
Role of catch bonds in actomyosin mechanics and cell 
mechanosensitivity

Franck J. Vernerey* and Umut Akalp
Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA

Abstract

We propose a mechanism of adherent cell mechanosensing, based on the idea that the contractile 

actomyosin machinery behaves as a catch bond. For this, we construct a simplified model of the 

actomyosin structure that constitutes the building block of stress fibers and express the stability of 

cross bridges in terms of the force-dependent bonding energy of the actomyosin bond. Consistent 

with experimental measurements, we then consider that the energy barrier of the actomyosin bond 

increases for tension and show that this response is enough to explain the force-induced 

stabilization of a stress fiber. Further numerical simulations at the cellular level show that the 

catch-bond hypothesis can help in understanding and predict the sensitivity of adherent cells to 

substrate stiffness.

The contraction of adherent cells is a phenomenon that plays a large role in many biological 

processes such as morphogenesis [1], wound contraction [2], stem cell differentiation [3], 

and the development of many diseases [4]. The molecular mechanisms by which cells 

generate motion and force depend on a series of highly coordinated events occurring in both 

the cytoskeleton and at the cell membrane. Of particular importance are the contractile 

elements of the cytoskeleton, made of stress fibers (SF) [5,6]. These filaments, that assemble 

from proteins present in the cytosol (including mainly globular actin and myosin), generally 

anchor to the cell substrate via focal adhesions and can ultimately span the entire length of 

the cell. Importantly, these filaments are capable of sustaining appreciable levels of 

contraction, which they owe to the underlying actomyosin machinery powered by adenosine 

triphosphate (ATP). In the past decade, a number of studies have shown that both SF density 

and contraction in adherent cells were sensitive to the mechanical environment [3,7,8]; a 

stiffer environment generally promotes a denser, stronger cytoskeleton and eventually cell 

spreading [9]. Understanding the fundamental origin of these behaviors has motivated a 

number of theoretical studies, from the cellular to the molecular level. A line of thought has 

been to view cells as contraction dipoles [10] that could sense the compliance of their 

substrate and accordingly polarize by minimizing their deformation energy [11]. Others have 

considered the contractile cytoskeleton as an active material in which filament stability is 

promoted by tension [12–14]. The molecular origin of this phenomenon was explained by 

the presence of signaling pathways that induced a positive feedback for SF stabilization with 

force [15]. Other classes of models, based on cross-bridge dynamics [16], have also been 
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used to explain the effect of tension on cytoskeleton reorganization under static and cyclic 

conditions [17]. A more thorough review of existing models was discussed in [18]. While 

biochemical signaling has often been argued as a possible factor, the way by which SFs 

stabilize with tension still remains an open question. In this paper, we invoke a well-known 

mechanosensitive element used by biology, the catch bond, to explain both the force-

stabilization response of SFs and the development of intricate cytoskeletal architectures in 

adherent cells. Such bonds are typically found on the membrane of leucocytes and bacteria 

[19] and act to strengthen the adhesion with a solid substrate in the presence of an external 

force. They may also play the role of rigidity sensors on the surface of adherent cells, 

through specific membrane receptors and notably the α5β1 integrin [20]. Contrary to the 

conventional slip bonds whose detachment rate increases with force as described by Bell’s 

law [21], catch bonds are able to extend their lifetime under the application of a small to 

moderate force. While the origin of this behavior may be complex at the molecular scale 

(arising from mechanochemical interactions or multiple force-dependent bond states for 

instance [22,23]), the overall response of catch bonds is quite robust across biological 

systems. Of particular interest in the case of SFs is the finding, notably by Guo et al. [24], 

that the actin-myosin complex does display a catch-bond behavior, with a maximum 

stabilizing force around 6 pN. This observation is further confirmed by Capitanio et al. [25] 

who measured a force-induced reduction in the detachment rate of myosin from actin after 

its working stroke for forces ranging between 0 and 6 pN at high ATP concentration and 

Reconditi et al. [26] who found similar trends in the mechanics of muscle fibers. 

Alternatively, there may be other types of mechanosensitive mechanisms in the SF 

machinery, which could include, for instance, a force-dependent transition among the 

different nucleotide states of myosin during its mechanochemical cycle on actin. These 

considerations, along with the data from Guo et al. [24], clearly indicate the possibility of 

catch bond within SFs. To investigate this hypothesis, we propose to explore whether the 

existence of a catchy actomyosin bond could be at the origin of (a) the force and stiffness-

induced SF stabilization and (b) the complex actomyosin cytoskeleton architecture observed 

in a majority of adherent cells. For this, we proceed in two steps; first, we introduce an 

active viscoelastic model of SF that incorporates the idea of force-induced stabilization of 

cross bridges. Second, we propose a simple model of the actomyosin cytoskeleton of 

adherent cells, made of a random assembly of force-sensitive SFs. A computational 

procedure is introduced to predict the contractile behavior and cytoskeleton architecture of 

adherent cells laying on beds of microposts. Results are discussed in the light of 

experimental data from the literature.

I. MODELING STRESS FIBERS AS ACTIVE VISCOELASTIC FILAMENTS

As shown in Fig. 1, SFs are generally viewed as bundles of polar actin filaments which, 

depending on maturity, can display a periodic appearance associated with the presence of 

organized repeating structure of myosin and alpha-actinin molecules [27]. Myosin filaments 

possess proteins domains, or heads, that have the ability to execute power strokes towards 

the positive end of an actin filament. This operation, collectively, results in an overall 

shortening of the actomyosin assembly at a speed that can vary depending on the type of 

myosin (see discussion in Appendix A3 and Table I). Based on these observations, we 
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propose to model a SF control segment as a parallel assembly of three key elements (Fig. 1): 

(a) a contractile element that captures the change Δds in SF length due to the sliding of 

myosin heads on actin filaments at a rate Δḋs = υs (here υs is negative), (b) an elastic 

element of stiffness k [24,32] characterizing the elasticity of cross bridges and whose stretch 

Δde is recoverable upon unloading, and (c) a bond element that represents the strength of the 

actin-myosin complex. Note that, initially, the segment is in an optimal configuration, i.e., 

active actin sites and myosin cross bridges perfectly overlap and a deviation from this length 

is given by Δd = Δds + Δde. Now, assuming that the overlap ratio decreases linearly with 

sliding Δds, the maximum number of cross bridges that can be formed during contraction is 

estimated as

(1)

where Nf is the number of myosin minifilaments in the control segment while Nx is the 

number of myosin heads per myosin filament. In this work, we choose  [34] as 

the distance at which the actin-myosin filaments generally cease to overlap. This relationship 

is at the origin of the length-tension relation in muscle mechanics [35].

