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Abstract

Comparative transcriptomics has gained increasing popularity in genomic research thanks to the 

development of high-throughput technologies including microarray and next-generation RNA 

sequencing that have generated numerous transcriptomic data. An important question is to 

understand the conservation and divergence of biological processes in different species. We 

propose a testing-based method TROM (Transcriptome Overlap Measure) for comparing 

transcriptomes within or between different species, and provide a different perspective, in contrast 

to traditional correlation analyses, about capturing transcriptomic similarity. Specifically, the 

TROM method focuses on identifying associated genes that capture molecular characteristics of 

biological samples, and subsequently comparing the biological samples by testing the overlap of 

their associated genes. We use simulation and real data studies to demonstrate that TROM is more 

powerful in identifying similar transcriptomes and more robust to stochastic gene expression noise 

than Pearson and Spearman correlations. We apply TROM to compare the developmental stages of 

six Drosophila species, C. elegans, S. purpuratus, D. rerio and mouse liver, and find interesting 

correspondence patterns that imply conserved gene expression programs in the development of 

these species. The TROM method is available as an R package on CRAN (https://cran.r-

project.org/package=TROM) with manuals and source codes available at http://www.stat.ucla.edu/

~jingyi.li/software-and-data/trom.html.
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1 Introduction

Comparative genomics is an important field that addresses evolutionary questions and 

studies developmental processes across distant species [17]. Studying transcriptomes is 

essential for understanding functions of genomic regions and interpreting regulatory 

relationships of multiple genomic elements [25]. Comparing transcriptomes of the same 
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species can reveal molecular mechanisms behind the occurrence and progression of 

important biological processes, such as organism development and stem cell differentiation 

[12,19]. Comparing transcriptomes of different species can help understand the conservation 

and differentiation of these molecular mechanisms in evolution [14]. High-throughput 

technologies have generated large amounts of publicly available transcriptomic data, 

creating an unprecedented opportunity for comparing multi-species transcriptomes under 

various biological conditions.

Finding the transcriptomic similarity and disparity of biological samples is a key step to 

understand the underlying molecular mechanisms common or unique to them. It is desirable 

to have a transcriptomic similarity measure that can lead to a clear correspondence pattern of 

biological samples from the same or different species. Correlation analysis is a classical 

approach for comparing transcriptomes based on gene expression data. Commonly used 

measures are Pearson and Spearman correlation coefficients, both of which have played 

important roles in biological discoveries [1,16,20]. However, in most scenarios neither of 

them can produce a clear correspondence pattern among biological samples. The main 

reason is the existence of many housekeeping genes, which would inflate correlation 

coefficients. Moreover, correlation measures rely heavily on the accuracy of gene expression 

data and are susceptible to the low signal-to-noise ratios of lowly expressed genes. 

Therefore, it is often difficult to use correlation analysis to find a clear correspondence 

pattern of transcriptomes.

Here we introduce a new testing-based measure—transcriptome overlap measure (TROM)—

to find correspondence of transcriptomes in the same or different species. The measure is 

based on testing the overlap of “associated genes,” which represent transcriptomic 

characteristics of biological samples. For the purpose of discovering sparse sample 

relationships, we define a sample correspondence map as the binarized mapping pattern 

resulted from a sample similarity matrix: a none-zero value means that two samples are 

mapped to each other, while a zero value means that two samples are unmapped. We show 

that compared to Pearson and Spearman correlations, TROM has better power to detect 

transcriptome correspondence in simulations and leads to clearer correspondence maps of 

developmental stages within and between multiple species in real data studies. TROM also 

provides a systematic approach for selecting associated genes of every biological sample. 

We show that these associated genes can well capture transcriptomic characteristics and help 

construct developmental trees in multiple species. In addition, we demonstrate that TROM is 

robust to data normalization and high-throughput platform difference.

In Sect. 2, we describe the TROM method including the identification of associated genes, 

the calculation of TROM scores, and the selection of a threshold parameter. In Sect. 3, we 

present real data applications of TROM to large-scale transcriptomic data sets, power 

analysis of TROM versus Pearson and Spearman correlations, demonstration of the 

robustness of TROM to data normalization and platform difference, and bioinformatic 

analyses of the TROM results.
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2 Method

2.1 Associated Genes and TROM Scores

Our method focuses on selecting associated genes to perform a gene set overlap test [14], 

which will lead to TROM scores that can be used to compare biological samples. We define 

associated genes of a sample using the following criterion: the genes that have z-scores 

(normalized expression levels across samples) ≥ z in the sample, where z is a threshold that 

can be selected in a systematic approach (please see Sect. 2.2) or set by users. Based on this 

definition, associated genes of a sample are those with higher expression in the sample 

compared to a few other samples. In other words, associated genes are highly expressed in 

the sample of interest but not always highly expressed in all samples, and they are a superset 

of sample specific genes. Hence, associated genes capture gene expression characteristics of 

a sample, and these characteristics are either specific to the sample or shared by a few other 

samples but not all samples. Associated genes provide a basis for comparing biological 

samples. We compare two biological samples by statistically testing the dependence of their 

associated genes: to compare two samples of the same species, we calculate the significance 

of the number of their overlapping associated genes (resulting in a within-species TROM 

score); to compare two samples of different species, we calculate the significance of the 

number of orthologous gene pairs in their associated genes (resulting in a between-species 

TROM score).

