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Abstract

α-Synuclein is an abundantly expressed neuronal protein that is at the center of focus in

understanding a group of neurodegenerative disorders called synucleinopathies, which are

characterized by the intracellular presence of aggregated α-synuclein. However, the mecha-

nism of α-synuclein biology in synucleinopathies pathogenesis is not fully understood. In

this study, mice overexpressing human A30P*A53T α-synuclein were evaluated by a motor

behavior test and count of TH-positive neurons, and then two-dimensional liquid chromatog-

raphy-tandem mass spectrometry coupled with tandem mass tags (TMTs) labeling was

employed to quantitatively identify the differentially expressed proteins of substantia nigra

pars compacta (SNpc) tissue samples that were obtained from the α-synuclein transgenic

mice and wild type controls. The number of SNpc dopaminergic neurons and the motor

behavior were unchanged in A30P*A53T transgenic mice at the age of 6 months. Of the

4,715 proteins identified by proteomic techniques, 271 were differentially expressed, includ-

ing 249 upregulated and 22 downregulated proteins. These alterations were primarily asso-

ciated with mitochondrial dysfunction, oxidative stress, ubiquitin-proteasome system

impairment, and endoplasmic reticulum (ER) stress. Some obviously changed proteins,

which were validated by western blotting and immunofluorescence staining, including Sel1l

and Sdhc, may be involved in the α-synuclein pathologies of synucleinopathies. A biological

pathway analysis of common related proteins showed that the proteins were linked to a total

of 31 KEGG pathways. Our findings suggest that these identified proteins may serve as

novel therapeutic targets for synucleinopathies.

Introduction

In the past two decades, α-synuclein has been the center of focus in understanding the etiology

of a group of overlapping neurodegenerative disorders called synucleinopathies, which include
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Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), dementia with Lewy bodies

(DLB), multiple system atrophy (MSA) and a number of less well-characterized neuroaxonal

dystrophies[1–3]. The universal feature of α-synucleinopathies is the presence of proteina-

ceous intracellular bodies containing aggregates of α-synuclein[1–3]. However, the mecha-

nisms that underlie the aberrant functions of α-synuclein and how these impact on disease

pathogenesis remain poorly understood. The numerous murine transgenic lines overexpres-

sing human WT, A53T, or A30P mutant α-synuclein develop synucleinopathy, neurodegen-

eration, loss of striatal dopamine, and locomotor dysfunction, which also result in

mitochondrial dysfunction, oxidative stress, and activation of cell death pathways[4–6]. There-

fore, our understanding of the importance of α-synuclein biology in synucleinopathies patho-

genesis has grown considerably. The overexpression of human A30P�A53T α-synuclein in

mice is used in PD research[7–9]. The number of SNpc dopaminergic neurons and levels of

dopamine were unchanged in A30P�A53T transgenic mice up to 9 months old[7], but signifi-

cantly decreased levels of dopamine and motor impairment were recognized at 16 months old

[8]. Therefore, the A30P�A53T α-synuclein transgenic mouse model is a useful model for ana-

lyzing the pathological cascade from aggregated α-synuclein to motor disturbance.

Proteomics is a powerful methodology to investigate how protein expression is affected in

the pathogenesis of a disease process, providing a complement to the information obtained by

functional genomics. Such unbiased approaches permit the identification of novel protein

changes and are used to study various illnesses[10, 11]. Quantitative proteomics can be per-

formed using three methods: label-free quantification, metabolic labeling with stable isotope

labeling by amino acids in cell culture, and stable-isotope labeling using chemical reagents

covalently attached in vitro such as dimethyl-labeling, tandem mass tags (TMTs), and isobaric

tags for relative and absolute quantification (iTRAQ)[10, 11]. Notably, the use of isobaric tag-

based TMTs and iTRAQ produces high-quality data with high sensitivity, excellent signal-to-

noise ratios, and a broad dynamic range. Owing to their many advantages, TMTs and iTRAQ

have gained popularity as essential tools for quantitative proteomics[10, 11].