A. Active viscoelastic model

The dynamics and force generation in actomyosin units have traditionally been studied using 

the sliding filament theory [16,36,37]. Based on the detailed kinetics and transition between 

different states of myosin motors during their working cycle, the theory enables the 

determination of the fraction of attached cross bridges on an actin filament as well as their 

velocity and working force in terms of external conditions. Although such an approach 

would provide a good starting point to our derivation, its level of details may divert us from 

our main objective, i.e., understand the role of actomyosin catch bond on cell 

mechanosensitivity. We therefore keep this alternative for future work and instead propose a 

simplified approach which consists of investigating the equilibrium of a SF segment by 

considering the balance of entropy, conservative and nonconservative forces within the 

actomyosin assembly as it is subjected to an external force Fe. To describe the former two 

contributions, we build a Gibbs free energy functional in the form G = U − T S where U, S, 

and T are the stored internal energy, entropy, and thermodynamic temperature in the control 

segment, respectively. To evaluate S, we first investigate the number of possible bond 

configurations in the attached (A) and detached (D) state among the available actomyosin 

bonds. If we define 0 ≤ η ≤ 1 as the ratio NA/N of attached bonds (NA being the number of 

attached bonds), the entropy of the system reads as S = −kBN(Δds)[η ln(η) + (1 − η) ln(1 − 

η)] where kB is the Boltzmann constant. The internal energy of the unit is then composed of 

two terms: the stored elastic energy  and the adhesion energy Eb stored in attached 

bonds. This yields . The total Gibbs energy functional can then 

be written
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(2)

The Rayleigh dissipation potential can similarly be written in term of the sliding velocity υs 

and the external force Fe as

(3)

The term Nημ is to be interpreted as the overall viscosity between actin and myosin 

filaments while μ is the viscosity arising from a single cross bridge. The latter can be 

considered as a lumped representation of a number of physical phenomena occurring during 

the working stroke of a myosin head, i.e., size and rate of the motor swing as well as how the 

rates of attachment and detachment of the myosin head on actin depend on force [38,39]. 

The consideration of each individual mechanism, which is beyond the scope of this work, 

would therefore likely yield a nonlinear viscosity that depends on force in a more complex 

fashion than presented here. Nevertheless, the presented model, as it captures the main 

trends exhibited by the above phenomena, is sufficient for the present analysis. Finally, one 

now should specify the energy provided to the system by ATP hydrolysis in order to power 

the sliding of myosin heads on actin filaments. For this, we introduce the active force ζ 
produced by a single myosin molecule and compute the power produced in the control 

segment as

(4)

It is clear here that the term ζ is what drives the contractility of the actomyosin unit and may 

be linked to the difference in chemical potential between ATP and its reaction products as 

discussed in [40]. The governing equation of our active actomyosin filaments may then be 

obtained by balancing dissipation, energy release rate, and active work. For this it is 

convenient to work with the functional

whose minimization δℱ[η̇, υe, υs] = 0 leads to the equation

Enforcing the fact that the variations of η̇, υe, and υs are independent δυeℱ, δη̇ℱ, and δυsℱ 
must all vanish, one can obtain the three Euler-Lagrange governing equations
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(5)

(6)

(7)

The first equation is interpreted as the mechanical equilibrium of the control segment, while 

the second denotes its chemical equilibrium (equality of the chemical potentials) of bonds in 

their attached and detached states. The last equation finally describes how the cross-bridge 

velocity is affected by the balance between the active force ζ and passive force f = kΔde. 

Interestingly, if one defines the natural (or maximal) sliding velocity as , Eq. (7) 

can be rewritten

(8)

In the range 0 < f < ζ, this relation may therefore be thought of as a simplified (bilinear) 

form of the velocity-tension relationship [41] that describes how the sliding velocity 

decreases if an opposing force f is applied to the actomyosin unit. This expression is 

consistent with recent findings [25,26] that the myosin stroke size (and hence its velocity) 

decreases with applied load. In this context, ζ can be interpreted as a stall force, i.e., the 

force that must be applied to a single cross bridge to stop its motion. Experimental 

approaches have estimated its value to be around 5 pN [31] in algal cells.

B. Actomyosin catch bonds

To complete the model, we now need to express the fact that the actin-myosin complex 

displays a catch-bond behavior. For this, consider the energy landscape of a single bond as 

depicted in Fig. 2(a), in which ΔE is the energy barrier separating the bound and unbound 

states. Typically, the larger the energy barrier, the longer a bond can live under thermal 

fluctuations. When subjected to a tensile force f, the energy barrier of a conventional “slip 

bond” typically decreases according to Bell’s law [21] as  where  is the 

reference energy of the bond and Δx ≈ 3 nm [28] is the width of the barrier. As shown in the 

literature [24,25], actomyosin complexes are temporarily stabilized when moderate pulling 

forces are applied, a response that can be interpreted as a temporary increase in the energy 

barrier ΔEd with forces. Although a number of functions can be chosen to satisfy that 

criterion, we choose here the following two-parameter function originally proposed by 

Pereverzev and Prezhdo [42] as
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(9)

where α measures the “catchiness” of the bond and f0 is used to scale the force at which the 

bond stabilizes [Fig. 2(b)]. We note that when α = 0, the above expression degenerates to 

that of a slip bond following Bell’s law. In this study, we choose E0 = 4.8kBT, f0 = 2.2 pN 

and explore a range of bond catchiness between 0 and αmax = 2.4kBT, in order to match a 

maximum stabilization at η = 5% [17] for a peak force of 6 pN [24], consistent with the 

literature. A single value of bond stiffness k was further chosen, corresponding to nonmuscle 

myosin (NMM) and smooth muscle myosin (Table I). For this parameter, values reported in 

the literature are limited and very scattered, which motivated the discussion and parametric 

study provided in Appendix A4. Overall, we show that the magnitude of k does affect the 

kinetics and forces generated by SF, but does not affect the main trends of its response 

discussed in the remainder of this paper. Using the expression for Eb in Eq. (6), one finds 

that the level η of cross-bridge attachment obeys

(10)

C. Stress fiber mechanosensitivity

Let us now assess the consequence of this model on the mechanosensitivity of a SF control 

segment subjected to a constant external force F by investigating its stabilization via the 

fraction of attached bonds η. For clarity, we assume here that the SF does not contract 

during the application of the force (i.e., υs = 0). In this case, η is directly calculated from 

(10) as

(11)

where the force in an attached actomyosin bond is obtained from (5) as f = F/[ηN(Δds)]. 

This enables us to explore the force-induced activation of the SF as a function of bond 

catchiness α⋆ = α/αmax. Figure 3 therefore illustrates, for different values of bond catchiness 

α, how the variable η is affected by (a) the force f on a single actomyosin bond and (b) the 

total force F = ηNf on the actomyosin assembly. Figure 3(a) shows that for a slip bond (α⋆ = 

0), the steady state fraction η monotonically decreases with force as predicted by Bell’s law 

while as α⋆ approaches unity, the fraction of attached bond becomes close to its maximum 

(≈5%) for a critical force determined by . We also observe a clear 

difference between the stability-force behavior for a single bond and the full segment as 

shown in Fig. 3(b). Multiple bonds exhibit a cooperative behavior since for a given 

macroscopic force F, the force in individual bonds increases with decreasing η. As a result, 

we still see the force-induced stabilization under the critical force Fc = Nη(fc)fc for α > 0 but 

a catastrophic disassembly occurs for a larger force. Passed its maximum value Fc, the 
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resisting force F therefore decreases quickly as cross bridges become unstable and detach, a 

behavior is reminiscent of the fracture behavior of a fiber bundle, showing catastrophic 

disassembly at critical force [43].