We consider the two sample-associated gene sets as two samples drawn from the gene 

population. In the within-species scenario, we denote the number of biological samples of a 

given species as m, and use Xi and Xj (i, j = 1, 2, …, m) to denote the associated genes of 

samples i and j to be compared. The gene population consists of all genes of the given 

species, and the size of the gene population is denoted as N. Then to test for the null 

hypothesis that Xi and Xj are two independent samples drawn from the gene population 

versus the alternative hypothesis that Xi and Xj are dependent samples, the p-value for 

within-species comparison between samples i and j is calculated as

(1)

In the between-species scenario, we denote the numbers of biological samples from species 

1 and 2 as m1 and m2. The gene population consists of all orthologous gene pairs between 

the two species, and the number of pairs is denoted as N. The ortholog pairs can be 

represented as a two-column table with N rows. We use Xi (i = 1, 2, …, m1) and Yj (j = 1, 2, 
…, m2) to denote the orthologous gene pairs (i.e., rows in the table) that overlap with the 

associated genes of sample i in species 1 and sample j in species 2, respectively. In other 

words, Xi (or Yj) represents the orthologous gene pairs that contain the associated genes in 

sample i of species 1 (or sample j of species 2). Then to test for the null hypothesis that Xi 
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and Yj are two independent samples drawn from the population of orthologous gene pairs 

versus the alternative hypothesis that Xi and Yj are dependent samples, the p-value for 

between-species comparison of the two samples is calculated as

(2)

Then we define the within-species or between-species TROM score as

(3)

which describes transcriptome similarity of two biological samples. A larger TROM score 

represents greater similarity.

2.2 Selection of z-Score Threshold

The selection of the z-score threshold z will directly influence the sensitivity and specificity 

of sample-associated genes and thus affect the resulting TROM scores. If z is too small, a 

large number of associated genes will be selected for every sample and more associated 

genes will be shared by different samples, and thus it becomes difficult to distinguish 

different biological samples. If z is too large, only a small number of associated genes will 

be identified for each sample and potentially informative genes could be filtered out, and 

thus no similarity of biological samples will be captured by TROM. Although the selection 

of z is ultimately subject to users’ preference for the resulting correspondence maps (a larger 

z for a sparser map or a smaller z for a denser map), we propose an objective approach to 

choose an appropriate threshold when no prior knowledge is available. Our approach aims at 

balancing two goals: (1) the threshold should help minimize noisy correspondence of 

biological samples and thus leads to a sparse correspondence map; (2) the threshold should 

help preserve strong correspondence of samples and thus leads to a stable correspondence 

map.

We use the mean of TROM scores of all pairwise comparisons of biological samples in the 

correspondence map as the objective function, which is defined as

(4)

where m is the number of biological samples, A(z) = (aij (z))m×m is the TROM score matrix 

based on threshold z. We select the desirable threshold z* by the following approach. 
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Considering our goal (2), we would like u(z) to be stable for z values near z*. Since similar 

u(z) values would lead to a peak in the density of u(z), denoted as f(u), we consider the z 
values corresponding to the peak, that is, {z : u(z) = mode(u)}, where mode(u) = arg maxu 

f(u) (i.e., the u value that maximizes the density of f(u) for u = u(z) with z ∈ [−2, 3]). Also 

considering our goal (1), we would like to select z* as the largest z value that leads to the 

stable region of u(z). Hence, we find z* as

(5)

where u = u(z) for z ∈ [−2, 3]. If users desire a sparser correspondence map, we suggest an 

alternative approach to finding the z-score threshold as z* = sup{z : u(z) = mode(u) + sd(u)}, 

where sd(u) stands for the standard deviation of the u(z) values. According to Lemma 1 and 

also our empirical observation, [−2, 3] is a large enough region to capture the peak with low 

computational intensity, as the u(z) values are close to 0 outside of this region.

As shown in Lemma 1, an important feature of u(z) is that it approaches 0 when the absolute 

value of z is large. This is because the entire gene population will be selected as associated 

genes when the threshold z is small enough while no genes will be selected when z is large 

enough. In both extreme cases, the resulting TROM score is 0 for any pair of samples. 

Because of this feature and the non-negativity of u(z), u(z) must have a maximum at a 

certain value of z. The observed unimodal shape is a typical feature of u(z) for the various 

species we have investigated.

Lemma 1—u(z) → 0 as |z| → ∞.

Proof: Because of the criterion of selecting associated genes: z-scores ≥ z, for within-

species comparison between samples i and j, whose sets of associated genes are denoted as 

Xi and Xj, we have

• as z → −∞, |Xi | → N, |Xj| → N, and |Xi ∩ Xj| → N, where N is the number of 

all genes of the species;

• as z → ∞, |Xi | → 0, |Xj| → 0, and |Xi ∩ Xj | → 0.

Given the p-value formula (Eq. (1)) of the within-species overlap test in TROM, we have

• as |Xi| → N, |Xj| → N, and |Xi ∩ Xj| → N, p-value → 1;

• as |Xi | → 0, |Xj| → 0, and |Xi ∩ Xj| → 0, p-value → 1.

For between-species comparison between samples i from species 1 and sample j from 

species 2, whose associated genes correspond to ortholog pairs denoted as Xi and Yj, and 

between Xi and Yj there are | Xi ∩ Yj| ortholog pairs, we have

• as z → −∞, |Xi | → N, |Yj| → N, and |Xi ∩ Yj| → N, where N is the total 

number of ortholog pairs between the two species;

• as z → ∞, |Xi| → 0, |Yj| → 0, and |Xi ∩ Yj| → 0.
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Given the p-value formula (Eq. (2)) of the between-species overlap test in TROM, we have

• as |Xi| → N, |Yj| → N, and |Xi ∩ Yj| → N, p-value → 1;

• as |Xi | → 0, |Yj| → 0, and |Xi ∩ Yj| → 0, p-value → 1.

So for both within-species and between-species comparisons, we have TROM score aij (z) 

→ 0 as |z| → ∞ given Eq. (3).

Hence, given the definition of u(z) in Eq. (4), we have u(z) → 0 as |z| → ∞.