To gain insight into the mechanism of α-synuclein pathologies, we used TMTs to generate

comparative protein profiles of SNpc samples obtained from A30P�A53T α-synuclein trans-

genic mice and controls at the age of 6 months. We compared the SNpc tissue levels of candi-

date proteins to evaluate their ability to discriminate between α-synuclein transgenic and

control mice. Our findings indicate that proteomics is a useful method to investigate the cru-

cial pathogenesis of α-synucleinopathies.

Materials and methods

Animals

To establish a transgenic PD mouse model, C57BL/6J-Tg (Th-SNCA�A30P�A53T) 39Eric/J

transgenic mice (Stock number: 008239) were purchased from the Jackson Laboratory. To

maintain the α-synuclein-A30P�A53T transgenic (TG) mice in our laboratory, established

transgenic mice were mated with wild-type C57BL/6J background (Beijing Vital River Labora-

tory Animal Technology Co., Ltd, Beijing, China). The offspring were genotyped by tail-tip

DNA PCR according to the genotyping protocols database of the Jackson Laboratory website.

Theα-synuclein-A30P�A53T transgenic mice were genotyped with 4 primers: Transgene -F,

5'-CAGGTA CCG ACA GTT GTG GTG TAA AGG AAT-3', Transgene-R, 5'-GATAGC TAT
AAG GCT TCA GGT TCG TAG TCT-3', and Internal Positive Control-F, 5'-CAA ATG TTG
CTT GTC TGG TG-3', Internal Positive Control-R, 5'-GTC AGT CGA GTG CAC AGT TT-3'
(Transgene = 469bp, Wild type = no bands, Internal Positive Control = 200bp). The cycling

conditions were as follows: 97˚C for 3min, (97˚C for 30 s, 65˚C for 30s and 72˚C for 30 s) ×35,
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followed by 2 min at 72˚C. The transgenic mice and their wild-type littermates were investi-

gated at the age of 6 months with a motor behavior test, TH-positive neurons count and prote-

omic analyses. Animals were housed under standard housing conditions with a 12h light/12h

dark cycle and unlimited access to water and chow. The protocol was approved by the Animal

Care and Use Committee of Huazhong University of Science and Technology.

Rotarod test

The rotarod test was performed to assess motor coordination by placing mice on a rotating

rod that runs at an accelerating speed from 3 to 30 rpm over a 5-min period. If a mouse falls

onto an underlying platform, then the detector automatically stops and records the fall down

latency. Prior to the first test, the mice were trained with three trials, with the rod rotating at a

constant speed of 3 rpm for approximately one minute.

Grip strength test

The forelimb grip strength test was used to evaluate the muscle strength or neuromuscular

activity in mice. The mice were held up to grip the pull bar on the grip wire with only their

front paws and were steadily pulled back until they could not hold on any longer. This ability

was measured 10 times per mouse, and the maximal force (in grams) was recorded.

Open field test

The exploration and reactivity of mice to a novel space was assessed in a Plexiglas cage

(45cm × 45cm). Mice were placed individually into the center of a brightly lit open field. Their

movements were tracked for the ensuing 20 min. All spontaneous locomotion of the mice was

measured by an activity monitor connected to a computer.

Immunofluorescence staining

After being anesthetized, the brains were removed from the skull, and fixed in 4% paraformal-

dehyde overnight, and then stored at 4˚C in 30% sucrose solution until they sank. The brains

were freeze sectioned using a sliding microtome (Leica, Germany) into 30-μm coronal sec-

tions. For immunofluorescence staining, the slices were permeabilized in 0.3% triton for 10

min, and then blocked with 10% serum in PBS for 1 h and incubated with a primary antibody

(TH, Santa Cruz, sc-374047, 1:200; Sel1l, Sangon Biotech, D161115, 1:200; Sdhc, Proteintech

Group, 14575-1-AP, 1:100) overnight at 4˚C. The next day, the secondary antibodies (Dylight

594-Conjugated AffiniPure Goat Anti-Mouse, Jackson ImmunoResearch, 1:400; Dylight

488-Conjugated AffiniPure Goat Anti-Rabbit IgG, Jackson ImmunoResearch, 1:400) were

added to the sections. Nuclei were stained by DAPI. The slices were imaged using microscopy

(Leica DFC320, Germany). The number of TH-immunoreactive positive neurons in the SNpc

was counted using the previously described counting criteria[12].