We next explore the behavior of the same SF segment when it is allowed to contract against 

the load, i.e., cross bridges slide on actin filaments at a velocity given by Eq. (8). In this 

context, Fig. 4 provides results regarding the time history of the contraction (top panels) and 

its steady state for different external forces (bottom panels). More specifically, the time 

response of the SF segment was investigated by plotting the fraction η [Fig. 4(a)] and the 

normalized actomyosin force f⋆ = f/ζ [Fig. 4(b)] for three values of actomyosin bond 

catchiness α⋆ = 0, , and 1, respectively. These results show that when the applied force F is 

moderate (F is smaller than a critical value Fc determined above), bond catchiness promotes 

actomyosin stability which yields an increase in the fraction of activated cross bridges with 

α. One also sees that this activation monotonically increases in time as the segment contracts 

at a rate given by Eq. (8). However, once the force f per each cross bridge reaches its 

maximum value ζ, contraction ceases and the segment reaches its maximum contraction 

strain. The latter is sensitive to both applied force and bond catchiness as shown in Fig. 4(c). 

On this figure, one indeed sees that the normalized segment contraction δ* = Δd/Δdmax 

decreases with the amount of tension F*. When F* = 0, maximum SF shortening is reached 

while when the tension reaches its stalling value FS (which corresponds to a cross-bridge 

force f = ζ), no shortening is observed. One further notices that if the force increases to a 

critical value FR, the force in each cross bridge reaches its maximum capacity fR 

(corresponding to the peak force of 6 pN) and the segment ruptures. In this process, we also 

note that bond catchiness plays a role in stabilizing the segment against external tension as it 

delays both the stalling and the rupture force significantly. We finally show in Fig. 4(d) the 

effect of applied force on the overall activation a = η * N(Δds)/(NxNy) of attached cross 

bridges. Similarly to Fig. 3, in the case of a catch bond, we observe an obvious activation of 

the number of cross bridges with external force until the force in an actomyosin bond 

reaches its stalling (and rupture) value. For a slip bond, however, the activation of the SF 

segment is negligible and quickly reaches its maximum capacity when a force is applied. 

Overall, these results point out that external tension is key to the activation and stabilization 

of a SF segment and that this response is strongly dependent on the catchiness of the 

actomyosin bond.

Due to its biological relevance, we now investigate the model’s prediction regarding the 

stiffness sensing capability of a SF; this can be done by considering a virtual experiment in 

which the control segment is attached to a rigid support on one end and to a compliant 

substrate, represented by a linear spring of stiffness K on the other (Fig. 5). Assuming that 

the spring is in its unstretched configuration when the SF is in its relaxed state (Δd = 0), the 

external force becomes F = K Δd. In Figs. 5(a) and 5(b), we show the time evolution of the 

fraction of active cross bridges η and the contraction rate  for an external stiffness 

K = k/2 and explore the effect of the bond catchiness on this process. As observed with the 

constant force, bond catchiness is a critical parameter for stiffness sensing; when α⋆ = 0, 

activation is insensitive to stiffness, while for larger values of α⋆, one sees a monotonic 
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increase in SF activation with time, until it reaches a steady state. Interestingly, as bond 

catchiness increases, the model predicts a slowdown of the contraction dynamics [Fig. 5(b)] 

as observed in experimental studies of contractile cells (see Fig. 7). This response may be 

attributed to the fact that a stronger catch bond induces larger forces f in actomyosin bonds, 

which in turn yield smaller sliding velocities as predicted by Eq. (8). Beyond this dynamic 

response, external stiffness is also known to strongly influence SF contraction at steady 

state. In the model, the steady state corresponds to a vanishing sliding velocity υs = 0, which 

translates, using Eq. (7), to the conditions that the force in actomyosin bonds is f = ζ. This 

implies, after a simple calculation and assuming that Δds ≫ Δde, that contractile force is 

related to stiffness K by

(12)

where F⋆ = F/(Nζ), K⋆ = K/k, and η̄ = η(f = ζ). A graphical representation of this expression 

is given in Fig. 5(c) for different values of bond catchiness. This result shows that the SF 

contraction force increases sharply with external stiffness for small stiffness (F⋆ ≈ K⋆ as K⋆ 

→ 0) and asymptotically reaches the plateau  for stiffer environments (when K⋆ ≫ 
η̄). Since the value of η̄ strongly depends on α⋆, results show that stiffness sensitivity of the 

SF is highly dependent on bond catchiness: when α decreases, η̄ diminishes until it reaches 

an irrealistically low activation value (η̄ < 0.05%) when α⋆ = 0 [Fig. 5(d)]. The model 

therefore suggests that the catch-bond behavior is critical for stiffness sensing.

II. FROM STRESS FIBER TO CYTOSKELETON

In the remainder of this work, we scale up the SF model to the cellular level in order to 

investigate the effect of the catch-bond hypothesis on the mechanosensitivity of cells lying 

on micropillars as measured in a number of experimental studies [44–46]. For this, we take 

Nf = 20, Nx = 10 in Eq. (1) and assume that the cytoskeleton of an adherent cell initially 

consists of randomly distributed network of SFs that can anchor at focal adhesion sites, with 

densities that range between 5 and 15 SF per µm2 [44,46] or at the cell periphery (the actin 

cortex) with a density that ranges between 5 and 15 per µm [47] (Fig. 6). Although 

distributed in an isotropic fashion, the length ℓ of each SF is taken to follow an exponential 

probability distribution given by [Fig. 6(c)]

(13)

where λ = 0.2 µm is known as the rate parameter. We note that this distribution indicates that 

small SFs can assemble and grow more easily than longer ones, and are thus more likely to 

be found in the network [48]. Within this structure, the response of SFs follow Eqs. (5)–(7) 

with the difference that the elastic shortening de and the sliding velocity υs are scaled with 

the length of each individual SF. The other two important elements of the model are the actin 

cortex, modeled here as a passive elastic shell surrounding the cytoskeleton and underlying 

elastic microposts, coated with adhesion proteins and to which the stress fibers can adhere at 
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their end sites [Fig. 6(b)]. The motion of these SFs is therefore directly dictated by the 

mechanical properties of the pillars, determined by their elastic modulus Ep and geometrical 

properties via classical Euler-Bernoulli theory [44]:

(14)

where h is the pillar height, Ip its moment of inertia, and dp the deflection of its tip. For 

direct comparisons with experiments, we here model cylindrical microposts of radius r = 1.5 

µm (Ip = r4/4) and whose height h can be adjusted to control the effective lateral stiffness. 

The motion of SFs anchored to the actin cortex similarly follows the displacement of the 

cortex, as determined by its ability to deform through elastic stretch and bending. Although 

the cortical membrane is a thin structure that completely surrounds the cell’s body, it is 

approximated here as one-dimensional elastic element delimiting the cell and providing 

anchor points to SFs. Its deformation is therefore mainly driven by the contraction of 

attached SF as described in previous studies [49,50]. For simplicity, we use a small 

deformation, linear elastic Euler-Bernoulli beam model with elastic modulus Ec = 20 kPa 

[51,52], such that the governing equations can be written as [53]

(15)

(16)

where subscripts, x denote a derivative with respect to the linear distance along the cortex. 