Using this proposed approach, we can easily select a z-score threshold for a specified 

species given its gene expression data. We demonstrate how this approach can select an 

appropriate threshold for comparing D. melanogaster developmental stages by applying it to 

the RNA-seq data of m = 30 stages. We consider candidate thresholds in the range of zε[−2, 
3] and calculate TROM matrices for all the candidate values in this range with a step size of 

0.1. The corresponding u(z) is plotted in Fig. 1a.

From the density of u(z) (see Fig. 1b), we determine that the mode of u(z) is 1.42. By 

finding the maximum z value such that u(z) = 1.42, our approach selects z* = 0.5. Figure 1c 

show how different z-score thresholds influence the patterns of correspondence maps. When 

the threshold is too low (e.g., −0.4), many stage pairs are mapped to each other, providing 

vague information on the relationships of different stages. On the other hand, when the 

threshold is too high (e.g., 2.0), so much information is filtered out that most stages are only 

mapped to themselves, and important correspondence such as the similarity between fly 

early embryos and female adults is missing [14]. Unlike the two extremes, our selected 

threshold 0.5 reveals important correspondence patterns and meanwhile yields a clean 

correspondence map.

3 Results

3.1 Application of TROM to Finding Correspondence of Developmental Stages of Multiple 
Species

We first demonstrate the use and the performance of TROM in comparative transcriptomics. 

We apply TROM to find correspondence patterns of developmental stages of six Drosophila 
(fly) species, C. elegans (worm), S. purpuratus (sea urchin), D. rerio (zebrafish) and mouse 

liver tissues. The goal is to find similarity of developmental stages within and between 

species in terms of gene expression dynamics. We use multiple datasets including RNA-seq 

data of 30 D. melanogaster developmental stages with expression estimates of 15,095 genes, 

RNA-seq data of 35 C. elegans stages with 31,622 genes [9,14], RNA-seq data of 10 sea 

urchin stages with 21,090 genes [22], microarray data of six fly species: D. melanogaster, D. 
simulans, D. ananassae, D. persimilis, D. pseudoobscura and D. virilis with 9 to 13 

embryonic stages and 3663 genes [1], microarray data of mouse liver development with 14 

stages and 45, 101 genes [15] and microarray data of D. rerio with 61 stages and 18,259 

genes [6]. To implement TROM on these gene expression datasets, we select z-score 

thresholds based on the alternative approach described in Sect. 2.2, and the selected 

thresholds for various species are summarized in Appendix Table 2 and used throughout this 
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paper unless otherwise specified. A detailed description of these datasets is given in 

Appendix Table 3.

In the comparison of developmental stages within each species, the TROM method finds 

block diagonal correspondence patterns as expected. That is, in every species, adjacent 

developmental stages close to each other in the time order have high TROM scores. We 

illustrate the correspondence maps of developmental stages of mouse liver (Fig. 2a), sea 

urchin (Fig. 2b) and the six Drosophila species (Appendix Fig. 7). These results provide 

strong support to the efficacy and validity of TROM in finding transcriptomic similarity of 

biological samples, in addition to our previous results on the correspondence of D. 
melanogaster and C. elegans stages based on RNA-seq data [14], to which we applied the 

preliminary idea of TROM.

We also apply TROM to compare the developmental stages of two different species. We use 

ortholog information downloaded from Ensembl [4] in the comparison. Since fly, worm, and 

mouse are vastly distant from each other in evolution, any correspondence between their 

developmental stages revealed by TROM will be interesting and may imply conserved 

developmental programs. Between D. melanogaster life cycle and mouse liver development 

(Fig. 2d), TROM finds unknown correspondence between fly early embryos and mouse 

embryo liver tissues, and between fly female adults and mouse embryo liver tissues. A main 

reason for the latter correspondence is the transcriptomic similarity of fly early embryos and 

female adults due to the expression of maternal effect genes [14]. Additionally, there is some 

irregular correspondence between fly larvae and liver tissues of born mice. We can see a 

clear separation of the liver tissues of mouse embryos and born mice, and their 

corresponding fly stages also exhibit a separation of embryos and female adults from other 

stages. These results indicate that even for vastly different species such as fly and mouse, 

there is good conservation in their embryonic development. Similarly between the six 

Drosophila species’ embryonic development and mouse liver development, we also see good 

correspondence of fly early embryos and mouse embryo liver tissues, and correspondence 

between fly late embryos and mouse adult liver tissues (Appendix Fig. 7). Moreover, mouse 

embryo liver tissues are observed to correspond well with worm embryos, and this is 

consistent with the observed correspondence between fly embryos and worm embryos 

(Appendix Fig. 7). These consistent correspondence patterns together validate the efficacy of 

the TROM approach.

Between the six Drosophila species, since they are known to have similar developmental 

programs [1], comparisons of their developmental stages resemble within-species 

comparisons, and block diagonal correspondence patterns are expected. Our results confirm 

this: diagonal patterns are observed between the developmental stages of every two fly 

species (Appendix Fig. 7). These results again demonstrate the validity of TROM.

3.2 Comparison of TROM and Pearson/Spearman Correlation Measures

We next describe the scenarios where TROM serves as a better similarity measure than 

Pearson/Spearman correlation measures in differentiating the stage pairs, which exhibit high 

dependence in highly expressed genes, from other stage pairs. A key difference between our 

TROM method and the Pearson/Spearman correlation analysis is that TROM divides genes 
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into two sets (associated genes and non-associated genes) for every sample based on gene 

expression dynamics across all samples. After the division, calculation of TROM scores 

does not rely on actual gene expression measurements. Henceforth, TROM defines sample 

similarity based on the overlap of their associated genes. In contrast to TROM, Pearson and 

Spearman correlations are calculated based on actual expression measurements of the same 

set of genes in two samples. Hence, they are more sensitive to expression fluctuations of 

lowly expressed genes due to measurement errors, and their values can be driven high by the 

genes (e.g., housekeeping genes) that have approximately constant expression across 

samples and carry little information on sample characteristics. For our goal of constructing a 

sparse sample correspondence map based on gene expression, Pearson and Spearman 

correlation measures are often unsatisfactory, as they give rise to noisy correspondence maps 

(Appendix Figs. 8, 9).

To demonstrate the power of TROM in detecting the correspondence of biological samples 

that share transcriptomic characteristics embedded in highly expressed genes, we conduct a 

simulation study to compare TROM with Pearson and Spearman correlation measures. 

