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Abstract

Comparative transcriptomics has gained increasing popularity in genomic research thanks to the
development of high-throughput technologies including microarray and next-generation RNA
sequencing that have generated numerous transcriptomic data. An important question is to
understand the conservation and divergence of biological processes in different species. We
propose a testing-based method TROM (Transcriptome Overlap Measure) for comparing
transcriptomes within or between different species, and provide a different perspective, in contrast
to traditional correlation analyses, about capturing transcriptomic similarity. Specifically, the
TROM method focuses on identifying associated genes that capture molecular characteristics of
biological samples, and subsequently comparing the biological samples by testing the overlap of
their associated genes. We use simulation and real data studies to demonstrate that TROM is more
powerful in identifying similar transcriptomes and more robust to stochastic gene expression noise
than Pearson and Spearman correlations. We apply TROM to compare the developmental stages of
six Drosophila species, C. elegans, S. purpuratus, D. rerio and mouse liver, and find interesting
correspondence patterns that imply conserved gene expression programs in the development of
these species. The TROM method is available as an R package on CRAN (https://cran.r-
project.org/package=TROM) with manuals and source codes available at http://www.stat.ucla.edu/
~jingyi.li/software-and-data/trom.html.
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1 Introduction

Comparative genomics is an important field that addresses evolutionary questions and
studies developmental processes across distant species [17]. Studying transcriptomes is
essential for understanding functions of genomic regions and interpreting regulatory
relationships of multiple genomic elements [25]. Comparing transcriptomes of the same
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species can reveal molecular mechanisms behind the occurrence and progression of
important biological processes, such as organism development and stem cell differentiation
[12,19]. Comparing transcriptomes of different species can help understand the conservation
and differentiation of these molecular mechanisms in evolution [14]. High-throughput
technologies have generated large amounts of publicly available transcriptomic data,
creating an unprecedented opportunity for comparing multi-species transcriptomes under
various biological conditions.

Finding the transcriptomic similarity and disparity of biological samples is a key step to
understand the underlying molecular mechanisms common or unique to them. It is desirable
to have a transcriptomic similarity measure that can lead to a clear correspondence pattern of
biological samples from the same or different species. Correlation analysis is a classical
approach for comparing transcriptomes based on gene expression data. Commonly used
measures are Pearson and Spearman correlation coefficients, both of which have played
important roles in biological discoveries [1,16,20]. However, in most scenarios neither of
them can produce a clear correspondence pattern among biological samples. The main
reason is the existence of many housekeeping genes, which would inflate correlation
coefficients. Moreover, correlation measures rely heavily on the accuracy of gene expression
data and are susceptible to the low signal-to-noise ratios of lowly expressed genes.
Therefore, it is often difficult to use correlation analysis to find a clear correspondence
pattern of transcriptomes.

Here we introduce a new testing-based measure—transcriptome overlap measure (TROM)—
to find correspondence of transcriptomes in the same or different species. The measure is
based on testing the overlap of “associated genes,” which represent transcriptomic
characteristics of biological samples. For the purpose of discovering sparse sample
relationships, we define a sample correspondence map as the binarized mapping pattern
resulted from a sample similarity matrix: a none-zero value means that two samples are
mapped'to each other, while a zero value means that two samples are unmapped. We show
that compared to Pearson and Spearman correlations, TROM has better power to detect
transcriptome correspondence in simulations and leads to clearer correspondence maps of
developmental stages within and between multiple species in real data studies. TROM also
provides a systematic approach for selecting associated genes of every biological sample.
We show that these associated genes can well capture transcriptomic characteristics and help
construct developmental trees in multiple species. In addition, we demonstrate that TROM is
robust to data normalization and high-throughput platform difference.

In Sect. 2, we describe the TROM method including the identification of associated genes,
the calculation of TROM scores, and the selection of a threshold parameter. In Sect. 3, we
present real data applications of TROM to large-scale transcriptomic data sets, power
analysis of TROM versus Pearson and Spearman correlations, demonstration of the
robustness of TROM to data normalization and platform difference, and bioinformatic
analyses of the TROM results.
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2.1 Associated Genes and TROM Scores

Our method focuses on selecting associated genes to perform a gene set overlap test [14],
which will lead to TROM scores that can be used to compare biological samples. We define
associated genes of a sample using the following criterion: the genes that have z-scores
(normalized expression levels across samples) = zin the sample, where Zis a threshold that
can be selected in a systematic approach (please see Sect. 2.2) or set by users. Based on this
definition, associated genes of a sample are those with higher expression in the sample
compared to a few other samples. In other words, associated genes are highly expressed in
the sample of interest but not always highly expressed in all samples, and they are a superset
of sample specific genes. Hence, associated genes capture gene expression characteristics of
a sample, and these characteristics are either specific to the sample or shared by a few other
samples but not all samples. Associated genes provide a basis for comparing biological
samples. We compare two biological samples by statistically testing the dependence of their
associated genes: to compare two samples of the same species, we calculate the significance
of the number of their overlapping associated genes (resulting in a within-species TROM
score); to compare two samples of different species, we calculate the significance of the
number of orthologous gene pairs in their associated genes (resulting in a between-species
TROM score).