Furthermore, Ac and Ic are the cross-sectional area and moment of inertia of the cortex, u 
and υ are its axial and transverse displacements, respectively, while q(x,t) is the distributed 

load arising from the SF anchored on the cortex [Fig. 6(b)]. Following [51,52], the flexural 

stiffness and stretch stiffness are taken to be 1.42 × 10−9 dyn cm and Ec = 20 kPa, 

respectively. In what follows, we use a numerical formulation, based on finite elements and 

whose details are given in the Appendix, to solve the problem of an adherent cell contracting 

on a bed of micropost. In agreement with previous models [9,54], we assume that neither 

deformation (u = 0) nor active stress fibers (η = 0) are observed prior to contraction. 

Furthermore, since the cell cortex is in its minimum energy state prior the contraction, its 

initial shape can be approximated as a series of straight lines between the adhesion sites on 

the boundary. The nonlinear finite element procedure is then used to compute SF shortening 

and contractile force [from (5) and (6)] in equilibrium with the surrounding pillars and the 

cortex at all times as the cell contracts. A steady state is eventually obtained when the force f 
in all cross bridges balances the active force ζ.

A. Cellular scale mechanosensitivity

To assess the global mechanosensitivity of the cytoskeleton, we first numerically reproduce 

the experimental work described by Tan et al. [44] on smooth muscle cells (BPASMC) in 
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which the cytoskeleton contractility was measured as a function of the overall cell spreading 

area. For this, our simulations considered square-shaped two-dimensional smooth muscle 

cells (whose properties are given in Table I) laid on a square lattice of 4, 9, and 16 

microposts, respectively. The average contraction force on each pillar was then computed 

from the micropost deflection [following Eq. (14)]. A nonlinear relationship was reported 

between average force and cell area as shown by the average and standard deviation plots in 

Fig. 7(a). In the same figure, we show the simulation results at steady state for the three cells 

under investigation when an actomyosin slip bond (α⋆ = 0), a moderate  and a strong 

actomyosin catch bond (α⋆ = 1) are considered, respectively. The distribution of active SF 

and cell deformation are also shown for the three cases, all of them in the case α⋆ = 1. 

Generally, the results show that, once again, bond catchiness is an important factor to 

mechanosensitivity and contraction. Indeed, when α⋆ = 0 (slip bond), myosin contraction 

immediately triggers the detachment of cross bridges, which results in a near-zero net 

contraction of the cell as a whole. For increasing bond catchiness, however, SF that are 

locally oriented in directions of large stiffness (between two attachments, for instance) 

become activated and are able to apply a contractile force. Furthermore, it became clear 

from the simulations that while all posts are subjected to pulling forces from SFs, only those 

close to the cell boundary could undergo significant bending. Indeed, forces are unbalanced 

on these pillars since no SFs can be found on the external side of the cell, a mechanism 

reminiscent of the concept of surface tension between two fluids with different internal 

cohesive energies. From this observation, one can deduce that cell contraction increases 

nonlinearly with area for two main reasons: (a) for a cell undergoing homogeneous 

contraction, the deflection of external pillars, and thus measured force, is proportional to its 

distance to the center of the cell (in average) and (b) the effective stiffness felt by a SF 

increases linearly with distance (and thus cell size) according to Ke = Kℓ/2 (a discussion is 

provided in the next section). In other words, larger cells behave as if they interacted with a 

stiffer environment and are thus characterized with a higher contraction [as seen in Fig. 

5(c)]. We next evaluate model predictions regarding the transient dynamics response of 

adherent cells on microposts with varying stiffness. For this, we invoke the experimental 

work of Trichet et al. [46] who explored the time-dependent contractile response of 

fibroblast (REF52) cells on pillars with effective bending stiffness 12, 34, 56, and 80 nN/µm, 

respectively [Fig. 7(b)]. Generally, contractile forces increased monotonically with time, at a 

decreasing rate until it reached a plateau, which corresponds to the steady state force. 

Interestingly, while the overall trends to do change with micropost stiffness, the scale of the 

contractile force does increase significantly with post stiffness. Modeling wise, these 

experimental conditions were reproduced by considering a square cell laying on four 

microposts [see Figs. 7(c) and 7(d)] and for which the average post force was computed in 

time, for the four effective pillar stiffness given above. A comparison of simulations (solid 

lines) and experimental results (dotted lines) provided for the case of a strong catch bond. 

One observes a good match between simulations and experiments for strong catch bond 

since the stabilization of bond with force allows SF to contract faster (since less force is 

applied on each bond) and harder (since more cross bridges are active) when they interact 

with stiffer substrates while these trends disappear when slip bonds are considered [as shown 

in Fig. 5(c)]. This observation was confirmed when we plotted the rate of contraction in 
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terms of substrate stiffness for nonexistent, moderate, and strong catch bonds as shown in 

Fig. 7(c). One can clearly see that when α⋆ = 0, the cytoskeleton becomes insensitive to the 

mechanical properties of its substrate.

B. Mechanosensitive organization of the cytoskeleton

To conclude our study, we finally investigate how the mechanosensitive response of a SF 

segment as described by Eqs. (5)–(7) can give rise to a complex architecture of the actin 

cytoskeleton observed in most adherent cells. In this context, we simulate the contraction of 

a fibroblast cell (NIH/3T3) on soft circular pillars as presented by McGarry and co-workers 

in [12]. The initial cell geometry and underlying pillars are represented in Fig. 8. This 

geometry was generated by identifying the microposts located on the cell boundary from the 

experimental image and assuming that the cortex is described by straight lines between those 

posts in its unloaded state. For the simulations, the pillar stiffness was taken to be 80 nN/µm 

and the cytoskeleton contraction was computed until it reached its steady state value (on the 

order of hundreds of seconds). Figure 8(I–III) depicts the evolution of the stress fiber 

activation a = η * N(δs)/(NxNy), cortex deformation, and the corresponding overall force per 

pillar when the strong catch bond hypothesis is used. Surprisingly, one can see that although 

smaller SF are predominant as dictated by the distribution (13), the first SFs to activate are 

the longest. To explain this counterintuitive observation, let us consider two similar SFs of 

different lengths, attached to compliant microposts of stiffness K at their ends. The effective 

stiffness felt by these SFs is then Ke = F/ε where ε = Δℓ/ℓ is the contractile strain in the SF. 