Specifically, we consider their values as classification scores to differentiate the sample pairs 

with strong dependence in highly expressed genes from the rest sample pairs. We evaluate 

their performance in terms of classification accuracy.

Suppose a species of interest has a total number of N genes and m samples. For the observed 

data, let Xj = (X1j, …, XNj)T denote the expression vector of the N genes in sample j. For the 

underlying (hidden) sample similarity, we use a state matrix Em×m to denote the pairwise 

relationships between the m samples. That is, if sample i and j have high dependence in their 

associated genes, Eij = 1; otherwise Eij = 0. We consider how to predict Eij for every pair 1 ≤ 

i ≠ j ≤ m from gene expression matrix as a classification problem. We would like to compare 

the three measures in this setting and evaluate their performance as classification scores 

using precision-recall curves, receiver operating characteristic (ROC) curves, and Neyman–

Pearson ROC curves [21].

In this simulation, we define the state matrix Em×m based on a correlation matrix of 

associated genes. Specifically, in the example of comparing developmental stages, we 

assume a Toeplitz-type correlation matrix Σ where Σij = ρ|i− j| (i, j = 1, 2, …, m; ρ ∈ [0, 1]), 

which is reasonable as it assigns a higher correlation to more adjacent stage pairs. To reduce 

arbitrariness in defining E based on Σ, we vary a threshold c ∈ (0, 1) and define E as

(6)

and we would like to track how the classification accuracy of the three measures changes as 

the parameter c changes.

We use the following generative model to simulate gene expression matrices. We let IN ×m 

be an indicator matrix, with Iij = 1 if gene i is an associated gene of sample j and Ii j = 0 
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otherwise. Given the correlation matrix Σ, we assume that the ith row Ii ∈ {0, 1}m is a 

binary vector randomly sampled from a multivariate Bernoulli distribution with expectation 

q × 1m×1 (q ∈ (0, 1) inferred from real data) and correlation matrix Σ. Given the associated-

gene indicator matrix IN×m, we generate a gene expression matrix in a data-driven approach, 

because gene expression values in real data contain noises and cannot be easily described by 

any common probability distributions. We first scale a real gene expression matrix YN×m by 

dividing each of its rows by the row maximal values, denoted by Yscale. Then for each gene i 
= 1, 2, …, N, we locate its closest counterpart in real data by searching for gene i′ in Yscale 

such that the ith row  and Ii has the minimal Euclidean distance. Given Yi′, the i′th 

row of Y, we define sets Ai′ = {Yi′j : gene i′ is an associated gene in sample j, j = 1, …, m} 

and  to collect the 

expression values of gene i′ when it is identified as associated or not associated with real-

data samples, based on a pre-determined z-score threshold z*. Finally, we create a gene 

expression matrix XN×m as follows: for gene i in sample j, if Iij = 1, we randomly sample the 

value of Xij from Ai′ ; if Ii j = 0, we randomly sample the value of Xi j from .

Using this generative model, we simulate K = 200 gene expression matrices of the same 

species. We denote the matrices as X(k), k = 1, …, K. Then we calculate the similarity score 

matrices based on the three similarity measures. For TROM, to determine the associated 

genes and non-associated genes of each sample, we calculate the z-score threshold based on 

X(k) using the method introduced in Sect. 2.2. The resulting TROM score matrix is denoted 

as T(k). The Pearson and Spearman correlation matrices are denoted as P(k) and S(k), 

respectively. Please note that T(k), P(k) and S(k) are all m × m matrices, with the same 

dimensions as E.

To perform classification based on the score matrices of the three measures, we apply 

multiple cutoffs to the matrices and calculate the resulting precision and recall rates. For 

example, if we use cT as the cutoff for TROM scores, for k = 1, 2, …, K we have predicted 

class labels

The precision and recall rates of TROM in the kth run are then calculated as
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Similarly, we can calculate the precision and recall rates of Pearson/Spearman correlation by 

applying varying cutoffs on P(k) and S(k) respectively.

We carry out this simulation study in the context of D. melonagaster (fly) and C. elegans 
(worm). For fly, we have N = 10,000, m = 30, q = 0.15, z* = 0.5; for worm, we have N = 

10,000, m = 35, q = 0.2, z* = 0.6. In both cases, we set ρ = 0.5 and let c take four different 

values: 0.3, 0.2, 0.1, 0.05. The real data used to generate the simulated gene expression 

matrices are processed from modENCODE RNA-seq data of 30 fly developmental stages 

and 35 worm developmental stages [9,14]. The precision-recall curves of the three measures 

are illustrated in Figs. 3 and 4. In both cases, we see that TROM produces clearer sparse 

patterns of sample similarity (Figs. 3a vs. b, c and 4a vs. b, c), and for predicting stage-pair 

labels defined by different threshold c values, TROM always has the largest area under the 

precision-recall curves (Figs. 3e, f, 4e, f, in terms of both the mean area and the 95 % 

confidence intervals from the K = 200 simulation runs). We also calculate Receiver 

Operating Characteristic (ROC) and the Neyman–Pearson Receiver Operating Characteristic 

(NP-ROC [21]) curves of the three measures in each case (see Appendix Fig. 10), and 

TROM still has the best classification accuracy.

In this classification setting, TROM scores, Pearson correlations, and Spearman correlations 

are essentially three ways of transforming a gene expression matrix into features of sample 

pairs. The above simulation results suggest that TROM scores serve as better features for 

this task, that is, to capture the sparse similarity relationships of samples. The main reason is 

that TROM scores are based on gene expression levels of all samples, while Pearson and 

Spearman correlations only capture the similarity of gene expression profiles for every pair 

of samples.