We consider the two sample-associated gene sets as two samples drawn from the gene
population. In the within-species scenario, we denote the number of biological samples of a
given species as /m, and use X;jand X;(/, j=1, 2, ..., m) to denote the associated genes of
samples 7and jto be compared. The gene population consists of all genes of the given
species, and the size of the gene population is denoted as A. Then to test for the null
hypothesis that X;and X;are two independent samples drawn from the gene population
versus the alternative hypothesis that Xjand Xj;are dependent samples, the p-value for
within-species comparison between samples 7and jis calculated as

. N N—k N—|X;]
mm(l%\)@‘l) k |1 X |~k X |-k

S
| X |1 X1 (1)

In the between-species scenario, we denote the numbers of biological samples from species
1 and 2 as m and /mp. The gene population consists of all orthologous gene pairs between
the two species, and the number of pairs is denoted as . The ortholog pairs can be
represented as a two-column table with AVrows. We use X;(/=1,2, ..., my) and Y;(j=1,2,
..., ™) to denote the orthologous gene pairs (i.e., rows in the table) that overlap with the
associated genes of sample /in species 1 and sample jin species 2, respectively. In other
words, Xj(or Y)) represents the orthologous gene pairs that contain the associated genes in
sample /7 of species 1 (or sample jof species 2). Then to test for the null hypothesis that X

p- value=
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and Yjare two independent samples drawn from the population of orthologous gene pairs
versus the alternative hypothesis that Xjand Yjare dependent samples, the p-value for
between-species comparison of the two samples is calculated as

< N ) < N—k N—|X;|
min(| X[, Y50 | g X;|—k Yil—k
pali— S | Xl 1Y

S
| X ;] @)

Then we define the within-species or between-species TROM score as

TROM score=—log;o(Bonferroni- corrected p- value), (3)

which describes transcriptome similarity of two biological samples. A larger TROM score
represents greater similarity.

2.2 Selection of z-Score Threshold

The selection of the z-score threshold zwill directly influence the sensitivity and specificity
of sample-associated genes and thus affect the resulting TROM scores. If zis too small, a
large number of associated genes will be selected for every sample and more associated
genes will be shared by different samples, and thus it becomes difficult to distinguish
different biological samples. If zis too large, only a small number of associated genes will
be identified for each sample and potentially informative genes could be filtered out, and
thus no similarity of biological samples will be captured by TROM. Although the selection
of zis ultimately subject to users’ preference for the resulting correspondence maps (a larger
z for a sparser map or a smaller zfor a denser map), we propose an objective approach to
choose an appropriate threshold when no prior knowledge is available. Our approach aims at
balancing two goals: (1) the threshold should help minimize noisy correspondence of
biological samples and thus leads to a sparse correspondence map; (2) the threshold should
help preserve strong correspondence of samples and thus leads to a stable correspondence
map.

We use the mean of TROM scores of all pairwise comparisons of biological samples in the
correspondence map as the objective function, which is defined as

u(z)=log1 (Zﬁlzyil‘j#aij (z) +1>
(4)

m2—m

where /mis the number of biological samples, A(2) = (j;(2)) mxm is the TROM score matrix
based on threshold z We select the desirable threshold Z* by the following approach.
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Considering our goal (2), we would like (2) to be stable for zvalues near Z*. Since similar
1(2) values would lead to a peak in the density of ¢(2), denoted as f{v), we consider the z
values corresponding to the peak, that is, {z . t{2) = mode(s)}, where mode(s) = arg max,,
fu) (i.e., the uvalue that maximizes the density of f¢) for v= t(2) with z€ [-2, 3]). Also
considering our goal (1), we would like to select 7" as the largest zvalue that leads to the
stable region of «(2). Hence, we find 7" as

z"=sup {z:u(z)=mode(u)}, (5)

where u= 1t(2) for z€ [-2, 3]. If users desire a sparser correspondence map, we suggest an
alternative approach to finding the z-score threshold as Z* = sup{z - ¢(2) = mode(v) + sd()},
where sd(4) stands for the standard deviation of the ¢(2) values. According to Lemma 1 and
also our empirical observation, [-2, 3] is a large enough region to capture the peak with low
computational intensity, as the ¢(2) values are close to 0 outside of this region.

As shown in Lemma 1, an important feature of «(2) is that it approaches 0 when the absolute
value of zis large. This is because the entire gene population will be selected as associated
genes when the threshold zis small enough while no genes will be selected when zis large
enough. In both extreme cases, the resulting TROM score is 0 for any pair of samples.
Because of this feature and the non-negativity of ¢(2), t(2) must have a maximum at a
certain value of z The observed unimodal shape is a typical feature of ¢(2) for the various
species we have investigated.

Lemma 1—u(2) — Oas |4 — oo.

Proof: Because of the criterion of selecting associated genes: zscores = z, for within-
species comparison between samples 7and j, whose sets of associated genes are denoted as
Xjand Xj, we have

. as z— =00, |.X;| — N, |X| — N and | X;N X| — N, where NVis the number of
all genes of the species;

. as z— 0o, |X;| — 0, |X] — 0,and |[X;N Xj| — 0.

Given the p-value formula (Eqg. (1)) of the within-species overlap test in TROM, we have
. as | X{ — N, |X| — N, and |[X;N X| — N, p-value — 1;
. as | Xj| — 0,|X| — 0,and |[X;N X}] — 0, p-value — 1.

For between-species comparison between samples 7from species 1 and sample jfrom
species 2, whose associated genes correspond to ortholog pairs denoted as X;and Y} and
between Xjand Yjthere are | X;N Y} ortholog pairs, we have

. as z— —0o, |.X;| — N, |V} — N and | X;N Y] — N, where Nis the total
number of ortholog pairs between the two species;

. as z— 00, |X| — 0,|Y] — 0,and | X;N Y] — 0.
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Given the p-value formula (Eq. (2)) of the between-species overlap test in TROM, we have
. as | X — N, |Y]— N and | X;N Y] — N, pvalue — 1;
. as|Xj| — 0,[Y}— 0,and [ X;N Y] — 0, p-value — 1.

So for both within-species and between-species comparisons, we have TROM score a;;(2)
— 0as |4 — oo given Eq. (3).

Hence, given the definition of «(2) in Eq. (4), we have «{2) — 0 as |4 — oo.

Using this proposed approach, we can easily select a z-score threshold for a specified
species given its gene expression data. WWe demonstrate how this approach can select an
appropriate threshold for comparing D. melanogaster developmental stages by applying it to
the RNA-seq data of /77 =30 stages. We consider candidate thresholds in the range of ze[-2,
3] and calculate TROM matrices for all the candidate values in this range with a step size of
0.1. The corresponding «(2) is plotted in Fig. 1a.