Protein extraction and trypsin digestion

The SNpc tissues of the transgenic mice and their wild-type littermates were removed at the

age of 6 months, and the samples were frozen immediately in liquid nitrogen. The samples

were transferred to 5-mL centrifuge tubes and lysed in buffer (8 M urea, 2 mM EDTA and 1%

Protease Inhibitor Cocktail) and then sonicated three times on ice, and centrifuged at 20,000g

at 4˚C for 10 min to remove cellular debris. Finally, the protein was precipitated with cold 15%

TCA (trichloroacetic acid, Sigma) for 2 h at -20˚C. After centrifugation at 4˚C for 10 min, the

remaining precipitate was washed with cold acetone three times. Proteins were resuspended in
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buffer (8 M urea, 100 mM TEAB, pH 8.0), and the protein concentrations were determined

using a 2-D Quant kit according to the manufacturer’s instructions. For trypsin digestion, the

protein solution was reduced in 10 mM DTT (dithiothreitol, Sigma) for 60 min at 37˚C, alkyl-

ated in 20 mM IAA (iodoacetamide, Sigma) for 45 min at 37˚C in the dark and digested over-

night by trypsin (trypsin/protein mass ratio 1:50). Approximately 100 μg of protein for each

sample was digested with trypsin for the following experiments.

TMT labeling

After trypsin digestion, peptide was desalted by a Strata X C18 SPE column (Phenomenex)

and vacuum-dried. Peptide was reconstituted in 0.5 M TEAB and processed according to the

manufacturer’s protocol for the 6-plex TMT kit (Thermo Fisher Scientific). Briefly, one unit of

TMT reagent (defined as the amount of reagent required to label 100 μg of protein) was

thawed and reconstituted in 24 μl CAN (acetonitrile, Fisher Chemical). The peptide mixtures

were then incubated for 2 h at 25˚C and pooled, desalted using C18 reversed-phase spin col-

umns according to the manufacturer’s instructions and dried by vacuum centrifugation.

Quantitative proteomic analysis by LC-MS/MS

The sample was then fractionated into fractions by high pH reverse-phase HPLC using Agilent

300Extend C18 column. Briefly, peptides were first separated with a gradient of 2% to 60% ace-

tonitrile in 10 mM ammonium bicarbonate pH 10 over 80 min into 80 fractions. Then, the

peptides were combined into 18 fractions and dried under vacuum. Peptides were dissolved in

0.1% FA (Formic acid, Fluka) and directly loaded onto a reversed-phase pre-column (Acclaim

PepMap 100, Thermo Scientific). Peptide separation was performed using a reversed-phase

analytical column (Acclaim PepMap RSLC, Thermo Scientific). The gradient was composed

of an increase from 6% to 85% solvent B (0.1% FA in 98% ACN), all at a constant flow rate of

300 nl/min on an EASY-nLC 1000 UPLC system. The resulting peptides were analyzed by a

Q Exactive™ Plus hybrid quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific).

The peptides were subjected to NSI source followed by tandem mass spectrometry (MS/MS)

in Q Exactive™ Plus (Thermo) coupled online to the UPLC. Intact peptides were detected in

the Orbitrap at a resolution of 70,000. Peptides were selected for MS/MS using the NCE setting

at 27, 30, 33; ion fragments were detected in the Orbitrap at a resolution of 17,500. A data-

dependent procedure that alternated between one MS scan followed by 20 MS/MS scans was

applied for the top 20 precursor ions above a threshold ion count of 2.0E4 in the MS survey

scan with a 30.0-s dynamic exclusion.

The resulting MS/MS data were processed using Mascot search engine (v.2.3.0). Tandem

mass spectra were searched against the SwissProt_Mouse database. Trypsin/P was specified as

cleavage enzyme allowing up to 2 missing cleavages. The mass error was set to 10 ppm for pre-

cursor ions and 0.02 Da for fragment ions. Carbamidomethyl on Cys was specified as a fixed

modification and oxidation on Met was specified as a variable modification. For the protein

quantification method, TMT-6plex was selected in Mascot. FDR was adjusted to< 1%, and

the peptide ion score was set > 20.