For a micropost, the force is related to deflection as F = KΔd with Δℓ = 2Δd and the effective 

stiffness becomes Ke = Kℓ/2. In other words, longer SFs effectively sense a larger stiffness 

than their smaller counterparts, which explains their early activation. Eventually, the 

deflection of microposts and cortex trigger a larger resisting force causing small SFs to 

increase their activation level as well. These dynamics result in a sharp increase in SF 

density and micropost forces and a steady increase of the average pillar force in time. We 

note that as discussed above, the unbalanced forces on boundaries are responsible for the 

cortex deformation into curved arches [50] and the large micropost deflection on the edge of 

the cell. On the contrary, interior pillars, being subjected to more isotropic forces, tend to 

marginally deform. This restricted deformation, in turn, makes interior posts effectively 

stiffer and prone to adhere to a higher number of SFs. Eventually, the final cytoskeleton 

organization is strongly dependent on the adhesion pattern, micropost stiffness, as well as 

the overall morphology of the cell. To probe the effect of bond catchiness, we repeated the 

same simulation for the moderate catch bond (α⋆ = 0.5) and slip bond (α⋆ = 0) hypotheses. 

While the former displays similar trends as for a strong catch bond but with a lesser SF 

activation and force, the slip bond hypothesis showed, as expected, only marginal 

contraction and a quasinonexistent SF cytoskeleton [Fig. 8(b)].

III. CONCLUSION

In summary, the role of catch bonds in cell mechanics is likely to extend far beyond our 

current knowledge of mechanosensitive membrane adhesion. Here, we presented a model of 

actomyosin interactions within SF structures that shows that the presence of a catch-bond 

behavior can explain the activation of the cytoskeleton in response to force and stiffness. The 
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model importantly showed that the consideration of catch bond was enough to explain a 

number of experimental measurements of cell contractility with stiffness and size, in both 

the static and dynamic regimes. Although the catch-bond behavior of actomyosin was 

demonstrated ex vivo [24], the model motivates further experimental studies that can test 

whether this hypothesis is indeed correct in living systems.
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APPENDIX A

NUMERICAL IMPLEMENTATION OF THE MODEL AT THE CELLULAR 

SCALE

1. Variational formulation

The cell contraction is governed by three equations given in (5), (6), and (7). One can also 

estimate the degree of inelastic contraction in a SF as

(A1)

and ‖d2 − d1‖ = ∫[Δds (t) + Δde]dℓ is the total contraction of a SF calculated from the 

displacements of its two ends d1 and d2. In the cellular scale model, the total change in 

energy of the system ℱ̂ is composed of three components: a contribution ℱSF from SFs, a 

contribution ℰ̇C from the cortex deformation, and, finally, a contribution ℰ̇A from the 

microposts deformation such that

(A2)

where m1 and m2 are the total number of SFs in the cell and number of attached pillars, 

respectively. The first term is the integration of the free energy of SFs over their respective 

lengths ℓ, the second term is the integration of the internal energy of cortex over the 

boundary Γ, while the last corresponds to the bending energy of the microposts. Note that 

the work done by an external force is comprised in the first term such that it is equal to the 

integration of the external forces over the cell boundary Γ:

(A3)
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where fext being the force vector on the cell boundary and d the associated displacement 

field. The stored elastic (bending) energy  in a micropost reads as

(A4)

where  is the total deflection of the nth micropost which is equal to the resultant of the 

displacement field  and dx, dy are the horizontal and vertical components of 

the displacement vector (in our predefined orthonormal coordinate system). The work 

contribution from the cortex finally originates from both axial deformation and bending; 

assuming that these modes of deformation are uncoupled, one can write :

(A5)

where d‖ = dc · (1 − n) and d⊥ = dc · n are the axial and transverse components of cortex 

deformation and n is the unit normal of the corresponding cortex segment with a length Lc. 

The integral of the cell cortex is over its axial direction x‖ (see Fig. 9). Since SF are assumed 

to not separate from adhesion complexes, the displacement field of the system can be written 

in terms of those of cortex d = dc and pillars d = dp. Based on variational principles, total 

work functional can be written as

(A6)

This ultimately leads to

(A7)

(A8)
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(A9)

where the assembly operator I establishes the connection between the index of each SF 

and the index of their connection with the cortex of microposts. This concept is well known 

in the finite-element literature.

2. Finite-element implementation

In the proposed model, SF reach a pseudoequilibrium state when the variation of the work ℱ̂ 

is minimized with respect to the field variables comprised of two displacements (dx and dy 

where ), rotation of the cortex segments θc, activation parameter η, the 

contraction ds, and its rate υs. Here, we introduced a new variable θc (defined as the first 

derivative of the transverse displacement with respect to the axial direction θc = ∂d⊥/∂x‖) in 

order to satisfy the continuity of the cortex deformation. The rotation can be written as 

tan−1(2d⊥/Lc) for a discrete cortex segment, and assuming that rotations are small θc ≈ 
(2d⊥/Lc). The balance equations (A7)–(A9) are collected in a residual form as a function of 

the variables

The linearized form of the system of equations is obtained as follows:

(A10)

A numerical solution of this equation is obtained using the finite-element (FE) method. 

From this viewpoint, we use simple structural elements to model SFs, frame elements to 

describe the cell cortex [53], and connector elements for the connection between SFs and 

adhesion sites (to enforce the no separation condition with the penalty method). The 

equilibrium solution is then found using a standard Newton-Raphson iterative procedure in 

the form

(A11)

where K(x) = ∂R(x)/∂x. Regarding the FE interpolation, we use linear shape functions N for 

displacement, Hermitian shape functions H for the cortex rotation, and transverse 

displacement and constant shape functions for both activation and contraction rates as 

follows:
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where N1(ξ) = (1 − ξ)/2, N2(ξ) = (1 + ξ)/2, H1(ξ) = 1 − 3ξ2/l2 + 2ξ3/l3, H2(ξ) = ξ − 2ξ2l + 

ξ3/l2, H3(ξ) = 3ξ2/l2 − 2ξ3/l3, and H4(ξ) = −ξ2/l + ξ3/l2, ξ being the coordinate in a 

parametric space comprised between −1 and 1. For the mechanics part of the problem 

stiffness matrix K takes the form

where

The transformation matrices (T and T̂) from local to global are

where c = cos(θ) and s = sin(θ) For the force-activation coupling the stiffness matrix term is
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The stiffness tangent for the activation parameter is

and its coupling with the force on the SF is

And finally the stiffness tangent term for the dissipation is

The final form is

After solving the system of equations, one can calculate the total contraction as

An overview of the computational algorithm in given in Fig. 10.

3. Model parameters and differences between nonmuscle myosin and smooth muscle 
myosin

A summary of the model parameters used in our study is given in Table I. We note here that 

there exist some significant differences in the properties of myosin heads based on their 

types.
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Kinetics—In the literature, it is reported that the sliding velocity of myosin heads ranges 

from 0.05 [55,56] to 2 µm/s [34] in nonmuscle myosin II and from 0.3 [57] to 0.8 µm/s [58] 

for smooth muscle myosin. In this study, we have only investigated the dynamical behavior 

of NMM [Figs. 7(c) and 7(d) and 8] for which a sliding velocity υ = 1 µm/s was selected 

consistent with experimental measurements in fibroblasts [34]. We note here that results on 

smooth muscle cells presented in Figs. 7(a) and 7(b) are at steady state and thus independent 

of the chosen value of sliding velocity. Nevertheless, for those cells, our model would 

predict contraction-time relationships that are similar to those presented in Fig. 7(c) but 

characterized by different time scales (due to differences in sliding velocities [34,56,59]).