From the density of «(2) (see Fig. 1b), we determine that the mode of «(2) is 1.42. By
finding the maximum z value such that ¢(2) = 1.42, our approach selects Z* = 0.5. Figure 1c
show how different zscore thresholds influence the patterns of correspondence maps. When
the threshold is too low (e.g., —0.4), many stage pairs are mapped to each other, providing
vague information on the relationships of different stages. On the other hand, when the
threshold is too high (e.g., 2.0), so much information is filtered out that most stages are only
mapped to themselves, and important correspondence such as the similarity between fly
early embryos and female adults is missing [14]. Unlike the two extremes, our selected
threshold 0.5 reveals important correspondence patterns and meanwhile yields a clean
correspondence map.

3.1 Application of TROM to Finding Correspondence of Developmental Stages of Multiple

Species

We first demonstrate the use and the performance of TROM in comparative transcriptomics.
We apply TROM to find correspondence patterns of developmental stages of six Drosophila
(fly) species, C. elegans (worm), S. purpuratus (sea urchin), D. rerio (zebrafish) and mouse
liver tissues. The goal is to find similarity of developmental stages within and between
species in terms of gene expression dynamics. We use multiple datasets including RNA-seq
data of 30 D. melanogaster developmental stages with expression estimates of 15,095 genes,
RNA-seq data of 35 C. elegans stages with 31,622 genes [9,14], RNA-seq data of 10 sea
urchin stages with 21,090 genes [22], microarray data of six fly species: D. melanogaster, D.
simulans, D. ananassae, D. persimilis, D. pseudoobscuraand D. virilis with 9 to 13
embryonic stages and 3663 genes [1], microarray data of mouse liver development with 14
stages and 45, 101 genes [15] and microarray data of D. rerio with 61 stages and 18,259
genes [6]. To implement TROM on these gene expression datasets, we select zscore
thresholds based on the alternative approach described in Sect. 2.2, and the selected
thresholds for various species are summarized in Appendix Table 2 and used throughout this
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paper unless otherwise specified. A detailed description of these datasets is given in
Appendix Table 3.

In the comparison of developmental stages within each species, the TROM method finds
block diagonal correspondence patterns as expected. That is, in every species, adjacent
developmental stages close to each other in the time order have high TROM scores. We
illustrate the correspondence maps of developmental stages of mouse liver (Fig. 2a), sea
urchin (Fig. 2b) and the six Drosophila species (Appendix Fig. 7). These results provide
strong support to the efficacy and validity of TROM in finding transcriptomic similarity of
biological samples, in addition to our previous results on the correspondence of D.
melanogasterand C. elegans stages based on RNA-seq data [14], to which we applied the
preliminary idea of TROM.

We also apply TROM to compare the developmental stages of two different species. We use
ortholog information downloaded from Ensembl [4] in the comparison. Since fly, worm, and
mouse are vastly distant from each other in evolution, any correspondence between their
developmental stages revealed by TROM will be interesting and may imply conserved
developmental programs. Between D. melanogaster life cycle and mouse liver development
(Fig. 2d), TROM finds unknown correspondence between fly early embryos and mouse
embryo liver tissues, and between fly female adults and mouse embryo liver tissues. A main
reason for the latter correspondence is the transcriptomic similarity of fly early embryos and
female adults due to the expression of maternal effect genes [14]. Additionally, there is some
irregular correspondence between fly larvae and liver tissues of born mice. We can see a
clear separation of the liver tissues of mouse embryos and born mice, and their
corresponding fly stages also exhibit a separation of embryos and female adults from other
stages. These results indicate that even for vastly different species such as fly and mouse,
there is good conservation in their embryonic development. Similarly between the six
Drosophila species’ embryonic development and mouse liver development, we also see good
correspondence of fly early embryos and mouse embryo liver tissues, and correspondence
between fly late embryos and mouse adult liver tissues (Appendix Fig. 7). Moreover, mouse
embryo liver tissues are observed to correspond well with worm embryos, and this is
consistent with the observed correspondence between fly embryos and worm embryos
(Appendix Fig. 7). These consistent correspondence patterns together validate the efficacy of
the TROM approach.

Between the six Drosophila species, since they are known to have similar developmental
programs [1], comparisons of their developmental stages resemble within-species
comparisons, and block diagonal correspondence patterns are expected. Our results confirm
this: diagonal patterns are observed between the developmental stages of every two fly
species (Appendix Fig. 7). These results again demonstrate the validity of TROM.

3.2 Comparison of TROM and Pearson/Spearman Correlation Measures

We next describe the scenarios where TROM serves as a better similarity measure than
Pearson/Spearman correlation measures in differentiating the stage pairs, which exhibit high
dependence in highly expressed genes, from other stage pairs. A key difference between our
TROM method and the Pearson/Spearman correlation analysis is that TROM divides genes
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into two sets (associated genes and non-associated genes) for every sample based on gene
expression dynamics across all samples. After the division, calculation of TROM scores
does not rely on actual gene expression measurements. Henceforth, TROM defines sample
similarity based on the overlap of their associated genes. In contrast to TROM, Pearson and
Spearman correlations are calculated based on actual expression measurements of the same
set of genes in two samples. Hence, they are more sensitive to expression fluctuations of
lowly expressed genes due to measurement errors, and their values can be driven high by the
genes (e.g., housekeeping genes) that have approximately constant expression across
samples and carry little information on sample characteristics. For our goal of constructing a
sparse sample correspondence map based on gene expression, Pearson and Spearman
correlation measures are often unsatisfactory, as they give rise to noisy correspondence maps
(Appendix Figs. 8, 9).