In addition, we directly compare TROM with Pearson and Spearman correlation coefficients 

on the two real datasets of fly and worm used in the simulation. In our previous work [14], 

we applied the preliminary idea of TROM to compare the developmental stages within each 

species and between the two species, and found interesting correspondence patterns: a block 

diagonal pattern for within-species comparison and two parallel patterns between fly and 

worm developmental stages. When using Pearson and Spearman correlations on the same 

data to compare these stages, however, we find that neither correlation measure leads to clear 

correspondence patterns in the between-species comparison (Appendix Fig. 8). in the 

within-species comparison, Spearman correlation finds a vague diagonal pattern, while 

Pearson correlation leads to an unreasonable checkerboard pattern. We also calculate 

Pearson and Spearman correlation matrices based on the union of all the stage-associated 

genes found by TROM. However, correlation methods still cannot provide clear 

correspondence maps like TROM does (Appendix Fig. 9).

3.3 Robustness of TROM to Data Normalization

Since quantile normalization has been suggested as an essential step in many analysis 

pipelines for high-throughput data such as microarray and RNA-seq data [3,11], we conduct 

a simulation study to demonstrate the influence of quantile normalization on TROM scores. 

We simulate 200 gene expression matrices and compute their TROM scores with or without 

Li et al. Page 10

Stat Biosci. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



quantile normalization as a preceding step. Then we test if the distribution of TROM scores 

changes with the use of quantile normalization.

We use the same procedure as what described in Sect. 3.2 to generate 200 gene expression 

matrices based on the modENCODE RNA-seq data of 35 worm developmental stages. By 

applying the TROM method to these gene expression matrices before or after quantile 

normalization, we obtain two sets of TROM matrices T(0k) and T(1k), k = 1, 2, …, 200. For 

each pair of samples, say samples i and j, we have two sets of TROM scores  and . 

We then use the Wilcoxon signed-rank test and separately the paired Student’s t test to check 

whether the TROM scores change significantly before and after quantile normalization. We 

consider the change as significant if the Bonferroni-corrected p-value is smaller than 0.05. 

The results are shown in Fig. 5.

The results of both tests suggest that TROM is robust to unnormalized data, and the 

correspondence patterns resulted from TROM scores do not change significantly after 

quantile normalization. Even in the two rare cases where the p-values are significant (Fig. 

5b), the corresponding samples are consistently mapped before and after normalization. We 

also try to replace the gene expression data with their normalized version in Sect. 3.2, and 

the confidence intervals of TROM’s area under the curve (AUC) remain the same. This 

result implies that the classification power of TROM is also robust to data normalization.

3.4 Robustness of TROM to Different Platforms: Comparison of D. melanogaster 
Developmental Stages Based on Microarray and RNA-seq Data

Although many studies have claimed that RNA-seq is the technique of choice that provides 

more accurate estimation of absolute gene expression levels compared with microarray 

[8,26], several genome-wide analyses have also suggested that microarray can measure the 

expression of above-median expressed genes reasonably well, and on those genes the two 

platforms have good concordance [24]. Since microarray has been widely used to study 

transcriptomes of multiple species under various conditions in the past decade, it is desirable 

to have a good comparative transcriptomic method that is robust to the platform difference 

of microarray and RNA-seq data.

Here we demonstrate the robustness of TROM by applying it to comparing the microarray 

and RNA-seq data of the developmental stages of D. melanogaster. If TROM is robust, it 

should identify strong correspondence between similar developmental stages in the 

microarray and RNA-seq data. For a pair of developmental stages, one with microarray data 

and the other with RNA-seq data, TROM identifies a set of associated genes for each of 

them based on all the stages with microarray and RNA-seq data, respectively. Then TROM 

performs the overlap test and produces a correspondence map. The results show that TROM 

can find almost perfect correspondence of the same D. melanogaster embryonic stages 

between microarray or RNA-seq (Fig. 2c). There are five other Drosophila species that have 

similar developmental patterns as D. melanogaster, as we have already shown in the within-

species and between-species comparison in Sect. 3.1. We also compare their microarray data 

of embryonic stages with the RNA-seq data of D. melanogaster as a further check. In the 

result (Appendix Fig. 11), we observe strong block diagonal patterns. Although RNA-seq 
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data contain larvae, prepupae, and adult stages that do not have corresponding microarray 

data, the off-diagonal patterns, which we observe (1) between late embryos in microarray 

and prepupae in RNA-seq and (2) between early embryos in microarray and female adults in 

RNA-seq, are consistent with our previous within-species correspondence map based on 

RNA-seq data only [14] and previous studies [1]. These results show that TROM can find 

almost the same correspondence of Drosophila developmental stages regardless of the 

platform being microarray or RNA-seq.

3.5 Gene Ontology (GO) Enrichment Analysis

To understand the biological functions behind the correspondence we have observed 

between developmental stages, we perform enrichment analysis [2] of biological process 

(BP) gene ontology (GO) terms in stage-associated genes, as a way to determine common 

biological functions and processes in corresponding stages. First, we examine the GO term 

enrichment in the associated genes of every D. melanogaster embryomnic stage, using RNA-

seq data (with z-score threshold 1.5) and microarray data (with z-score threshold 0.5) 

respectively. The enrichment scores are defined as − log10(Bonferroni-corrected p-value) 

where p-values are calculated based on the hypergeometric test, and the results are 

illustrated in Appendix Figs. 12 and 13. For every fly embryonic stage, the top 20 enriched 

GO terms in the associated genes identified by RNA-seq data contain biological functions 

highly relevant to these stages, and many of these terms have been discovered as enriched in 

relevant embryonic samples by previous studies [14,18]. A proportion of these top 

enrichment GO terms with support in the literature are listed in Table 1. The enriched GO 

terms identified from both RNA-seq and microarray data support the correspondence 

patterns observed in TROM correspondence maps: common enriched GO terms are often 

shared by adjacent stages whose pairwise TROM scores are high. The top enriched GO 

terms found by both microarray and RNA-seq are informative for further functional studies 

on the associated genes of every stage, so as to better understand embryonic development of 

