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Abstract

Discovered in the brains of multiple animal species, piRNAs may contribute to the pathogenesis of 

neuropsychiatric illnesses. The present study aimed to identify brain piRNAs across transcriptome 

that are associated with Alzheimer’s disease (AD). Prefrontal cortical tissues of six AD cases and 

six controls were examined for piRNA expression levels using an Arraystar HG19 piRNA array 

(containing 23,677 piRNAs) and genotyped for 17 genome-wide significant and replicated risk 

SNPs. We examined whether piRNAs are expressed differently between AD cases and controls 

and explored the potential regulatory effects of risk SNPs on piRNA expression levels. We 

identified a total of 9453 piRNAs in human brains, with 103 nominally (p<0.05) differentially (> 

1.5 fold) expressed in AD cases vs. controls and most of the 103 piRNAs nominally correlated 

with genome-wide significant risk SNPs. We conclude that piRNAs are abundant in human brains 

and may represent risk biomarkers of AD.
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Introduction

Alzheimer’s disease (AD) is a degenerative brain disorder, affecting millions of people 

worldwide. Genetic mechanisms underlying the development of AD have been widely 

explored, including the direct effects of protein-coding genes, e.g., APOE, and the indirect 

effects of the non-coding RNAs (ncRNAs), e.g., BACEAS (Zuo, et al., 2016a). The ncRNAs 

include long non-coding RNAs (LncRNAs) and small non-coding RNAs such as miRNAs, 

piwi-interacting RNAs (piRNAs), siRNAs, snoRNAs and rasiRNAs. In this study, we 

examined the potential association of piRNAs with AD.

piRNAs are the ncRNAs with 24–32 nucleotides (nt). They exhibit stark differences in 

length, expression pattern, abundance, and genomic organization from miRNAs (Mani and 

Juliano, 2013, Zuo, et al., 2016b). They interact with piwi proteins and function as a 

complex to regulate cellular activities by RNA silencing (Lau, et al., 2006). Most piRNAs 

are distributed in the mammalian germline cells. In recent studies piRNAs have also been 

discovered in the brains of multiple species (Iyengar, et al., 2014, Lee, et al., 2011, Perrat, et 

al., 2013, Rajasethupathy, et al., 2012, Ross, et al., 2014, Weick and Miska, 2014). The 

amount of piRNAs in the brain is about one-tenth of that in the germline (Dharap, et al., 

2011, Lee, et al., 2011, Peng and Lin, 2013, Yan, et al., 2011). There are hundreds of 

thousands piRNA sequences in each species; however, because piRNAs are poorly 

conserved even between closely related species (Mani and Juliano, 2013) and are tissue-

specific, their distributions in the human brains cannot be predicted from other species or 

other human tissues. The current study would be the first to investigate the presence of 

piRNAs in human brains and their potential roles in neurodegenerative diseases.

Numerous lines of evidence indicate that piRNAs carry important functional roles, including 

suppressing transposon (Mani and Juliano, 2013), preserving genomic integrity (Czech and 

Hannon, 2016, Stefani and Slack, 2008), remodeling euchromatin and epigenetic 

programming (Akkouche, et al., 2013, Ross, et al., 2014), regulating translation (Grivna, et 

al., 2006), regulating target mRNAs (Lee, et al., 2011), modulating mRNA stability (Grivna, 

et al., 2006), and developmental regulation. The most widely-recognized and well-

characterized function of piRNAs is to suppress the activities of transposable elements at 

genomic and epigenetic levels, suggesting that piRNAs may be involved in the etiological 

processes of human diseases. The present study aimed to identify the piRNAs associated 

with AD across transcriptome. Furthermore, we explored whether these AD-associated 

piRNAs were brain-specific, whether their nearest protein-coding genes were expressed in 

brains, and whether these genes were related to the APOE expression in brains.

For a decade scientists have scanned the whole genome to search for the risk variants of AD. 