To demonstrate the power of TROM in detecting the correspondence of biological samples
that share transcriptomic characteristics embedded in highly expressed genes, we conduct a
simulation study to compare TROM with Pearson and Spearman correlation measures.
Specifically, we consider their values as classification scores to differentiate the sample pairs
with strong dependence in highly expressed genes from the rest sample pairs. We evaluate
their performance in terms of classification accuracy.

Suppose a species of interest has a total number of A/genes and /m samples. For the observed
data, let X;= (X, ..., X,V/)Tdenote the expression vector of the A/ genes in sample /. For the
underlying (hidden) sample similarity, we use a state matrix E ;x, to denote the pairwise
relationships between the /77 samples. That is, if sample 7and s have high dependence in their
associated genes, £;;= 1; otherwise £;;= 0. We consider how to predict £j; for every pair 1 <
i# j< mfrom gene expression matrix as a classification problem. We would like to compare
the three measures in this setting and evaluate their performance as classification scores
using precision-recall curves, receiver operating characteristic (ROC) curves, and Neyman—
Pearson ROC curves [21].

In this simulation, we define the state matrix E ;x, based on a correlation matrix of
associated genes. Specifically, in the example of comparing developmental stages, we
assume a Toeplitz-type correlation matrix X where £;= ¢~ 4 (j, j=1,2, ..., m p €0, 1]),
which is reasonable as it assigns a higher correlation to more adjacent stage pairs. To reduce
arbitrariness in defining E based on X, we vary a threshold ¢ € (0, 1) and define E as

B 1L oifyl>e
v 0 1f27,JSC ’ (6)

and we would like to track how the classification accuracy of the three measures changes as
the parameter ¢ changes.

We use the following generative model to simulate gene expression matrices. We let | o/ x
be an indicator matrix, with /;;= 1 if gene /is an associated gene of sample jand /; ;= 0
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otherwise. Given the correlation matrix Z, we assume that the th row | ;€ {0, 1}”is a
binary vector randomly sampled from a multivariate Bernoulli distribution with expectation
g% 1,x1 (g€ (0, 1) inferred from real data) and correlation matrix X. Given the associated-
gene indicator matrix | ax ., We generate a gene expression matrix in a data-driven approach,
because gene expression values in real data contain noises and cannot be easily described by
any common probability distributions. We first scale a real gene expression matrix Y asx ,; by
dividing each of its rows by the row maximal values, denoted by Ys¢&¢, Then for each gene /
=1,2, ..., N, we locate its closest counterpart in real data by searching for gene /”in Yscale

such that the th row Y° and | has the minimal Euclidean distance. Given Y}, the /7 th
1
row of Y, we define sets Ay = { Y} ;: gene 7 is an associated gene in sample j, j=1, ..., m}

and 45 = {Yirj:gene i isnot an associated geneinsample j, j=1, ..., m} to collect the
expression values of gene / when it is identified as associated or not associated with real-
data samples, based on a pre-determined zscore threshold Z*. Finally, we create a gene
expression matrix X« as follows: for gene 7in sample ; if /;;= 1, we randomly sample the

value of Xjfrom Ay ; if /;;= 0, we randomly sample the value of X;,from A7

Using this generative model, we simulate K'= 200 gene expression matrices of the same
species. We denote the matrices as X(®, k=1, ..., K. Then we calculate the similarity score
matrices based on the three similarity measures. For TROM, to determine the associated
genes and non-associated genes of each sample, we calculate the z-score threshold based on
X(® using the method introduced in Sect. 2.2. The resulting TROM score matrix is denoted
as T(X). The Pearson and Spearman correlation matrices are denoted as P and S(¥),
respectively. Please note that T(¥), P(K and S(X are all 1 x m matrices, with the same
dimensions as E.

To perform classification based on the score matrices of the three measures, we apply
multiple cutoffs to the matrices and calculate the resulting precision and recall rates. For
example, if we use cras the cutoff for TROM scores, for k=1, 2, ..., Kwe have predicted
class labels

The precision and recall rates of TROM in the Ath run are then calculated as

Sy EY B

k) i#]

T (o
20 E
i*j !
S B By
recall® == ___
>0 Eij

i#]

precision(
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Similarly, we can calculate the precision and recall rates of Pearson/Spearman correlation by
applying varying cutoffs on P(¥) and S respectively.

We carry out this simulation study in the context of D. melonagaster (fly) and C. elegans
(worm). For fly, we have A/= 10,000, m= 30, g=0.15, 7" = 0.5; for worm, we have N=
10,000, m= 35, g=0.2, Z = 0.6. In both cases, we set p = 0.5 and let ¢ take four different
values: 0.3, 0.2, 0.1, 0.05. The real data used to generate the simulated gene expression
matrices are processed from modENCODE RNA-seq data of 30 fly developmental stages
and 35 worm developmental stages [9,14]. The precision-recall curves of the three measures
are illustrated in Figs. 3 and 4. In both cases, we see that TROM produces clearer sparse
patterns of sample similarity (Figs. 3a vs. b, ¢ and 4a vs. b, c), and for predicting stage-pair
labels defined by different threshold ¢ values, TROM always has the largest area under the
precision-recall curves (Figs. 3e, f, 4e, f, in terms of both the mean area and the 95 %
confidence intervals from the K'= 200 simulation runs). We also calculate Receiver
Operating Characteristic (ROC) and the Neyman—Pearson Receiver Operating Characteristic
(NP-ROC [21]) curves of the three measures in each case (see Appendix Fig. 10), and
TROM still has the best classification accuracy.

In this classification setting, TROM scores, Pearson correlations, and Spearman correlations
are essentially three ways of transforming a gene expression matrix into features of sample
pairs. The above simulation results suggest that TROM scores serve as better features for
this task, that is, to capture the sparse similarity relationships of samples. The main reason is
that TROM scores are based on gene expression levels of all samples, while Pearson and
Spearman correlations only capture the similarity of gene expression profiles for every pair
of samples.