D. melanogaster.

We also examine the GO term enrichment in the associated genes (identified with z-score 

threshold 1.5) of every developmental stage of mouse liver. The resulting enrichment scores 

are illustrated in Appendix Fig. 14. The top 10 enriched GO terms in our selected stage-

associated genes of every stage confirm previous findings on liver development and 

regeneration. In E11.5–12.5, two of the early stages, top enriched GO terms are mostly cell 

cycle-related terms like “translation,” “mRNA processing,” “cell cycle,” and “cell division” 

[15]. Previous research has shown that mouse liver takes over the function of hematopoiesis 

at E10.5–12.5 [10,15], and we found that the GO terms including “heme biosynthetic 

process” and “porphyrin-containing compound biosynthetic process” are top enriched in 

subsequent stages. For stages E17.5–Day7, the GO terms “innate immune response” and 

“immune system process” are top enriched, in accordance with the theory that liver is an 

organ with innate immune features [7]. Finally, as the function of mouse liver switches from 

hematopoiesis to metabolism and this capacity dominates in the adult liver [10,15], we 

observe that GO terms related to various metabolic processes become enriched in stages 

E17.5–NL (normal adult liver tissue). These findings again illustrate the capacity of the 

associated genes in capturing transcriptomic characteristics of biological samples.
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3.6 Construction of Developmental Trees Using Stage-Associated Genes

We further demonstrate that the selected stage-associated genes contain abundant 

information to group and distinct developmental stages. Tree construction has been a 

popular approach for studying the relationships of different developmental stages in 

organism development [1] as well as cell lineages in cell differentiation [23]. Here we 

attempt to construct developmental trees of diverse species (see Fig. 6 and Appendix Fig. 

15) based on the identified associated genes of each developmental stage, reasoning that the 

associated genes capture stage characteristics and thus can lead to reasonable developmental 

trees. In tree construction, both Simpson and Jacard similarity coefficients can be used to 

measure the distance between the associated genes of different samples. However, Simpson 

coefficient will produce a result of 1 when the associated genes of one sample is a subset of 

the associated genes of the other sample, and it thus fails to distinguish two samples in this 

case. In contrast, Jacard coefficient is able to separate two biological samples in this case, 

because it considers two samples as identical if and only if they have exactly the same 

associated genes. As a consequence, we carry out the tree construction by hierarchical 

clustering, using average linkage and Jaccard coefficient, where the distance between two 

stages i and j is calculated as

(7)

where |Xi| and |Xj| are the sizes of two sets of stage-associated genes and |Xi ∩ Xj| is the 

number of genes in their intersection.

The developmental tree (see Fig. 6a) constructed for mouse liver development shows an 

interesting pattern: the first major branch of the tree successfully divides the 14 stages into 

embryonic stages and postnatal stages with one exception that the last embryonic stage 

E18.5 is clustered with the postnatal stages. Moreover, neighboring stages are clustered with 

each other in small branches. These observations are in accordance with the correspondence 

pattern illustrated by TROM scores (see Fig. 2a): mappings exist between neighboring 

stages but not between E11.5–E17.5 and E18.5–NL. Previous hierarchical clustering results 

on genes whose expression levels are changed by more than 1.5-fold to average [15] 

supported our constructed tree and the similarity between E18.5 and postnatal stages. The 

GO enrichment analysis provides functional explanation on the observed clustering of E18.5 

and Day 7, which both have enriched GO term including “innate immune response,” 

“immune system process,” and “multicellular organismal development.”

The developmental tree (see Fig. 6b) constructed for sea urchin embryonic development also 

matches existent understanding of temporal interrelations of developmental stages. First, the 

major branch of the differentiation tree divides the stages into two sub-groups: one is 00, 10, 

18, 24 and 30 hpf and the other is 40, 48, 56, 64 and 72 hpf. Previous studies show that oral/

aboral (O/A) axis specification, endomesoderm development, and autonomous specification 

are the major developmental processes before 40 hpf, while set-aside cells and rudiment 

formation and embryonic morphogenesis take over the major processes after 40 hpf [5]. This 
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functional explanation supports our constructed tree. Second, neighboring stages are 

grouped into small branches, and the overall tree is in accordance with sea urchin’s 

embryonic development periods as cleavage, blastula, gastrula, and prism-pluteus [5].

We also observe reasonable and meaningful developmental trees constructed for the six 

Drosophila species and C. elegans (Appendix Fig. 15). We note that the tree construction is 

robust to the z-score threshold choices.

4 Discussion

In this work, we demonstrate that our proposed measure TROM is more efficient in finding 

transcriptomic similarity and correspondence patterns of biological samples within and 

between species compared with Pearson and Spearman correlations. Both simulation and 

real data analysis verify the superior power of TROM in detecting biologically meaningful 

relationships between different samples. The comparison results suggest that in the TROM 

method the selection of associated genes is a critical step before the overlap test. The 

selection step ensures that the transcriptomic characteristics of each sample are well 

captured and represented. Moreover, the strength of TROM also lies in the overlap test that 

does not directly rely on absolute gene expression values and is thus relatively robust to 

noisy data. On the other hand, Pearson and Spearman correlations fail to detect clear 

correspondence patterns even based on the associated genes.

We observe that it is possible to improve the correspondence map found by Spearman 

correlation by thresholding its correlation values, i.e., setting all the values below the 

threshold to the minimum value of all pairwise comparisons. We test this procedure on the 

RNA-seq datasets of D. melanogaster and C. elegans and the results are summarized in 

Appendix Fig. 16. As expected, thresholding on the Spearman correlation can give rise to 

relatively clearer correspondence patterns. However, this procedure is very sensitive to the 

threshold and often miss biologically meaningful mappings: the similarity of early embryos 

and female adults in fly is only captured once and the similarity of embryo and adults in 

worm is totally missing at all thresholds [14].

We would also like to point out that although TROM is not a parameter-free method, the 

resulting similarity patterns are largely robust to the selection of the z-score threshold. In 

addition, the TROM method provides users with the flexibility to tune the threshold 

according to the level of relationships they look for between biological samples.