We reviewed all published genome-wide association studies (GWASs) and whole genome/

exome sequencing studies of AD. The results showed associations of 17 variants that were 

genome-wide significant (1.0×10−295≤p≤9.0×10−9) and replicated across at least two 
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independent studies at single-point level. These 17 variants are located in 11 genes/snRNAs/

LncRNAs in eight loci. They are rs6859, rs157580, rs2075650, rs429358+rs7412 (ε2/ε3/ε4) 

and rs4420638 within APOE cluster (NECTIN2-TOMM40-APOE-APOC1) (Abraham, et 

al., 2008, Antunez, et al., 2011, Coon, et al., 2007, Feulner, et al., 2010, Harold, et al., 2009, 

Heinzen, et al., 2010, Kamboh, et al., 2012a, Kamboh, et al., 2012b, Kim, et al., 2011, 

Lambert, et al., 2009, Li, et al., 2008, Logue, et al., 2011, Meda, et al., 2012, Melville, et al., 

2012, Naj, et al., 2010, Nelson, et al., 2014, Perez-Palma, et al., 2014, Ramanan, et al., 2014, 

Ramirez, et al., 2014, Seshadri, et al., 2010, Shen, et al., 2010, Webster, et al., 2008), 

rs2279590 and rs9331896 at APOJ (Jun, et al., 2016, Lambert, et al., 2009, Lambert, et al., 

2013), rs11218343 at SORL1 (Jun, et al., 2016, Lambert, et al., 2013, Miyashita, et al., 

2013), rs10498633 at SLC24A4 (Jun, et al., 2016, Lambert, et al., 2013), rs6656401 at CR1 
(Lambert, et al., 2009, Lambert, et al., 2013), rs3865444 at CD33 (Lambert, et al., 2013, 

Naj, et al., 2011), rs7561528, rs6733839 and rs744373 at LOC105373605 (Antunez, et al., 

2011, Hollingworth, et al., 2011, Hu, et al., 2011, Jun, et al., 2016, Kamboh, et al., 2012b, 

Lambert, et al., 2013, Naj, et al., 2011) and rs10792832 and rs3851179 at RNU6-560P 
(Harold, et al., 2009, Jun, et al., 2016, Lambert, et al., 2013). Numerous candidate gene 

studies including ours (Zuo, et al., 2006) supported these GWAS findings. However, the 

mechanisms underlying SNP-AD associations remain unclear. Here, we examined whether 

the AD-related piRNAs might mediate these associations, in support of the potential roles of 

piRNAs in the pathogenesis of AD.

Summary of Materials and Methods

In this pilot study we used prefrontal cortex tissues from the primary brain cohort of 6 AD 

cases and 6 controls. As a contrast, eight stomach tissue samples were also examined. The 

samples were examined using the Arraystar HG19 piRNA array (Arraystar, Inc.) that 

included 23,677 piRNAs. Raw signal intensities were normalized, quality checked, filtered 

and then log2-transformed. Three piRNAs from the array were examined by qPCR for 

technical validation. The transformed intensity values were compared between AD cases and 

controls to identify the piRNAs associated with AD; these values were also compared 

between control brain tissues and stomach tissues to identify piRNAs “specific” to the brain. 

The mRNA expression of the nearest genes, within or close to which the AD-associated 

piRNAs are located, and the density of the proteins encoded by these genes was examined in 

brain tissues of four other independent auxiliary cohorts, to explore the expression of these 

genes in the brain. The correlation of expression between APOE and all risk genes in the 

brain was tested, to examine if the risk genes were related to this most robust and well-

recognized AD-associated gene. The 17 genome-wide significant and replicated risk variants 

for AD were genotyped in our primary cohort (6 AD cases and 6 controls) too. Associations 

between the genotypes and the expression level of each AD-associated piRNA were 

analyzed in this primary cohort, to investigate whether these robust risk DNA variants 

controlled piRNA expression. The details were described in the Supplementary Materials, 

Methods, Table S1, and Figures S1 and S2. The design of whole study was based on a 

regulation pathway illustrated in Figure 1.
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Results

1. Detection of piRNAs in the brain

Among the 23k piRNAs, 9453 (41%) were detected in human brains. Among the 9453 brain 

piRNAs, 6853 (73%) were significantly differentially expressed between brain and stomach 

(1.2×10−14≤p<0.05); and 1251 (13%) were “specific” to brain (i.e., absent in stomach). The 

three selected piRNAs, including DQ597973, DQ576872 and DQ597479 (Table 1) were 

well-validated by qPCR.