Mechanical properties—Regarding the mechanical properties, cross-bridge stiffness for 

the skeletal muscle cells ranges from 130 [60] to 2400 pN/µm [61–63]. In the literature, 

there is a lack of data about the actomyosin bond stiffness for the smooth muscle and 

nonmuscle cells investigated in this paper. In order to be consistent with previous studies 

[32,33], we, however, chose this stiffness to be 600 pN/µm throughout the investigation of 

cellular mechanosensitivity. Although our selection may be inaccurate in certain cases, we 

note from Fig. 11(b) that the effect of cross-bridge stiffness on the rate of contractile force is 

insignificant.

Catch-bond properties—We used the catch-bond data of skeletal muscle cells due to the 

lack of experimental data for both nonmuscle and smooth muscle cells. Our choice for the 

critical force (fc) of 6 pN, however, does not affect the trends of the catch-bond behavior. 

This choice would only change the maximum load that a SF can carry and would change the 

SF density at the cellular level. As the critical force fc reduces, the SF density in the cell 

should increase in order to match experimental data [46].

4. Effect of actomyosin bond stiffness on mechanosensing

The reported data on the actomyosin bond stiffness is limited to skeletal muscle cells from 

different animals (rabbit and frog). It is furthermore very scattered; for instance, measured 

values for rabbit skeletal muscle cells range from 130 pN/µm [60] to 1700 ± 700 pN/µm 

[61,62], while it has been estimated to be between 1000–2200 pN/µm [63] for frog. Because 

of this variability, we propose here to perform a parametric study to better understand the 

effect of bond stiffness k on mechanosensitivity and contraction dynamics, as predicted by 

the model in the case of a strong catch bond (α* = 1). We chose three stiffness values k = 10, 

100, 2000 pN/µm and investigated the SF response under the virtual experimental setup 

presented in Fig. 5. In the results reported in Fig. 11, one sees that actomyosin bond stiffness 

affects both the SF sensitivity to external stiffness and the rate of SF activation. Figure 11(a) 

indeed shows that the contractile force of the SF becomes weaker as k decreases, such that 

when k = 10 pN/µm, a quasi-inexistent contraction is observed. This follows from the fact 

that highly compliant cross bridges can only apply little force even in the case of large 

contraction strains. Figure 11 b further shows that the rate of SF activation a increases with 

bond stiffness. However, regardless of bond stiffness, we observed that the key trends 

exhibited by the model are always consistent both at the SF and at the cellular levels. In 

other words, bond stiffness and SF density can always be adjusted accordingly to match 

model predictions and experimental measurements at the cellular level, without modifying 
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the trends shown in this paper. This motivated our choice of fixed value k = 600 pN/µm for 

our simulations.

References

1. Baxter SC, Morales MO, Goldsmith EC. Cell Biochem. Biophys. 2008; 51:33. [PubMed: 18446277] 

2. Bischofs IB, Schwarz US. Proc. Natl. Acad. Sci. USA. 2003; 100:9274. [PubMed: 12883003] 

3. Discher DE, Janmey P, li Wang Y. Science. 2005; 310:1139. [PubMed: 16293750] 

4. Schwarz US, Bischofs IB. Med. Eng. Phys. 2005; 27:763. [PubMed: 15951217] 

5. Fernandez P, Bausch AR. Integrat. Biol. 2009; 1:252.

6. Freyman TM, Yannas IV, Yokoo R, Gibson LJ. Biomaterials. 2001; 22:2883. [PubMed: 11561894] 

7. Wang HB, Dembo M, Wang Y. Am. J. Physiol. Cell Physiol. 2000; 279:C1345. [PubMed: 
11029281] 

8. Solon J, Levental I, Sengupta K, Georges PC, Janmey P. Biophys. J. 2007; 93:4453. [PubMed: 
18045965] 

9. Vernerey F, Farsad M. J. Math. Biol. 2013; 68:989. [PubMed: 23463540] 

10. Schwarz US, Safran SA. Phys. Rev. Lett. 2002; 88:048102. [PubMed: 11801175] 

11. Bischofs IB, Safran SA, Schwarz US. Phys. Rev. E. 2004; 69:021911.

12. McGarry JP, Fu J, Yang MT, Chen CS, McMeeking RM, Evans AG, Deshpande VS. Philos. Trans. 
R. Soc. London A. 2009; 367:3477.

13. Foucard L, Vernerey F. Appl. Phys. Lett. 2011; 100:013702.

14. Vernerey FJ, Farsad M. J. Mech. Behav. Biomed. Mater. 2011; 4:1683. [PubMed: 22098869] 

15. Deshpande VS, McMeeking RM, Evans AG. Proc. Natl. Acad. Sci. USA. 2006; 103:14015. 
[PubMed: 16959880] 

16. Huxley, AF. Muscle Structure and Theories of Contraction. In: Butler, JV., Katz, B., editors. 
Progress in Biophysics and Biophysical Chemistry. Vol. 7. Pergamon Press; London: 1957. p. 
255-318.

17. Kaunas R, Hsu H, Deguchi S. Cell Health Cytoskel. 2011; 3:13.

18. Schwarz US, Safran SA. Rev. Mod. Phys. 2013; 85:1327.

19. Marshall BT, Long M, Piper JW, Yago T, McEver RP, ZhuD C. Lett. Nature. 2003; 423:190.

20. Novikova E, Storm C. Biophys. J. 2013; 105:1336. [PubMed: 24047984] 

21. Bell GI. Science. 1978; 200:618. [PubMed: 347575] 

22. Thomas WE, Vogel V, Sokurenko E. Annu. Rev. Biophys. 2008; 37:399. [PubMed: 18573088] 

23. Thomas W. Annu. Rev. Biomed. Eng. 2008; 10:39. [PubMed: 18647111] 

24. Guo B, Guilford WH. Proc. Natl. Acad. Sci. USA. 2006; 103:9844. [PubMed: 16785439] 

25. Capitanio M, Canepari M, Maffei M, Beneventi D, Monico M, Vanzi F, Bottinelli R, Pavone F. 
Nat. Methods. 2012; 9:1013. [PubMed: 22941363] 

26. Reconditi M, Linari M, Lucii L, Stewart A, Sun Y, Boesecke P, Narayanan T, Fischetti R, Irving T, 
Piazzesi G, Irving M, Lombardi V. Nature (London). 2004; 428:578. [PubMed: 15058307] 

27. Langanger G, Moeremans M, Daneels G, Sobieszek A, Brabander MD, Mey JD. J. Cell Biol. 
1986; 102:200. [PubMed: 3510218] 

28. Evans E. Annu. Rev. Biophys. Biomol. Struct. 2001; 30:105. [PubMed: 11340054] 

29. Pellegrin S, Mellor H. J. Cell Sci. 2007; 120:3491. [PubMed: 17928305] 

30. Tojkander S, Gateva G, Lappalainen P. J. Cell Sci. 2012; 125:1855. [PubMed: 22544950] 

31. Chaen S, Inoque J, Sugi H. J. Exper. Biol. 1995; 198:1021. [PubMed: 7730750] 

32. Fernández P, Pullarkat PA, Ott A. Biophys. J. 2006; 90:3796. [PubMed: 16461394] 

33. Howard, J. Mechanics of Motor Proteins. Flyvbjerg, F.Julicher, F.Ormos, P., David, F., editors. Vol. 
75. Springer; Berlin: 2002. 

