 

neighboring anatomy guided refinement) diminishes inconsistencies.

E. Computational efficiency

A switch named pathology-presence test has been put in place to assess if the target scan 

requires further refinement. One of the primary purposes of the switch is to make the 

segmentation platform computationally efficient by avoiding unnecessary steps. Therefore, 

the amount of time required to segment a particular scan depends largely on the amount of 

abnormality present inside the scan as well as the size the scan. For our workstation (Intel(R) 

Xeon(R) 3.10 GHz, 128 GB ram), the amount of time ranges from less than a minute 

(512×512×71 normal scan) to 15 minutes on average (512× 512 × 792, severe parenchymal 

pathology and the presence of pleural pathology). A recent study to explore the use of 

supervoxel based near optimal key-point sampling to further reduce the computational cost 

of the PLS method is presented in [?].

V. Discussion

For CAD applications such as detection, classification, and quantification, accurate lung 

segmentation is an extremely important pre-processing step. Conventional techniques in 

lung segmentation rely only on contrast differences between the lung field and the 

surrounding tissues thus failing to segment areas with pathologies. Notably, lung scans 

containing significant amount of pathologies and other abnormalities are much more 

prevalent in daily clinical environment than ones without pathologies. Therefore, expert 

manual segmentation is still considered to be the most reliable option for pathological lungs. 

Additionally, with improvement in quality and affordability, the use of non-invasive imaging 

methods will become more common in routine clinical practice, generating a significant 

amount of data will be impractical to evaluate manually.
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Our pathological lung segmentation technique has been tested on over 400 CT scans, 

completed on more than 280 patients with a variety of comorbidities and demographic 

backgrounds (Table IV). By testing on versatile data, we made our best effort to cover the 

most prevalent cases in the routine clinical environment. We also believe that due to the fully 

automated nature of our technique, additional pre-/post-processing steps may be necessary 

for certain scan types. For instance, noise induced variabilities needs to be investigated 

further and rare cases of extreme noise may demand that denoising steps be performed prior 

to delineation.

Since our proposed technique assumes certain characteristic structure to the ribs for volume 

estimation and seed selection, patients without fully developed bones such as in children and 

patients with an abnormal or fractured rib cage may require some parameter adjustments in 

the proposed method’s pipeline. Issues such as these will be examined in our future work.

The PLS has other limitations and there are cases where different modules of the proposed 

system may fail. For instance, excessive noise, external objects, and very rare clinical cases 

may cause the PLS to perform poorly. Some of failures cases are described and illustrated 

below.

Excessive noise

The PLS does not have a denoising mechanism built into it. Although our method is robust 

to a vast range of streaking and noise artifacts, excessive ranges of these artifacts may affect 

the performance of our method. Nevertheless, one may readily pre-process images prior to 

delineation step with the PLS.

External objects

External objects such as tubes and medical implants may effect the performance of the 

method as illustrated in Fig. 20 (breast implants), and Fig. 21 (tube).

Rare clinical cases

Subcutaneous emphysema occurs when gas or air is present in the subcutaneous layer of the 

skin (Fig. 22). The rare cases of CT scan with subcutaneous emphysema may result in the 

leakage of segmentation by the initial FC stage to air pockets within the subcutaneous layer.

In this article, we are not developing new feature sets or novel machine learning algorithms. 

Instead, we are developing and testing the complete pathological lung segmentation system 

on a large variety of cases with novel infrastructure. Nevertheless, our system can be further 

strengthened with more powerful machine learning classifiers and/or more discriminating 

higher order textural features. In its current form, the PLS is a promising tool to be used in 

routine clinics for pathological lung volume assessment as well as pathology recognition.

VI. Conclusion

We present a novel method for fully automated lung segmentation with and without 

abnormalities. To the best of our knowledge, the proposed method is the first fully 

automated-generic technique covering a wide range of pathologies and pleura without any 
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human assistance. The core of our method is the FC initial segmentation. Our method is 

equipped with multiple refinement stages including machine-learning classification to 

handle pathologies; further, a novel neighboring anatomy-guided learning mechanism to 

handle extreme cases such as pleural effusion was introduced. The robustness and the 

effectiveness of our proposed method was tested on more than 400 lung scans acquired 

through various sources containing a wide range of abnormalities. The results obtained using 

the proposed method are tested in the most rigorous way possible, obtaining the overlap 