2. Differential expression of piRNAs between cases and controls (Figures 2 and S3, and 
Tables S2 and 1)

The mean log2-transformed normalized intensity of expression of all 9453 piRNAs was 

7.00±2.91 (mean ± SD; range: 3.16–18.4) in AD cases, and 7.02±2.90 (2.87–18.4) in 

controls. 103 piRNAs with length of 26–32nt were nominally differentially expressed 

between cases and controls (FC>1.5; p<0.05; without correction) (Figure 2; Table S2). The 

mean transformed normalized intensity of these 103 piRNAs was 6.77±3.57 (3.16–14.8) in 

AD cases, and 6.30±3.43 (2.88–14.0) in controls. Among the 103 risk/protective piRNAs, 81 

were up-regulated and 22 were down-regulated in cases in contrast to controls. Among the 

103 piRNAs, 24 were “specific” to brain (i.e., no significant expression in stomach), 69 were 

expressed in brain higher than in stomach (1.0<FC<18.8), and 10 were expressed in brain 

lower than in stomach (1.1<FC<2.4). Among the 103 piRNAs, 100 piRNAs map to genomic 

locations that are located within or close to 66 protein-coding genes, and three piRNAs map 

to unknown locations. 42 piRNAs map to 37 protein-coding genes, and two map to ncRNA 

genes. Among these 103 piRNAs, 56 piRNAs are intergenic, proximate to 32 protein-coding 

or ncRNA genes; 50 of these protein-coding genes that 100 piRNAs map or are proximate to 

are expressed in brains (data not shown). 45 are located in piRNA clusters. 29 piRNA 

clusters are located in intergenic regions, consistent with earlier literature (Zuo, et al., 

2016b). 66% of these 50 protein-coding brain genes have been related to neurodegenerative 

or neuropsychiatric disorders (Table S2).

9 piRNAs had log2-transformed normalized intensities > 13 (i.e., > 9000 before 

transformed). The top five piRNAs with highest intensities in cases were DQ571030, 

DQ571029 and DQ571031 at C19orf18 (on chr19) (Figure S3), and DQ597217 and 

DQ597216 at GALNT18 (on chr11). They were also the top five with highest intensities in 

controls, and the top five with highest FC (14.6≤FC≤18.8) in brain compared to stomach 

(Table 1).

14 piRNAs were expressed with >2 FCs in cases compared to controls; the top five were 

DQ590835 at PTPRD (chr9), DQ576492 at LINC00837 (chr10), DQ574023 at B3GALTL 
(chr13), DQ599205 at KIAA0319L (chr1), and DQ598028 at FLJ25328 (chr19). 4 piRNAs 

were expressed with >2 FCs in controls compared to cases; they were DQ579851 at chr15, 

DQ600318 at chr17, DQ571669 at VPS53 (chr17), and DQ586404 at chr18 (Table 1).

14 piRNAs were significantly differentially expressed between cases and controls with 

p<0.01. The five most significant ones with higher FCs in cases were DQ591371 proximate 

to NBPF4 on chr 1, DQ580484 proximate to TDRD5 on chr 1, DQ577835 at FAM225B on 
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chr 9, DQ586113 proximate to EVPLL on chr 17, and DQ599205 at KIAA0319L on chr 1 

(0.002≤p≤0.004). The five most significant ones with lower FCs in cases were DQ575353 at 

LRRC37A on chr 17, DQ577904 proximate to RABGEF1 on chr 1, DQ595753 at SCP2 on 

chr 1, DQ586404 proximate to GNAL on chr 18, and DQ579582 at POM121L8P on chr 22 

(0.002≤p≤0.006) (Table 1).

Two piRNAs, including DQ599147 at CTC1 (FC=1.8, p=0.048) and DQ597974 near 

C11orf87 (FC=2.0, p=0.031), expressed in significantly higher levels in cases than controls 

(Table S2) replicated previous findings (Roy, et al., 2017).

Some genes that the AD-associated piRNAs are located within or near to have been reported 

to be associated with AD or its biomarkers, including BACE1, CYP19A1, CTC1, 
LRRC37A, CCR6, KCNK10, HIST1H4H, C1orf174, DOCK1, and PLCH1. Over 540 

studies have reported the associations between BACE1 and AD, 9 studies for CYP19A1, 6 

studies for CTC1, and at least one study for each of other genes. (Table S2)

3. Gene expression in brains

Among the 73 risk genes, 52 (71.2%) were expressed in human brains (Table S2). Among 

the 38 genes of strongest associations with AD risk, as listed in Table 1, 27 (71.1%) were 

expressed in human brains (Table 1). The expression of all of the 27 genes was significantly 

correlated with APOE expression in at least one brain region (2.9×10−39≤p<1.8×10−4; Table 

S3).