In addition, we directly compare TROM with Pearson and Spearman correlation coefficients
on the two real datasets of fly and worm used in the simulation. In our previous work [14],
we applied the preliminary idea of TROM to compare the developmental stages within each
species and between the two species, and found interesting correspondence patterns: a block
diagonal pattern for within-species comparison and two parallel patterns between fly and
worm developmental stages. When using Pearson and Spearman correlations on the same
data to compare these stages, however, we find that neither correlation measure leads to clear
correspondence patterns in the between-species comparison (Appendix Fig. 8). in the
within-species comparison, Spearman correlation finds a vague diagonal pattern, while
Pearson correlation leads to an unreasonable checkerboard pattern. We also calculate
Pearson and Spearman correlation matrices based on the union of all the stage-associated
genes found by TROM. However, correlation methods still cannot provide clear
correspondence maps like TROM does (Appendix Fig. 9).

3.3 Robustness of TROM to Data Normalization

Since quantile normalization has been suggested as an essential step in many analysis

pipelines for high-throughput data such as microarray and RNA-seq data [3,11], we conduct
a simulation study to demonstrate the influence of quantile normalization on TROM scores.
We simulate 200 gene expression matrices and compute their TROM scores with or without
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quantile normalization as a preceding step. Then we test if the distribution of TROM scores
changes with the use of quantile normalization.

We use the same procedure as what described in Sect. 3.2 to generate 200 gene expression
matrices based on the modENCODE RNA-seq data of 35 worm developmental stages. By
applying the TROM method to these gene expression matrices before or after quantile

normalization, we obtain two sets of TROM matrices T4 and T4, k=1, 2, ..., 200. For

each pair of samples, say samples 7and /, we have two sets of TROM scores 7}?“ and Tigilk).

We then use the Wilcoxon signed-rank test and separately the paired Student’s #test to check
whether the TROM scores change significantly before and after quantile normalization. We
consider the change as significant if the Bonferroni-corrected p-value is smaller than 0.05.
The results are shown in Fig. 5.

The results of both tests suggest that TROM is robust to unnormalized data, and the
correspondence patterns resulted from TROM scores do not change significantly after
quantile normalization. Even in the two rare cases where the p-values are significant (Fig.
5b), the corresponding samples are consistently mapped before and after normalization. We
also try to replace the gene expression data with their normalized version in Sect. 3.2, and
the confidence intervals of TROM’s area under the curve (AUC) remain the same. This
result implies that the classification power of TROM is also robust to data normalization.

3.4 Robustness of TROM to Different Platforms: Comparison of D. melanogaster
Developmental Stages Based on Microarray and RNA-seq Data

Although many studies have claimed that RNA-seq is the technique of choice that provides
more accurate estimation of absolute gene expression levels compared with microarray
[8,26], several genome-wide analyses have also suggested that microarray can measure the
expression of above-median expressed genes reasonably well, and on those genes the two
platforms have good concordance [24]. Since microarray has been widely used to study
transcriptomes of multiple species under various conditions in the past decade, it is desirable
to have a good comparative transcriptomic method that is robust to the platform difference
of microarray and RNA-seq data.

Here we demonstrate the robustness of TROM by applying it to comparing the microarray
and RNA-seq data of the developmental stages of D. melanogaster. If TROM is robust, it
should identify strong correspondence between similar developmental stages in the
microarray and RNA-seq data. For a pair of developmental stages, one with microarray data
and the other with RNA-seq data, TROM identifies a set of associated genes for each of
them based on all the stages with microarray and RNA-seq data, respectively. Then TROM
performs the overlap test and produces a correspondence map. The results show that TROM
can find almost perfect correspondence of the same D. melanogaster embryonic stages
between microarray or RNA-seq (Fig. 2c). There are five other Drosophila species that have
similar developmental patterns as D. melanogaster, as we have already shown in the within-
species and between-species comparison in Sect. 3.1. We also compare their microarray data
of embryonic stages with the RNA-seq data of D. melanogaster as a further check. In the
result (Appendix Fig. 11), we observe strong block diagonal patterns. Although RNA-seq
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data contain larvae, prepupae, and adult stages that do not have corresponding microarray
data, the off-diagonal patterns, which we observe (1) between late embryos in microarray
and prepupae in RNA-seq and (2) between early embryos in microarray and female adults in
RNA-seq, are consistent with our previous within-species correspondence map based on
RNA-seq data only [14] and previous studies [1]. These results show that TROM can find
almost the same correspondence of Drosophila developmental stages regardless of the
platform being microarray or RNA-seq.

3.5 Gene Ontology (GO) Enrichment Analysis

To understand the biological functions behind the correspondence we have observed
between developmental stages, we perform enrichment analysis [2] of biological process
(BP) gene ontology (GO) terms in stage-associated genes, as a way to determine common
biological functions and processes in corresponding stages. First, we examine the GO term
enrichment in the associated genes of every D. melanogaster embryomnic stage, using RNA-
seq data (with zscore threshold 1.5) and microarray data (with zscore threshold 0.5)
respectively. The enrichment scores are defined as — log;g(Bonferroni-corrected p-value)
where p-values are calculated based on the hypergeometric test, and the results are
illustrated in Appendix Figs. 12 and 13. For every fly embryonic stage, the top 20 enriched
GO terms in the associated genes identified by RNA-seq data contain biological functions
highly relevant to these stages, and many of these terms have been discovered as enriched in
relevant embryonic samples by previous studies [14,18]. A proportion of these top
enrichment GO terms with support in the literature are listed in Table 1. The enriched GO
terms identified from both RNA-seq and microarray data support the correspondence
patterns observed in TROM correspondence maps: common enriched GO terms are often
shared by adjacent stages whose pairwise TROM scores are high. The top enriched GO
terms found by both microarray and RNA-seq are informative for further functional studies
on the associated genes of every stage, so as to better understand embryonic development of
D. melanogaster.