score of greater than 95%. The exhaustive testing confirm the accuracy and the effectiveness 

of the presented method.
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Fig. 1. 
Different imaging patterns in pulmonary CT are shown: (a) normal lung (b) ground-glass 

opacity (GGO) (c) consolidation (d) cavity (e) tree-in-bud and micro nodules (f) nodules (g) 

pleural effusion (h) honeycomb.
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Fig. 2. 
Flowchart explaining the initial segmentation using FC.
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Fig. 3. 
Automatic seed selection for initial FC segmentation based on voxel intensity and 

geometrical knowledge, i.e., the rib cage.
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Fig. 4. 
Images with different pathologies along with overlaid with the respective initial FC 

segmentation.
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Fig. 5. 
The plot shows the change in the normalized 2D segmented area (per slice) along the axial 

planes.
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Fig. 6. 
The rib cage (blue) is separated (middle) from the adjacent bones (red) (left) for volume 

estimation. Lung fields are enclosed by rib cage (right).
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Fig. 7. 
2D convex-hull (shown in blue) fitting in axial plane for pathology presence test of the 

segmentation.
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Fig. 8. 
A flow diagram explaining the automatic cavity segmentation process.
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Fig. 9. 
Detected cavity (a), its FC segmentation (b), and surface rendition (c) are given.
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Fig. 10. 
Schematic diagram showing texture classification-based refinement, highlighting both 

predictive model learning for RF and the pathology classification in the target image based 

on the learned predictive model.
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Fig. 11. 
Examples showing different cases highlighting the lung scans with pleural effusion (a–b) 

and the pleural plaque (c).
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Fig. 12. 
Flow chart explaining the neighboring anatomy-guided segmentation for difficult cases.

Mansoor et al. Page 32

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
An example for automatic trachea extraction (left) and trachea removal (b) is shown.
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Fig. 14. 
A flow diagram explaining the proposed automatic trachea segmentation method.
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Fig. 15. 
Flow diagram explaining the hysteresis lung separation approach. (A) Original CT with 

binary lung segmentation, (B) Hessian analysis enhancing bright plate-like structures, (C) 

enhanced plate structure, (D) point groups from separated left and right lung regions by 

subtracting the dilated plate structures from original segmentation, (E–F) distance transform 

from the two point groups, (G) 2D separation manifold determined by distance transform, 

and (H) final separation result
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Fig. 16. 
Example axial slices of segmentation results on HRCT lung scans with different pathologies. 

Red segmentation shows the results using the FC while the corresponding green 
segmentation shows results using our proposed method.
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Fig. 17. 
DSC of the segmentation evaluation of HPIV data set through (a) initial FC segmentation, 

and (b) the proposed PLS method.
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Fig. 18. 
Box-plots of dice coefficients for intra-observer (a) and inter-observer (b) agreement are 

demonstrated.

Mansoor et al. Page 38

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 19. 
Reference segmentation from the LOLA challenge (a) and segmentation using our proposed 

method (b) is shown along with the coronal (c), axial (d), and sagittal (e) plane views of the 

segmented image (lola11-37). The part of right lung mistakenly included in the left in 

reference segmentation by LOLA is marked in coronal, axial, and sagittal planes.
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Fig. 20. 
Artificial objects such as breast implants may affect the accurate ribcage extraction and 

manual interaction can be necessary for correcting the failure of pathology presence test.
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Fig. 21. 
Air and fluid-containing tubes and other cavity-like artificial objects such as the one shown 

may affect the performance of the PLS system.
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Fig. 22. 
An abdominal CT scan of a patient with subcutaneous emphysema (shown by an arrow).
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TABLE I

Glossary of common abnormalities in pulmonary CT scans.

Lung disease Notes

Bronchocele A Y- or V-shaped branching structure. For bronchial atresia, the surrounding lung parenchyma may be of 
decreased CT attenuation.

Crazy-paving pattern Thickened intralobular lines superimposed on ground-glass opacity.

Consolidation Homogenous increase in attenuation in lung parenchyma, obscuring the margins of airways and walls.

Ground-glass opacity (GGO) Hazy lung opacity. Margins of vessels may be indistinct. GGO is less opaque than consolidation.

Halo-sign GGO surrounding a nodule or a mass.

Honeycomb Closely approximated textured ring shadows that resemble honeycomb.

Micronodules Discrete small, round focal opacity. The term is often limited to nodules with less than 3 mm in diameter.