Bioinformatics analysis

Some identified proteins that appear in some samples but not in others were removed. Gene

Ontology (GO) annotation of the proteome was performed using the UniProt-GOA database

(http://www.ebi.ac.uk/GOA/). Cluster membership was visualized by a heat map using the

"heatmap.2" function from the "gplots" R-package. There, we used wolfpsort a subcellular

localization prediction software, to predict subcellular localization. If some identified proteins
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were not annotated by the UniProt-GOA database, then the InterProScan software was used

to annotate the protein’s GO function based on the protein sequence alignment method. Pro-

teins were classified by Gene Ontology annotation based on three categories: biological pro-

cess, cellular component and molecular function. The Kyoto Encyclopedia of Genes and

Genomes (KEGG) database was used to annotate the protein KEGG pathway by a two-tailed

Fisher’s exact test.

Western blot

The substantia nigra tissues of mice were homogenized in ice-cold RIPA buffer with protease

inhibitors. The lysates were centrifuged at 12000 g for 15 min at 4˚C, and the supernatant frac-

tions were collected. The supernatant fractions were re-suspended in 1 × SDS sample buffer

and boiled at 98˚C for 10 min. Samples were separated on 12% SDS-PAGE gels and transferred

to a PVDF membrane and then sequentially incubated with the primary (β-actin, Cell Signal-

ing Technology, 8457, 1:5000; Sel1l, 1:2000; Sdhc, 1:1000) and secondary (Peroxidase Affini-

Pure Goat Anti-Mouse IgG, Jackson ImmunoResearch, WB-1:20000; Peroxidase AffiniPure

Goat Anti-Rabbit IgG, Jackson ImmunoResearch, WB-1:20000) antibodies. The detection was

performed using the ECL western blotting detection system.

ELISA

Plasma samples were collected using heparin as an anticoagulant. Centrifugation was for 15

minutes at 1000 g at 4˚C. ELISA kits (Sel1l, Cusabio, CSB-EL020973; Sdhc, Cloud-clone Corp,

SEK213) were utilized to quantify Sel1l and Sdhc in plasma. Samples and standards were pre-

pared according to the instructions from the manufacturer.

Statistical analysis

All data were analyzed by two-tailed unpaired t-tests. All data are presented as the mean ± SD.

All results are representative of at least three independent experiments. P values less than 0.05

were considered to be statistically significant.

Results

Motor behavior and dopaminergic neurons were detected in the

transgenic mice and their wild-type littermates

A30P�A53T transgenic mice from Jackson Laboratory were bred, and the offspring were geno-

typed by tail-tip DNA PCR (Fig 1A). The motor behavior test and counting of TH-positive

neurons within SNpc were performed in the A30P�A53T transgenic mice and their wild-type

littermates at the age of 6 months. Compared to the WT mice, the A30P�A53T transgenic

mice displayed no distinction in PD-related behavior, such as in the rotarod test (Fig 1B), grip

strength test (Fig 1C), open field test (Fig 1D and 1E), and TH positive neurons numbers

within SNpc (Fig 1F and 1G). These results indicate that A30P�A53T transgenic mice at the

age of 6 months show no obvious symptoms of PD in behavior phenotype or DA neuron loss.

TMT proteomics profiling of the SNpc of α-synuclein A30P*A53T

transgenic and WT mice

The SNpc of 6-month-old A30P�A53T transgenic mice (n = 40) and WT littermates (n = 40)

was extracted and randomly divided into two samples: TG1 and TG2; WT1 and WT2. Samples

were then subjected to a high-throughput quantitative proteome analysis using TMTs (Fig 2A).
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Fig 1. Behavioral and immunohistochemical analysis of transgenic mice and their wild-type littermates. (A)

RT-PCR was used to verify the mRNA expression of α-synuclein-A30P*A53T transgenic mice (TG) and wild-type

littermates (WT). (B) The rotarod test was used to measure TG mice and WT controls at the age of 6 months (n = 15). (C)