The sample-associated genes identified based on the threshold carry important 

transcriptomic characteristics of the corresponding samples and are not simply the 

complement of housekeeping genes. The identification of sample-associated genes filters out 

not only housekeeping genes, but also those genes that exhibit little variation across samples. 

In addition, it is worth noting that the concept of associated genes is not equivalent to 

specific genes, since associated genes also contain genes that capture transcriptomic 

similarity among closely related samples, and these genes can be shared by several but not 

all samples.
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To the best of our knowledge, Le et al. [13] is the only previous attempt other than 

correlation-based methods to compare biological samples across species. This method 

compares expression experiments from different species through a newly defined distance 

metric between the ranking of orthologous genes in the two species. However, their method 

relies on a large training dataset of known similar samples to learn the parameters for 

distance functions, and is thus not practical for finding novel patterns of biological samples 

from rarely studied species such as D. rerio. Another advantage of TROM compared with 

this method is that TROM can identify informative associated genes that enable various 

downstream analyses.

5 Conclusion

TROM, a testing-based method, is introduced for finding correspondence patterns among 

transcriptomes of the same or different species. We demonstrate the greater power of TROM 

compared to correlation measures in finding transcriptomic similarity in terms of highly 

expressed genes. We apply TROM to find correspondence maps of developmental stages 

within and between multiple species, and we show that the associated genes TROM 

identifies for developmental stages can be used to construct developmental trees in these 

species. We also show that TROM is robust to data normalization and platform difference of 

microarray and RNA-seq. In addition, we design a systematic approach for selecting a key 

threshold parameter in TROM. We implement the TROM method in an R package, which 

provides functions with flexibility for illustration and customization and can be easily 

integrated into existing comparative genomic pipelines.
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Fig. 1. 
Selection of z-score threshold for comparing D. melanogaster (fly) developmental stages. a 
Values of u(z) at different z-score thresholds. The horizontal dashed line marks the mode(u) 

shown in b, 1.42, which corresponds to z = 0.5, the selected z-score threshold. b The density 

plot of u(z) with Gaussian kernel and banwidth = 0.22, based on the u(z) values shown in a. 
c Changes of TROM correspondence maps (for 30 fly stages) as the z-score thresholds 

(marked on top of each correspondence map) change. The inset heatmap shows the 

correspondence map of the chosen threshold z* = 0.5. In each heatmap, both columns and 

rows represent fly’s 30 developmental stages, and darker colors represent larger TROM 

scores
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Fig. 2. 
Within-species and between-species correspondence maps of TROM scores. For better 

illustration, TROM scores are saturated at 6: all the scores larger than 6 are set to 6. a 
Pairwise within-species TROM scores calculated for the 14 stages of mouse liver; b pairwise 

within-species TROM scores calculated for the 10 stages of sea urchin; c pairwise within-

species TROM scores calculated for the 10 stages of D. melanogaster. The column stages 
are from the microarray data, and the row stages are from the RNA-seq data; d pairwise 

between-species TROM scores of D. melanogaster vs. mouse liver. The columns represent 

the 14 mouse stages, and the rows represent the 30 fly stages
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Fig. 3. 
Comparison of TROM and Pearson/Spearman correlation on simulated D. melanogaster 
(fly) data. a–c The correspondence maps produced by TROM (a), Pearson correlation (b) 

and Spearman correlation (c) on a randomly selected gene expression matrix (among the K 
= 200 matrices). d The correlation matrix Σ that defines the dependence of associated genes 

between samples. e The true sample relationships (1: high dependence in associated genes; 

0: otherwise) defined as in Eq. (6) for varying c. In a–e, the columns and rows correspond to 

the 30 developmental stages of fly. f The mean precision-recall curves on the 200 gene 

expression matrices, given the true labels in e. The 95 % confidence intervals of each 

measure’s area under the curve (AUC) are marked next to the curves
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Fig. 4. 
Comparison of TROM and Pearson/Spearman correlation on simulated C. elegans (worm) 

data. a–c The correspondence maps produced by TROM (a), Pearson correlation (b) and 

Spearman correlation (c) on a randomly selected gene expression matrix (among the 200 

matrices). d The correlation matrix Σ that defines the dependence of associated genes 

between samples. e The true sample relationships (1: high dependence in associated genes; 

0: otherwise) defined as in Eq. (6) for varying c. In a–e, the columns and rows correspond to 

the 35 developmental stages of worm. f The mean precision-recall curves on the 200 gene 

expression matrices, given the true labels in e. The 95 % confidence intervals of each 

measure’s area under the curve (AUC) are marked next to the curves

Li et al. Page 20

Stat Biosci. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Robustness of TROM to quantile normalization on simulated C. elegans (worm) data. a The 

correspondence maps based on TROM scores of a randomly selected gene expression matrix 

(among the 200 simulated matrices), before (left) and after (right) quantile normalization. b 
The results of the Wilcoxon signed-rank test (left) and the paired Student’s t test (right). 
Every blank cell means that the Bonferroni-corrected p-value is insignificant for the 

corresponding pair of stages, i.e., the TROM scores do not change significantly after 

quantile normalization
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Fig. 6. 
Developmental trees constructed based on stage-associated genes (identified with z-score 

thresholds 1.4 and 1.1 for mouse liver and sea urchin respectively). a Developmental tree of 

mouse liver. b Developmental tree of sea urchin
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Fig. 7. 
Correspondence maps of within-species and between-species TROM scores (calculated 

based on the z-score thresholds listed in the table). TROM scores are saturated at 6. The 

names of the species are marked as row or column labels of the corresponding heatmaps. For 

the Drosophila species, the stages labels 1–13 refer to Embryo 0–2, 2–4, 4–6, 6–8, 8–10, 10–

12, 12–14, 14–16, 16–18, 18–20, 20–22, 22–24 and 24–26 h, respectively
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Fig. 8. 
Outline of the package TROM. The three left (and right) heatmaps illustrate the within-

species (and between-species) comparison results by using TROM (with z-score threshold 

1.5 for both fly and worm), Pearson correlation and Spearman correlation. Greater 

similarities are shown in darker colors. The results show that compared to the popular 

Pearson and Spearman correlations, TROM can find clearer correspondence patterns. 