Mycetoma Sponge-like pattern and a foci of calcification.

Beaded septum Irregular and nodular thickening of inter-lobular septa that appears like a row of beads.

Perilymplatic distribution Abnormalities along or adjacent to lymphatic vessels in the lung.

Bleb Small air-containing space within the visceral pleura (not larger than 1 cm in diameter).

Bulla Visceral pleura (not less than 1 cm in diameter).

Cavity Air-filled space within pulmonary consolidation, mass, or nodule.

Pulmonary infarction Triangular or dome-shaped with base containing pleura and apex directed toward hilum.

Pleural plaque Areas of pleural thickening often with calcification.

Pleural effusion Excess of fluid that accumulates between the two pleural layers.
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TABLE II

Extracted features for voxel-wise classification of lung tissues.

GLCM

Energy (f1)

Entropy (f2)

Correlation (f3)

Inverse Difference Moment (IDM) (f4)

Inertia (f5)

Cluster Shade (CS) (f6)

Cluster Prominence (CP) (f7)

GLRL

Short Run Emphasis (SRE) (f8)

Long Run Emphasis (LRE) (f9)

Gray-Level Non-uniformity (GLN) (f10)

Run Length Non-uniformity (RLN) (f11)

Run Percentage (RP) (f12)

Low Gray-Level Run Emphasis (LGRE) (f13)

High Gray-Level Run Emphasis (HGRE) (f14)

Short Run Low Gray-Level Emphasis (SRLGE) (f15)

Short Run High Gray-Level Emphasis (SRHGE) (f16)

Long Run Low Gray-Level Emphasis (LRLGE) (f17)

Long Run High Gray-Level Emphasis (LRHGE) (f18)

Hist
Mean (f19) Variance (f20) Skewness (f21)

Kurtosis (f22) Min. (f23) Max. (f24)
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TABLE III

Parameter settings for random forest classification method in pathology detection.

GLCM

# of bins per axis = 16

# of directions = 4

Offset = 2

Pixel intensity dynamic range = 16 bits

Rnd. fst
# of trees in a forest = 70

% of training set used to build individual trees = 0.6

GLRLM
# of directions = 4

# of levels = 8

Misc.
ROI dynamic-range = 16-bits

ROI window = 7 × 7
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TABLE VI

Summary of the pathologies (along with normal lung parenchyma) segmented by different modules of the 

algorithm.

FC (initial)

Beaded Septum

Varicose Bronchietiss

Bronchocele

Interstitial Emphysema

Perilymplatic Distribution

Micronodules

Tree-in-bud (TIB)

FC (cavity)

Bleb

Bulla

Cavity

Cyst

Texture classification

Interstitial pneumonia

Air-filled bronchietasis

Pulmonary fibrosis

Consolidation

Centrilobular emphysema

Crazy paving pattern

Ground glass opacity (GGO)

Honey combing

Halo sign

Mycetoma

Reverse Halo

Ngbr-guided

Infarction

Pleural effusion

Pleural plaque
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TABLE VIII

LOLA11 Segmentation Challenge results with a short description of the submitted methods.

Team Name Score Summary Further Reading

Fraunhofer ME VIS 0.973 Region-based segmentation initiated by automatically detected seed points 
followed by morphological closing

[55]

yacta 0.97 Segmentation of trachea-bronchial tree. Landmark determination in left and right 
lung. Threshold based region growing. Filling of holes in axial slices.

[56]

NIH 0.968 Fully automated PLS method with- out considering pleural fluid as part of lung 
field.

SmartPaint 0.969 Interactive segmentation [57]

UCLA Historic 0.963 Threshold-based 3D region growing followed by 6-neighborhood connected 
component analysis.

[2]

DIAG 0.962 Initial segmentation is performed using a conventional region growing and 
morphological smoothing. Next, automatic error detection (using shape analysis) 
is applied. The scans that are likely to contain errors are then segmented by a 
multi- atlas segmentation.

[58]

GE Research Niskayuna 
NY

0.952 Context Selective Decision Forests classification. [59]

MCVGL 0.949 Rib cage detection followed by a robust active shape model for rough 
segmentation of lung field, and optimal surface finding approach for final 
refinement.

[60]

Barcelona 0.949 Sequential classifiers using pixel appearance and multiscale analysis of 
neighbors class likelihood.

CREATIS CLB Lyon 0.948 Region-growing followed by morphological operations.
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