34. Katoh K, Kano Y, Masuda M, Onishi H, Fujiwara K. Mol. Biol. Cell. 1998; 9:1919. [PubMed: 
9658180] 

Vernerey and Akalp Page 18

Phys Rev E. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Gordon AM, Huxley AF, Julian F. J. Physiol. 1966; 184:170. [PubMed: 5921536] 

36. Hai CM, Murphy RA. Am. J. Physiol. 1988; 254:C99. [PubMed: 3337223] 

37. Brook B, Jensen O. Math. Med. Biol. 2014; 31:99. [PubMed: 23360777] 

38. Dong C, Chen B. Sci. Rep. 2016; 6:19506. [PubMed: 26786569] 

39. Chen B. J. Appl. Mech. 2013; 80:1.

40. Julicher F, Kruse K, Prost J, Joanny J. Phys. Rep. 2007; 449:3.

41. Hill A. Proc. R. Soc. London, Ser. B. 1938; 126:136.

42. Pereverzev YV, Prezhdo OV. Phys. Rev. E. 2006; 73:050902.

43. Chakrabarti, B., Benguigui, LG. Statistical Physics of Fracture and Breakdown in Disordered 
Systems. Clarendon Press; Oxford: 1997. 

44. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. Proc. Natl. Acad. Sci. USA. 2002; 
100:1484.

45. Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux 
B. Soft Matter. 2008; 4:1836.

46. Trichet L, LeDigabel J, Hawkins RJ, Vedula SRK, Gupta M, Ribrault C, Hersen P, Voituriez R, 
Ladoux B. Proc. Natl. Acad. Sci. USA. 2012; 109:6933. [PubMed: 22509005] 

47. Walcott S, Sun SX. Proc. Natl. Acad. Sci. USA. 2009; 107:7757.

48. Thery M, Pepin A, Dressaire E, Chen Y, Bornens M. Cell Motil. Cytoskel. 2006; 63:341.

49. Bischofs I, Klein F, Lehnert D, Bastmeyer M, Schwarz U. Biophys. J. 2008; 95:3488. [PubMed: 
18599642] 

50. Vernerey F, Farsad M. Comput. Methods Biomech. Biomed. Eng. 2011; 14:433.

51. Dailey H, Ricles LM, Yalcin HC, Ghadiali SN. J. Appl. Physiol. 2008; 106:221. [PubMed: 
19008489] 

52. Vargas-Pinto R, Gong H, Vahabikashi A, Johnson M. Biophys. J. 2013; 105:300. [PubMed: 
23870251] 

53. Kwon, YW., Bang, H. The Finite Element Method Using MATLAB. CRC Press; Boca Raton, FL: 
2000. 

54. Dowling EP, Ronan W, Ofek G, Deshpande VS, McMeeking RM, Athanasiou KA, McGarry JP. J. 
R. Soc. Interface. 2012; 9:3469. [PubMed: 22809850] 

55. Kim K-Y, Kovács M, Kawamoto S, Sellers JR, Adelstein RS. J. Biol. Chem. 2005; 280:22769. 
[PubMed: 15845534] 

56. Wang F, Kovacs M, Hu A, Limouze J, Harvey EV, Sellers JR. J. Biol. Chem. 2003; 278:27439. 
[PubMed: 12704189] 

57. Warshaw DM, Desrosiers JM, Work SS, Trybus KM. J. Cell Biol. 1990; 111:453. [PubMed: 
2143195] 

58. Harris DE, Work SS, Wright RK, Alpert NR, Warshaw DM. J. Muscle Res. Cell Motil. 1994; 
15:11. [PubMed: 8182105] 

59. Cuda G, Pate E, Cooke R, Sellers JR. Biophys. J. 1997; 72:1767. [PubMed: 9083681] 

60. Molloy JE, Burns JE, Sparrow JC, Tregear RT, Kendrick-Jones J, White DC. Biophys. J. 1995; 
68:298S. [PubMed: 7787095] 

61. Linari M, Caremani M, Piperio C, Brandt P, Lombardi V. Biophys. J. 2007; 92:2476. [PubMed: 
17237201] 

62. Lewalle A, Steffen W, Stevenson O, Ouyang Z, Sleep J. Biophys. J. 2008; 94:2160. [PubMed: 
18065470] 

63. Barclay CJ. J. Muscle Res. Cell Motil. 1998; 19:855. [PubMed: 10047985] 

Vernerey and Akalp Page 19

Phys Rev E. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 1. 
Overview of the contractile machinery of adherent cells from the molecular to the micron 

scale. (a) At the molecular scale, the dynamics of contraction starts from the motion of 

myosin motors that can attach to actin filaments and walk along them via coordinated 

configurational changes of the myosin head powered by ATP. The stability of these cross 

bridges is affected by the applied load f. In this study, this unit is modeled by a series of 

three elements comprised of a contractile element (whose contraction rate is υs), a compliant 

element of stiffness k, that captures the elasticity of the cross bridge and an “adhesive” 

element that represents the bond between actin and myosin. (b) A SF segment is primarily 

made of aligned and polarized actin filaments cross linked by a series of thick actin 

myofilaments whose motion along the actin tracks is facilitated by the motion of cross 

bridges. The overall SF contraction strain and force depend on the force generated by each 

individual myosin head and the number of attached actomyosin bonds, whose fraction is 

represented by the variable η. This organization can be represented by a parallel assembly of 

single cross-bridge elements shown in (a) which may be in an attached and detached state. 

(c) Assembled in series, these segments make up SFs which constitute the main contractile 

element of adherent cells. SFs typically organize into a well aligned network whose 

elements can span a cell between two adhesion points. υs is the sliding velocity, f is the 

external force against contraction, k is the actomyosin bond stiffness, Δds is the contraction, 

Δde is the elastic stretch of the bond, η is the ratio of the number of attached cross bridges to 

that of total available cross bridges N(Δds) at contraction Δds.
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FIG. 2. 
(a) Energy landscape of the actomyosin bond in the direction of applied force. The bond 

needs to go over the energy barrier (or transition state) in order to switch from its bound to 

unbound state. For a catch bond, the height of the energy barrier increases with moderate 

force until it starts decreasing for larger magnitude. This ultimately yields a force-induced 

stabilization of the bond. (b) Relationship between the height ΔEb of the energy barrier and 

applied force as predicted by the Pereverzev and Prezhdo model [42] used in this study, for 

different values of bond catchiness α⋆. The case α⋆ = 0 corresponds to a slip bond response.
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FIG. 3. 
Effect of (a) local (on a single cross bridge) and (b) global (on the full SF segment) force on 

the fraction η of bound actomyosin bonds in the SF segment in the absence of cell 

contraction (υs = 0). Predictions are shown in the case of an actomyosin slip bond α* = 0, 

moderate catch bond α* = 0.5, and strong catch bond α* = 1. These results clearly show the 

force-induced stabilization of the cross bridges as the bond catchiness is increased (a). They 

also show a dramatic disassembly of the actomyosin bundle when the applied force F* 

reaches its critical value (b). f* = f/ζ and F* = F/ζ.
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FIG. 4. 
Investigation of a SF segment as it is contracting under a constant load F* = F/ζ for different 

values of normalized bond catchiness α⋆ = 0,0.5 and 1. Top figures: (a) fraction of attached 

cross bridge η and (b) force f⋆ = f/ζ on an active cross bridge as a function of time for F* = 