4. The piRNA expression correlated with SNPs

eQTL analysis showed that most AD-associated piRNAs were nominally correlated with the 

genome-wide significant risk SNPs (p<0.05; Table 2). After Bonferroni correction 

(α=5×10−4), the correlations of rs429358 (p=2.8×10−4) and rs4420638 (p=3.4×10−4) at 

APOE cluster with DQ581734, rs2075650 (p=3.3×10−4) at APOE cluster with DQ592330, 

rs4420638 (p=2.3×10−4) at APOE cluster with DQ600318, rs2279590 (p=2.7×10−4) at 

APOJ with DQ597397, and rs7561528 (p=9.2×10−5) at LOC105373605 with DQ574023 

remained significant. In view of the small sample size, we may have missed some potentially 

significant correlations, so we listed more modest correlations in Table 2 (p<8×10−3). Most 

eQTL signals occurred in APOE cluster and APOJ loci, and all 5 variants at the LncRNA 

LOC105373605 or snRNA RNU6-560P presented modest eQTL signals (Table 2). The 

results presented above are also illustrated in Figure 1.

Discussion

The present study showed that piRNAs are abundant in human brains and may contribute to 

the risk for AD. Although most differential expressions did not survive the conservative 

Bonferroni correction for multiple comparisons, the potential roles of piRNAs in AD cannot 

be ignored considering that this was a pilot screening study with small sample sizes (Hebert, 

et al., 2013). Many piRNAs were brain-“specific”, and their nearest protein-coding genes 

were expressed in brains and related to the APOE expression in brains. Further, the 

expression of these piRNAs were controlled by the most robust risk DNA variants. Together, 
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these findings support a functional role of piRNAs in the pathogenesis of AD. We illustrate 

possible mechanisms underlying these findings in Figure 1.

The piRNAs in the brain usually demonstrate unique biogenesis patterns with a 

predominantly nuclear localization (Rajasethupathy, et al., 2012). piRNAs located within 

genes or from the intergenic regions may modulate the stability and translation of the 

mRNAs of the proximate genes (Grivna, et al., 2006, Lee, et al., 2011, Mani and Juliano, 

2013). However, unlike miRNAs and siRNAs, piRNAs are not derived from the dsRNA 

precursors, which makes it difficult to derive the unique location of each piRNA on the 

genome. Because piRNAs are short, they might correspond to multiple positions on the 

genome. Across transcriptome, only 5 percent of piRNAs can be mapped to protein-coding 

genes (Brennecke, et al., 2007); however, among the AD-associated piRNAs identified in 

this study, 41% are enriched in the protein-coding genes, suggesting a strong correlation 

among these genes, piRNAs and AD. Sequences of the AD-associated piRNAs are 

complement to or close to these protein-coding genes, and thus, the piRNAs are most likely 

to target and regulate these nearest genes by sequence complementarity (Roy, et al., 2017).

Furthermore, we found that 71.2% of these protein-coding genes were expressed in human 

brains, and their expression levels were all significantly correlated with APOE, the most 

robustly and well-recognized AD risk gene. 66% of these protein-coding brain genes have 

already been associated with neurodegenerative or neuropsychiatric disorders including AD, 

e.g., BACE1, CYP19A1, CTC1 and HIST1H4H, suggesting that they are potentially the 

direct biological targets for the AD-associated piRNAs to regulate the development of AD. 

Some of these genes have been implicated in the extensively-studied etiological pathways 

leading to AD. For example, BACE1 has been implicated in the “Alzheimer’s disease” 

pathway (www.genome.jp/kegg); CYP19A1 has been implicated in the “Metabolism of 

lipids and lipoproteins” pathway (www.reactome.org); CTC1 has been implicated in the 

“Oxidative phosphorylation” pathway (www.genome.jp/kegg); and HIST1H4H has been 

implicated in the “Telomere maintenance” pathway (www.reactome.org).

We observed that the expression of many nominally AD-related piRNAs was correlated with 

the AD-risk DNA variants, suggesting that these piRNAs might mediate SNP-AD 

associations. In particular, all of the five genome-wide and replicated risk variants at 

LncRNA and snRNA had nominal or even significant regulatory effects on piRNAs, which 

may in part explain SNP-AD associations at non-coding loci.