We also examine the GO term enrichment in the associated genes (identified with zscore
threshold 1.5) of every developmental stage of mouse liver. The resulting enrichment scores
are illustrated in Appendix Fig. 14. The top 10 enriched GO terms in our selected stage-
associated genes of every stage confirm previous findings on liver development and
regeneration. In E11.5-12.5, two of the early stages, top enriched GO terms are mostly cell
cycle-related terms like “translation,” “mRNA processing,” “cell cycle,” and “cell division”
[15]. Previous research has shown that mouse liver takes over the function of hematopoiesis
at E10.5-12.5 [10,15], and we found that the GO terms including “heme biosynthetic
process” and “porphyrin-containing compound biosynthetic process” are top enriched in
subsequent stages. For stages E17.5-Day7, the GO terms “innate immune response” and
“immune system process” are top enriched, in accordance with the theory that liver is an
organ with innate immune features [7]. Finally, as the function of mouse liver switches from
hematopoiesis to metabolism and this capacity dominates in the adult liver [10,15], we
observe that GO terms related to various metabolic processes become enriched in stages
E17.5-NL (normal adult liver tissue). These findings again illustrate the capacity of the
associated genes in capturing transcriptomic characteristics of biological samples.
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3.6 Construction of Developmental Trees Using Stage-Associated Genes

We further demonstrate that the selected stage-associated genes contain abundant
information to group and distinct developmental stages. Tree construction has been a
popular approach for studying the relationships of different developmental stages in
organism development [1] as well as cell lineages in cell differentiation [23]. Here we
attempt to construct developmental trees of diverse species (see Fig. 6 and Appendix Fig.
15) based on the identified associated genes of each developmental stage, reasoning that the
associated genes capture stage characteristics and thus can lead to reasonable developmental
trees. In tree construction, both Simpson and Jacard similarity coefficients can be used to
measure the distance between the associated genes of different samples. However, Simpson
coefficient will produce a result of 1 when the associated genes of one sample is a subset of
the associated genes of the other sample, and it thus fails to distinguish two samples in this
case. In contrast, Jacard coefficient is able to separate two biological samples in this case,
because it considers two samples as identical if and only if they have exactly the same
associated genes. As a consequence, we carry out the tree construction by hierarchical
clustering, using average linkage and Jaccard coefficient, where the distance between two
stages 7and /is calculated as

[ X N X
[ Xil+H X=X N X510 (7)

JZ']‘Z

where | X} and | X} are the sizes of two sets of stage-associated genes and | X;N X is the
number of genes in their intersection.

The developmental tree (see Fig. 6a) constructed for mouse liver development shows an
interesting pattern: the first major branch of the tree successfully divides the 14 stages into
embryonic stages and postnatal stages with one exception that the last embryonic stage
E18.5 is clustered with the postnatal stages. Moreover, neighboring stages are clustered with
each other in small branches. These observations are in accordance with the correspondence
pattern illustrated by TROM scores (see Fig. 2a): mappings exist between neighboring
stages but not between E11.5-E17.5 and E18.5-NL. Previous hierarchical clustering results
on genes whose expression levels are changed by more than 1.5-fold to average [15]
supported our constructed tree and the similarity between E18.5 and postnatal stages. The
GO enrichment analysis provides functional explanation on the observed clustering of E18.5
and Day 7, which both have enriched GO term including “innate immune response,”
“immune system process,” and “multicellular organismal development.”

The developmental tree (see Fig. 6b) constructed for sea urchin embryonic development also
matches existent understanding of temporal interrelations of developmental stages. First, the
major branch of the differentiation tree divides the stages into two sub-groups: one is 00, 10,
18, 24 and 30 hpf and the other is 40, 48, 56, 64 and 72 hpf. Previous studies show that oral/
aboral (O/A) axis specification, endomesoderm development, and autonomous specification
are the major developmental processes before 40 hpf, while set-aside cells and rudiment
formation and embryonic morphogenesis take over the major processes after 40 hpf [5]. This
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functional explanation supports our constructed tree. Second, neighboring stages are
grouped into small branches, and the overall tree is in accordance with sea urchin’s
embryonic development periods as cleavage, blastula, gastrula, and prism-pluteus [5].

We also observe reasonable and meaningful developmental trees constructed for the six
Drosophila species and C. elegans (Appendix Fig. 15). We note that the tree construction is
robust to the zscore threshold choices.

4 Discussion

In this work, we demonstrate that our proposed measure TROM is more efficient in finding
transcriptomic similarity and correspondence patterns of biological samples within and
between species compared with Pearson and Spearman correlations. Both simulation and
real data analysis verify the superior power of TROM in detecting biologically meaningful
relationships between different samples. The comparison results suggest that in the TROM
method the selection of associated genes is a critical step before the overlap test. The
selection step ensures that the transcriptomic characteristics of each sample are well
captured and represented. Moreover, the strength of TROM also lies in the overlap test that
does not directly rely on absolute gene expression values and is thus relatively robust to
noisy data. On the other hand, Pearson and Spearman correlations fail to detect clear
correspondence patterns even based on the associated genes.

We observe that it is possible to improve the correspondence map found by Spearman
correlation by thresholding its correlation values, i.e., setting all the values below the
threshold to the minimum value of all pairwise comparisons. We test this procedure on the
RNA-seq datasets of D. melanogasterand C. elegans and the results are summarized in
Appendix Fig. 16. As expected, thresholding on the Spearman correlation can give rise to
relatively clearer correspondence patterns. However, this procedure is very sensitive to the
threshold and often miss biologically meaningful mappings: the similarity of early embryos
and female adults in fly is only captured once and the similarity of embryo and adults in
worm is totally missing at all thresholds [14].