Grip strength tests were performed in TG mice and WT controls (n = 15). (D and E) Open field tests were performed in TG

mice and WT controls (n = 15). (F) Immunostaining of tyrosine hydroxylase (TH)-positive neurons of SNpc in TG mice and

WT controls. (G) The number of TH-immunoreactive positive neurons in the SNpc was counted stereologically (n = 3).

https://doi.org/10.1371/journal.pone.0182092.g001
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Fig 2. Proteomic process flow chart and standardized sample evaluation. (A) Depiction of the experimental design workflow.

(B) Data reproducibility reflected by Pearson correlation coefficients. (C) Mass error distribution of all identified peptides. (D) Peptide

length distribution.

https://doi.org/10.1371/journal.pone.0182092.g002
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Pearson correlation coefficients of all samples were used to evaluate the repeatability of the rel-

ative protein quantitation (Fig 2B). MS data validation is shown in Fi 2C and 2D. First, we

assessed the mass error of all identified peptides (Fig 2C). The distribution of mass error was

near zero, and many were<0.02 Da; thus, the mass accuracy of the MS data was acceptable.

Second, the length of most peptides was distributed between 8 and 16, similar to tryptic pep-

tides (Fig 2D). Thus, the sample preparation was markedly better than that of the standards. A

total of 4,715 protein groups were identified, and 3,450 of these were quantified in the SNpc of

A30P�A53T transgenic mice and WT littermates (S1 Table). The quantified proteins were

divided into two categories. A ratio>1.2 was considered upregulation, and<0.83 was consid-

ered downregulation. Among the quantified proteins, 249 were upregulated, and 22 were

downregulated (S1 Table). Fig 3A shows a heatmap of the abundance patterns for proteins

with significant changes in the SNpc of A30P�A53T mice and WT littermates. Based on the

subcellular location annotation information of identified proteins, we counted the amount and

percentage of differentially expressed proteins. Among these, some were found in one or more

locations within the cell: 26% were in the cytoplasm, 28% in the nucleus, 17% in the plasma

membrane, 11% in mitochondria, and 11% in the extracellular matrix (ECM) (Fig 3B). Among

the 249 upregulated proteins, 24% were in the cytoplasm, 29% in the nucleus, 18% in the

plasma membrane, 12% in mitochondria, and 10% in the ECM (Fig 3C). Among the 22 down-

regulated proteins, 45% were in the cytoplasm, 14% in the nucleus, 5% in the plasma mem-

brane, 4% in the mitochondria, and 32% in the ECM (Fig 3D).

GO term classification and GO functional enrichment of differentially

quantified proteins

To assess the nigral proteome composition between A30P�A53T transgenic mice and WT con-

trols, differentially quantified proteins were parsed into GO term classifications and GO func-

tional enrichment. GO annotation covers three domains: biological process, cellular

components, and molecular function. Per the biological process classification, most of these

249 upregulated proteins were involved in various cellular processes, such as biological regula-

tion, response to stimulus, and metabolic process (S2 Table); most of these 22 down-regulated

proteins were involved in various cellular processes, such as biological regulation, response to

stimulus, and metabolic process (S3 Table). Per the cellular component classification, most of

the 249 upregulated proteins were found to be localized virtually everywhere in the cells and

even in the ECM, such as the organelle, membrane, cell junction, or extracellular region (S2

Table), and most of the 22 downregulated proteins were found to be localized virtually every-

where in the cells and even in the ECM, such as the organelle, membrane or extracellular

region (S3 Table). Based on the molecular function classification, most of the 249 upregulated

protein functions were binding, catalytic activity, transporter activity, and enzyme regulator

activity (S2 Table), and most of the 22 downregulated protein functions were binding, catalytic

activity, enzyme regulator activity, transporter activity, and antioxidant activity (S3 Table).