1.2. Bottom figures: (c) normalized steady state SF contraction  and (d) 

activation a = η * N(Δds)/(NxNy) of an SF segment as a function of applied force F*. The 

symbols + and □ indicate the points at which the SF segment stalls and ruptures, 

respectively.
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FIG. 5. 
Investigation of a SF segment as it is contracting against a spring of normalized stiffness K* 

= K/k for different values of normalized bond catchiness (α⋆ = 0, 0.5, and 1). Top figures: 

time evolution of (a) η and (b) shortening velocity  for a spring stiffness K* = K/k 
= 0.5. Bottom figures: (c) Relationship between the external stiffness K* = K/k and the 

contractile force F⋆ = F/ζ applied by the control segment at steady state for different values 

of bond catchiness α⋆. The relationship between maximum contractile force  and bond 

catchiness is shown in (d).
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FIG. 6. 
(a) Schematic of a two-dimensional adherent cell on microposts of length (Lp) within which 

the contraction of the SF cytoskeleton is balanced with micropost bending (tip deflection Δ) 

and cortical tension. In the equivalent two-dimensional problem, the anchoring point for SFs 

is divided into two domains: the tip of microposts Ω1 and the cortical membrane Ω2. (b) The 

microposts resist SF traction by providing a reaction expressed by (14) while the cortical 

tension balances these forces through bending as expressed in (15). (c) In its initial state, the 

cytoskeleton is modeled with an isotropic and random distribution of SF spanning adhesion 

points and whose length follows an exponential distribution expressed in (13).
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FIG. 7. 
(a), (b) Effect of cell area on contractility. (a) Predicted SF distribution for smooth muscle 

cells (BPASMC) lying an a micropillar substrate consisting of 4, 9, and 16 pillars, 

respectively, all assuming α* = 1. With a fixed pillar radius and spacing of 1.5 and 6 µm, the 

cell spreading areas are respectively 140, 440, and 900 µm2, consistent with experimental 

conditions presented in the work of Tan et al. The density of anchoring sites for SFs used to 

match experimental results are respectively 7 per µm2 on the pillar surfaces and 6 per µm on 

the cortex. The micropost bending sitiffness is 32 nN/µm [44]. (b) The average force per 

pillar was computed for the three cell sizes under the hypothesis of an actomyosin slip bond 

(α* = 0), moderate catch bond (α* = 0.5), and strong catch bond (α* = 1). The predicted 

values are compared with experimental results represented by vertical bars (whose positions 

and lengths depict the mean and standard deviations of the measurements [44]). (c), (d) 

Dynamics of fibroblast contraction as a function of substrate stiffness. (c) The evolution of 

contraction with force was investigated with a square cell lying on four pillars, for which the 

effective stiffness K = 3EpIp/h3 [Eq. (14)] was varied between 12 and 80 nN/µm. For these 

simulations, the density of SF anchoring sites was chosen to be 9 per µm2 on the pillar 

surface and 12 per µm on the cortex. The curves show the evolution of the contractile force 

per pillar in time as predicted by the model for α⋆ = 1 (solid lines) and measured 

experimentally for the fibroblast cells (REF52) investigated in Trichet et al. [46]). (d) Role 

of bond catchiness on the rate of cell contraction at early times (t = 0) as a function of 

micropost stiffness (K is comprised between 0 and 80 nN/µm). The dashed line and vertical 

bars (mean and standard deviations) are experimental data taken from the study of Trichet et 
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al. [46]. The density of SF anchoring sites were chosen as 10 per µm2 on pillars and 12 per 

µm on the cortex, respectively, while the micropost radius and spacing are 1.5 and 6 µm, 

respectively.
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FIG. 8. 
(a) Time sequence of the SF activation a = N(δs)η/(NxNf) of a fibroblast cell (NIH/3T3) on 

micropost studied by McGarry et al. [12]. The radius, spacing, and stiffness of the 

microposts are 1.5, 10 µm and 80 nN/µm, respectively. For this simulation, the density of SF 

anchoring site was chosen to be 8 per µm2 on the pillars and 6 per µm on the cortex, 

respectively. (b) Corresponding average force per pillar shown as a function of time for three 

types of actomyosin bonds as characterized by α⋆ ranging from strong catch bond (α⋆ = 1) 

to slip bond (α⋆ = 0). Circles correspond to time points I, II, and III in (a) while the dashed 

line shows steady state experimental measurements from [12].
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FIG. 9. 
Schematic of the assembly of the comprising elements: cortex, pillars, and SFs. There are 

nodes only on the cell boundary, which are shared by either SF cortex or SF pillar coupling.
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FIG. 10. 
Algorithm used to solve (A7)–(A9).
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FIG. 11. 
Parametric study of actomyosin bond stiffness (k = 10, 100, and 2000 pN/µm) using the 

control segment connected to a linear spring. (a) Normalized contractile force F* = F/ζ as a 

function of normalized external stiffness K* = K/2000. One sees that the stiffness sensing 

ability of the SFs increases with bond stiffness k. (b) Activation parameter a versus time for 

K* = 0.5. The rate of cross-bridge activation also increases with bond stiffness k.
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TABLE I

Parameters for the SF model.

Parameter Meaning Value

Δx Width of the energy barrier 3 nm [28]

f0 Normalizing force 2.2 pN

E0 Reference energy of catch bond 1.98−19 J

α Bond catchiness 2.4 kBT

Nx Number of myosin heads per filament 20 [17]

Nf Number of myosin filament per bundle 10 [29,30]

l Length of the control segment 1 µm [29,30]

T Absolute temperature 300 K

ζ Stall force 5 pN [31]

k Actomyosin bond elasticity 600 pN/µm [32,33]

υ Maximum contraction velocity of SF 1 µm/s [34]

Phys Rev E. Author manuscript; available in PMC 2017 August 03.


	Abstract
	I. MODELING STRESS FIBERS AS ACTIVE VISCOELASTIC FILAMENTS
	A. Active viscoelastic model
	B. Actomyosin catch bonds
	C. Stress fiber mechanosensitivity

	II. FROM STRESS FIBER TO CYTOSKELETON
	A. Cellular scale mechanosensitivity
	B. Mechanosensitive organization of the cytoskeleton

	III. CONCLUSION
	APPENDIX A
	References
	FIG. 1
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8
	FIG. 9
	FIG. 10
	FIG. 11
	TABLE I