We would also like to point out that although TROM is not a parameter-free method, the
resulting similarity patterns are largely robust to the selection of the zscore threshold. In
addition, the TROM method provides users with the flexibility to tune the threshold
according to the level of relationships they look for between biological samples.

The sample-associated genes identified based on the threshold carry important
transcriptomic characteristics of the corresponding samples and are not simply the
complement of housekeeping genes. The identification of sample-associated genes filters out
not only housekeeping genes, but also those genes that exhibit little variation across samples.
In addition, it is worth noting that the concept of associated genes is not equivalent to
specific genes, since associated genes also contain genes that capture transcriptomic
similarity among closely related samples, and these genes can be shared by several but not
all samples.
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To the best of our knowledge, Le et al. [13] is the only previous attempt other than
correlation-based methods to compare biological samples across species. This method
compares expression experiments from different species through a newly defined distance
metric between the ranking of orthologous genes in the two species. However, their method
relies on a large training dataset of known similar samples to learn the parameters for
distance functions, and is thus not practical for finding novel patterns of biological samples
from rarely studied species such as D. rerio. Another advantage of TROM compared with
this method is that TROM can identify informative associated genes that enable various
downstream analyses.

5 Conclusion

TROM, a testing-based method, is introduced for finding correspondence patterns among
transcriptomes of the same or different species. We demonstrate the greater power of TROM
compared to correlation measures in finding transcriptomic similarity in terms of highly
expressed genes. We apply TROM to find correspondence maps of developmental stages
within and between multiple species, and we show that the associated genes TROM
identifies for developmental stages can be used to construct developmental trees in these
species. We also show that TROM is robust to data normalization and platform difference of
microarray and RNA-seq. In addition, we design a systematic approach for selecting a key
threshold parameter in TROM. We implement the TROM method in an R package, which
provides functions with flexibility for illustration and customization and can be easily
integrated into existing comparative genomic pipelines.
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Fig. 1.

Selection of zscore threshold for comparing D. melanogaster (fly) developmental stages. a
Values of ¢(2) at different zscore thresholds. The horizontal dashed line marks the mode()
shown in b, 1.42, which corresponds to z= 0.5, the selected zscore threshold. b The density
plot of ¢(2) with Gaussian kernel and banwidth = 0.22, based on the ¢(2) values shown in a.
¢ Changes of TROM correspondence maps (for 30 fly stages) as the zscore thresholds
(marked on #gp of each correspondence map) change. The inset heatmap shows the
correspondence map of the chosen threshold Z* = 0.5. In each heatmap, both co/umns and
rows represent fly’s 30 developmental stages, and darker colors represent larger TROM

scores
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TROM score
6

Within-species and between-species correspondence maps of TROM scores. For better
illustration, TROM scores are saturated at 6: all the scores larger than 6 are set to 6. a
Pairwise within-species TROM scores calculated for the 14 stages of mouse liver; b pairwise
within-species TROM scores calculated for the 10 stages of sea urchin; ¢ pairwise within-
species TROM scores calculated for the 10 stages of D. melanogaster. The column stages
are from the microarray data, and the row stages are from the RNA-seq data; d pairwise
between-species TROM scores of D. melanogastervs. mouse liver. The columns represent
the 14 mouse stages, and the rows represent the 30 fly stages
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Comparison of TROM and Pearson/Spearman correlation on simulated D. melanogaster
(fly) data. a—c The correspondence maps produced by TROM (a), Pearson correlation (b)
and Spearman correlation (c) on a randomly selected gene expression matrix (among the K
= 200 matrices). d The correlation matrix X that defines the dependence of associated genes
between samples. e The true sample relationships (1: high dependence in associated genes;
0: otherwise) defined as in Eq. (6) for varying c. In a—e, the columns and rows correspond to
the 30 developmental stages of fly. f The mean precision-recall curves on the 200 gene
expression matrices, given the true labels in e. The 95 % confidence intervals of each
measure’s area under the curve (AUC) are marked next to the curves
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Comparison of TROM and Pearson/Spearman correlation on simulated C. efegans (worm)

data. a—c The correspondence maps produced by TROM (a), Pearson correlation (b) and
Spearman correlation (¢) on a randomly selected gene expression matrix (among the 200
matrices). d The correlation matrix X that defines the dependence of associated genes
between samples. e The true sample relationships (1: high dependence in associated genes;
0: otherwise) defined as in Eq. (6) for varying c. In a—e, the columnsand rows correspond to
the 35 developmental stages of worm. f The mean precision-recall curves on the 200 gene
expression matrices, given the true labels in e. The 95 % confidence intervals of each
measure’s area under the curve (AUC) are marked next to the curves
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Robustness of TROM to quantile normalization on simulated C. elegans (worm) data. a The
correspondence maps based on TROM scores of a randomly selected gene expression matrix
(among the 200 simulated matrices), before (/eff) and after (right) quantile normalization. b
The results of the Wilcoxon signed-rank test (/ef) and the paired Student’s #test (righi).
Every blank cell means that the Bonferroni-corrected p-value is insignificant for the
corresponding pair of stages, i.e., the TROM scores do not change significantly after
quantile normalization
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Fig. 6.
Developmental trees constructed based on stage-associated genes (identified with zscore

thresholds 1.4 and 1.1 for mouse liver and sea urchin respectively). a Developmental tree of
mouse liver. b Developmental tree of sea urchin
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Fig. 7.

Cgrrespondence maps of within-species and between-species TROM scores (calculated
based on the zscore thresholds listed in the table). TROM scores are saturated at 6. The
names of the species are marked as row or column labels of the corresponding heatmaps. For
the Drosophila species, the stages labels 1-13 refer to Embryo 0-2, 2-4, 4-6, 6-8, 8-10, 10-
12,12-14, 14-16, 16-18, 18-20, 20-22, 22—-24 and 24-26 h, respectively
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within-species TROM scores between-species TROM scores
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Fig. 8.