TROMtakes gene expression matrices and orthologous genes of the species of interest as 

input. The functions select.associated.genes and select.associated.orthologs select the 

associated genes of different biological samples among all the genes or only among the 

genes with orthologs in the other species to be compared with. They also provide graphical 

summaries of the numbers of selected associated genes and orthologs. The functions 

ws.trom and ws.trom.orthologs perform the within-species transcriptome comparison, find 

the overlapping associated genes between every two samples and calculate within-species 

TROM scores. The function bs.trom performs the between-species transcriptome 

comparison, find the overlapping associated orthologs between every two samples from 

different species and calculate the between-species TROM scores. The function heatmap.3 

visualizes the TROM scores in a heatmap, with various add-on options for customization. 
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The functions find.top.GO.terms and find.top.GO.slim.terms perform gene set enrichment 

analysis and find top enriched Gene Ontology (GO) terms and GO slim terms in the 

associated genes. Instead of using the selected associated genes, users may input customized 

gene lists representing characteristics of different biological samples into the above 

functions. Please see the package manual and vignette of TROM for details
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Fig. 9. 
Correlation measures calculated based on the union of associated genes. Pearson correlation 

(a) and Spearman correlation (b) for every pair of D. melanogaster stages calculated based 

on the union of associated genes of all stages. Pearson correlation (c) and Spearman 

correlation (d) for every pair of D. melanogaster and C. elegans stages calculated based on 

the union of associated ortholog pairs of all stages. These heatmaps show that correlation 

measures calculated based on associated genes only still cannot lead to clear correspondence 

patterns
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Fig. 10. 
Comparison of TROM and Pearson/Spearman correlation on simulated data, with a for fly 

and b for worm. In both panels, the first row gives the true sample relationships (1: high 

dependence in associated genes; 0: otherwise) defined as in Eq. 6 for varying c. The second 
row gives the mean receiver operating characteristic (ROC) curves on the 200 simulated 

gene expression matrices, given the true labels in the first row. The third row gives the mean 

Neyman–Pearson receiver operating characteristic (NP-ROC) curves, accordingly. The 95 % 

confidence intervals of the area under the curve (AUC) are marked next to the curves
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Fig. 11. 
Correspondence maps of developmental stages. TROM scores are calculated using the RNA-

seq data of D. melanogaster and the microarray data of the other five Drosophila species
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Fig. 12. 
Top 20 enriched biological process GO terms of D.melanogaster. The enrichment scores in 

the heatmap are calculated based on stage-associated genes identified from the RNA-seq 

data (with z-score threshold 1.5) and saturated at 6. For each stage, the common enriched 

GO terms identified from both microarray (Fig. 13) and RNA-seq datasets are marked in red 
color (Color figure online)
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Fig. 13. 
Top 20 enriched biological process GO terms of D.melanogaster. The enrichment scores in 

the heatmap are calculated based on the stage-associated genes identified from the 

microarray data (with z-score threshold 0.5) and saturated at 6. For each stage, the common 

enriched GO terms identified from both microarray and RNA-seq (Fig. 12) datasets are 

marked in red color (Color figure online)
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Fig. 14. 
Top 10 enriched biological process GO terms of mouse liver. The enrichment scores in the 

heatmap are calculated based on the stage-associated genes identified from the microarray 

data (with z-score threshold 1.5). For each stage, the highly relevant GO terms that have 

been confirmed in previous studies are marked in red color (Color figure online)
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Fig. 15. 
Developmental trees constructed using stage-associated genes (identified with the z-score 

thresholds in the table). a–f are for Drosophila species and G is for C. elegans
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Fig. 16. 
Spearman correlations of the developmental stages of D. melanogaster (fly) and C. elegans 
(worm). a The first panel shows the original Spearman correlations of fly stages, while the 

rest panels show the Spearman correlations of fly stages under different thresholds. b The 

first panel shows the original Spearman correlations of worm stages, while the rest panels 
show Spearman correlations of worm stages under different thresholds. c TROM scores of 

fly. d TROM scores of worm. All the values under the selected threshold are set to the 

minimum value of each correlation matrix
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Table 1

Selected enriched GO terms in each stage of D. melanogaster

Stage name Top enriched GO terms

Embryo 0–2 h Oogenesis, DNA replication, germ cell development, neurogenesis

Embryo 2–4 h Neurogenesis, mRNA splicing via spliceosome, zygotic determination of anterior/posterior axis

Embryo 4–6 h mRNA splicing via spliceosome, specification of segmental identity, cell fate specification

Embryo 6–8 h Cell fate specification, sensory organ development, open tracheal system development

Embryo 8–10 h Myoblast fusion, multicellular organism reproduction, puparial adhesion

Embryo 10–12 h Myoblast fusion, translation, mitotic spindle elongation, septate junction assembly

Embryo 12–14 h Axon guidance, septate junction assembly, branch fusion open tracheal system

Embryo 14–16 h Circadian rhythm, response to light stimulus, crystal cell differentiation

Embryo 16–18 h Chitin-based cuticle development, body morphogenesis, chitin metabolic process

Embryo 18–20 h Body morphogenesis, chitin metabolic process, proteolysis
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Li et al. Page 35

Table 2

Selected z-score thresholds for different species

Species Threshold of z-scores

D. melanogaster (RNA-seq) 1.8

C. elegans 2.0

D. melanogaster (microarray) 0.9

D. ananassae 0.9

D. simulans 0.9

D. persimilis 0.9

D. pseudoobscura 0.8

D. virilis 1.1

Mouse liver 1.4

Sea urchin 1.1

D. rerio 1.0
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