Numerous piRNAs are produced from the disruption of transposons in the genome (Halic 

and Moazed, 2009, Sai Lakshmi and Agrawal, 2008); that is, most piRNAs overlap with the 

transposons or transposon remnants in sequences (Brennecke, et al., 2007). piRNAs 

selectively target and silence the RNAs transcribed from transposons (Brennecke, et al., 

2007, Gunawardane, et al., 2007), perhaps to balance or to maintain the fitness of the 

genome. Experimental data supported this proposition. Mili- and Miwi-2 null mice have 

been found to have increased activity of retrotransposons, which suggests that piRNAs could 

protect the genome from deleterious transposon insertions to preserve genomic integrity 

(Stefani and Slack, 2008). Disruption in the piRNAome may lead to uncontrolled 

transposition with destabilizing genomic and cellular effects (Dharap, et al., 2011, Mani and 
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Juliano, 2013). It has been posited that the Piwi/piRNA complex uses the transposons to 

regulate a large group of gene expression and cellular functions (Mani and Juliano, 2013), a 

plausible mechanism to underscore the associations between piRNAs and AD identified in 

this study. Experimental data suggest that piRNAs can inhibit transposons at either genomic 

or epigenetic levels. The restriction of transposons by piRNAs has been demonstrated by the 

up-regulation of transposons as a result of mutations of the Piwi/piRNA complex.

Evidence suggests that Piwi/piRNA complex may be involved in modulating the 

development of dendritic spines (Lee, et al., 2011). Some Piwi/piRNA complex target 

Astrotactin, a protein critical to neuronal migration (Adams, et al., 2002). Some Piwi/piRNA 

complex potentially regulate genes to control other nervous system functions (Lee, et al., 

2011). These mechanisms may also underlie piRNA-AD associations.

Another clue regarding the functions of piRNA relates to the discovery of the L1 

retrotransposons in the human, mouse and rat brains. In the brains, the L1 retrotransposons 

are involved in neuronal differentiation, heterogeneity, and somatic mosaicism (Coufal, et 

al., 2009, Muotri, et al., 2005). Some piRNAs and retrotransposons co-exist in the brains. 

These piRNAs regulate L1 retrotransposons and their mutants elevate retrotransposon 

expression in the brains. The co-existence of piRNA and retrotransposons might play 

important roles during brain development and in maintaining functional integrity of the adult 

brains, and in the development of AD.

piRNAs are unevenly distributed across the genome. We found that many AD-associated 

piRNAs were clustered. Although individual piRNA sequences are rarely conserved, the 

genomic locations of the piRNA clusters are usually conserved across species (Aravin, et al., 

2006, Girard, et al., 2006, Lau, et al., 2006). More studies are clearly warranted to 

investigate the roles of these clusters in the development of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• This study first profiled piRNA expression in human brains with Alzheimer’s 

disease

• 9453 piRNAs were detected in human brains

• 103 piRNAs were nominally differentially expressed between cases and 

controls

• Among the genes that the AD-associated piRNAs were located within or 

close to, 71.2% were expressed in human brains

• Most AD-associated piRNAs were nominally correlated with the genome-

wide significant risk SNPs
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Figure 1. Illustration for the pathways underlying piRNA-AD association
[Solid lines: Directly evidenced by our study; Dash lines: Indirectly evidenced by literatures. 

➊ piRNA expression is correlated with the risk SNPs (by eQTL analysis); ➋ piRNAs are 

hypothesized to be most likely to regulate the expression of the nearest protein-coding genes 

by sequence complementarity; ➌ mRNA expression of the risk genes is correlated to APOE 
mRNA expression (by correlation analysis); ➍ mRNA/protein of APOE is expressed in 

brain (by RNA-Seq, RNA microarray and mass spectrometry-based proteomics microarray 

analyses); ➎ RNAs/proteins expressed in brain are assumed to have potential brain 

functions; ➏ many brain functions are assumed to be related to the development of AD; ➐ 
piRNAs are hypothesized to be related to L1 retrotransposons that are involved in brain 

functions; ➑ piRNAs are hypothesized to use the transposons to regulate gene expression 

and cellular function; ➒ mRNAs/proteins of the risk protein-coding genes are expressed in 

brain (by RNA-Seq, RNA microarray and mass spectrometry-based proteomics microarray 

analyses); ➓ association between APOE and AD is most robust and widely-recognized; ⓫ 
many genes have been associated with AD in literatures; ⓬ some genes regulated by 

piRNAs can control brain functions; ⓭ piRNA expression in brain is detected by 

microarray analysis; ⓮ some piRNAs can target at brain cells that may be implicated in 

brain functions; ⓯ piRNAs are associated with AD (by differential expression analysis), 

which is the main goal of the present study; ⓰ associations between SNPs and AD are 

identified by GWAS
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Figure 2. The differential expression between cases and controls
[X-axis: Fold-change; Y-axis: −log10(p); Red points: the differentially expressed piRNAs 

with 1.5-fold change and p< 0.05]
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