Ogtline of the package TROM. The three /eft (and right) heatmaps illustrate the within-
species (and between-species) comparison results by using TROM (with zscore threshold
1.5 for both fly and worm), Pearson correlation and Spearman correlation. Greater
similarities are shown in darker colors. The results show that compared to the popular
Pearson and Spearman correlations, TROM can find clearer correspondence patterns.
TROMtakes gene expression matrices and orthologous genes of the species of interest as
input. The functions select.associated.genes and select.associated.orthologs select the
associated genes of different biological samples among all the genes or only among the
genes with orthologs in the other species to be compared with. They also provide graphical
summaries of the numbers of selected associated genes and orthologs. The functions
ws.trom and ws.trom.orthologs perform the within-species transcriptome comparison, find
the overlapping associated genes between every two samples and calculate within-species
TROM scores. The function bs.trom performs the between-species transcriptome
comparison, find the overlapping associated orthologs between every two samples from
different species and calculate the between-species TROM scores. The function heatmap.3
visualizes the TROM scores in a heatmap, with various add-on options for customization.
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The functions find.top.GO.terms and find.top.GO.slim.terms perform gene set enrichment
analysis and find top enriched Gene Ontology (GO) terms and GO slim terms in the
associated genes. Instead of using the selected associated genes, users may input customized
gene lists representing characteristics of different biological samples into the above
functions. Please see the package manual and vignette of TROM for details
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within-species Pearson correlation within-species Spearman correlation
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Embryo6-gh
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D. melanogaster
i

H
D. melanogaster D. melanogaster

between-species Pearson correlation between-species Spearman correlation

D. melanogaster

C. elegans C. elegans

Correlation measures calculated based on the union of associated genes. Pearson correlation
(a) and Spearman correlation (b) for every pair of D. melanogaster stages calculated based
on the union of associated genes of all stages. Pearson correlation (c) and Spearman
correlation (d) for every pair of D. melanogasterand C. elegans stages calculated based on
the union of associated ortholog pairs of all stages. These heatmaps show that correlation
measures calculated based on associated genes only still cannot lead to clear correspondence

patterns
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Comparison of TROM and Pearson/Spearman correlation on simulated data, with a for fly
and b for worm. In both panels, the first row gives the true sample relationships (1: high
dependence in associated genes; 0: otherwise) defined as in Eq. 6 for varying c¢. The second
row gives the mean receiver operating characteristic (ROC) curves on the 200 simulated
gene expression matrices, given the true labels in the first row. The third row gives the mean
Neyman-Pearson receiver operating characteristic (NP-ROC) curves, accordingly. The 95 %

confidence intervals of the area under the curve (AUC) are marked next to the curves
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seq data of D. melanogasterand the microarray data of the other five Drosophila species
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Top 20 enriched biological process GO terms of D.melanogaster. The enrichment scores in
the heatmap are calculated based on stage-associated genes identified from the RNA-seq
data (with zscore threshold 1.5) and saturated at 6. For each stage, the common enriched
GO terms identified from both microarray (Fig. 13) and RNA-seq datasets are marked in red

color (Color figure online)
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Fig. 13.
Top 20 enriched biological process GO terms of D.melanogaster. The enrichment scores in

the heatmap are calculated based on the stage-associated genes identified from the
microarray data (with zscore threshold 0.5) and saturated at 6. For each stage, the common
enriched GO terms identified from both microarray and RNA-seq (Fig. 12) datasets are
marked in red color (Color figure online)
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Top 10 enriched biological process GO terms of mouse liver. The enrichment scores in the
heatmap are calculated based on the stage-associated genes identified from the microarray
data (with zscore threshold 1.5). For each stage, the highly relevant GO terms that have

been confirmed in previous studies are marked in red color (Color figure online)
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Fig. 15.

Developmental trees constructed using stage-associated genes (identified with the zscore

thresholds in the table). a—f are for Drosophila species and G is for C. elegans
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Spearman correlations of the developmental stages of D. melanogaster (fly) and C. elegans
(worm). a The first panel shows the original Spearman correlations of fly stages, while the
rest panels show the Spearman correlations of fly stages under different thresholds. b The
first pane/ shows the original Spearman correlations of worm stages, while the rest panels
show Spearman correlations of worm stages under different thresholds. ¢ TROM scores of

fly. d TROM scores of worm. All the values under the selected threshold are set to the

minimum value of each correlation matrix
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Table 1

Selected enriched GO terms in each stage of D. melanogaster

Stage name Top enriched GO terms

Embryo 0-2 h Oogenesis, DNA replication, germ cell development, neurogenesis

Embryo 2-4 h Neurogenesis, mMRNA splicing via spliceosome, zygotic determination of anterior/posterior axis
Embryo 4-6 h mRNA splicing via spliceosome, specification of segmental identity, cell fate specification
Embryo 6-8 h Cell fate specification, sensory organ development, open tracheal system development

Embryo 8-10 h

Embryo 10-12 h
Embryo 12-14 h
Embryo 14-16 h
Embryo 16-18 h
Embryo 18-20 h

Myoblast fusion, multicellular organism reproduction, puparial adhesion
Myoblast fusion, translation, mitotic spindle elongation, septate junction assembly
Axon guidance, septate junction assembly, branch fusion open tracheal system
Circadian rhythm, response to light stimulus, crystal cell differentiation
Chitin-based cuticle development, body morphogenesis, chitin metabolic process

Body morphogenesis, chitin metabolic process, proteolysis
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Table 2

Selected zscore thresholds for different species

Species

Threshold of z-scores

D. melanogaster (RNA-seq)
C. elegans

D. melanogaster (microarray)
D. ananassae

D. simulans

D. persimilis

D. pseudoobscura

D. virilis

Mouse liver

Sea urchin

D. rerio

1.8
2.0
0.9
0.9
0.9
0.9
0.8
11
1.4
11
1.0
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