Per the biological process of GO functional enrichment, most of the 249 upregulated pro-

teins were involved in the regulation of epithelial cell migration, DNA packaging, protein-

DNA complex assembly, and chromatin assembly (Fig 4A), and most of the 22 downregulated

proteins were involved in oxygen transport, gas transport, and defense response (Fig 4B). Per

the cellular component of GO functional enrichment, most of the 249 upregulated proteins

were proton-transporting two-sector ATPase complex, DNA-binding complex, or mitochon-

drial proton-transporting ATP synthase (Fig 4A), and most of the 22 downregulated proteins

were a part of the hemoglobin complex, keratin filament, intermediate filament, or extracellu-

lar region (Fig 4B). Per the molecular function of GO functional enrichment, most of the 249
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upregulated proteins showed glycylpeptide N-tetradecanoyltransferase activity, SUMO-

activating enzyme activity, N-acyltransferase activity, or peptidase activator activity involved

in apoptosis (Fig 4A), and most of the 22 downregulated proteins showed oxygen transporter

activity, oxygen binding, heme binding, or tetrapyrrole binding (Fig 4B).

Fig 3. Heatmap and the subcellular locations of proteins. (A) Heatmap of proteins identified as significantly differentially regulated

(p < 0.05). (B) Subcellular locations of all identified proteins. (C) Subcellular locations of upregulated proteins. (D) Subcellular locations of

downregulated proteins.

https://doi.org/10.1371/journal.pone.0182092.g003
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KEGG pathway enrichment analysis of differentially expressed proteins

A KEGG pathway-based analysis was performed to identify pathways that were potentially

affected by the differential protein expression between A30P�A53T transgenic and WT mice.

A biological pathway analysis of common related proteins showed that the proteins were

linked to a total of 31 KEGG pathways. The top three pathways from upregulated proteins

were the ribosome, ECM–receptor interaction, and protein processing in the endoplasmic

reticulum (ER) (Fig 5A). The top three pathways from downregulated proteins were malaria,

African trypanosomiasis, and morphine addiction (Fig 5B). All KEGG pathway information

and proteins involved are listed in S4 and S5 Tables. Several important proteins, including

Q9DBY1, Q8R180, Q8BU14, Q61335, Q9WTU6, Q80UM7, P70362, and Q9Z2G6, with func-

tions in protein export, protein degradation, and the ER, were classified as part of protein pro-

cessing in the ER pathway (Fig 5, S4 Table).

Validation of altered proteins

To verify the reliability of the proteomics analysis, Sel1l and Sdhc were selected as representa-

tive proteins and subjected to western blotting, immunofluorescence staining and ELISA

(Fig 6 and S1 Fig). The expression level of Sel1l in the SNpc of the TG group was higher than

that in the WT group detected by western blotting and immunofluorescence staining (Fig 6A,

6B and 6E). The western blotting and immunofluorescence staining results showed that the

expression level of Sdhc in the SNpc of the TG group was lower than in the WT group (Fig 6C,

Fig 4. GO-based enrichment analysis. (A) GO-based enrichment analysis of upregulated proteins. (B) GO-based enrichment analysis of

down-regulated proteins.

https://doi.org/10.1371/journal.pone.0182092.g004
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6D and 6F). The results of western blotting and immunofluorescence staining for Sel1l and

Sdhc using the SNpc of the WT and TG mice were consistent with those of the TMT proteo-

mics. Additionally, the protein levels of Sel1l and Sdhc were not altered in the plasma of WT

and TG mice monitored by ELISA (S1 Fig).

Discussion

In this study, TMT-based quantitative proteomics analysis was applied to investigate the prote-

omic profiles and potential biomarkers in A30P�A53T α-synuclein transgenic mice, which

may facilitate understanding the α-synuclein biology and pathological changes in synucleino-

pathies. We catalogued 4,715 proteins, which represent the larger proteome map to date. Over

249 proteins were upregulated with >1.2-fold change in A30P�A53T α-synuclein transgenic

mice compared with WT mice. The top five upregulated proteins identified were the V-type

Fig 5. KEGG pathway-based enrichment analysis. (A) Pathway-based enrichment of upregulated proteins. (B) Pathway-based

enrichment of downregulated proteins.

https://doi.org/10.1371/journal.pone.0182092.g005
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Fig 6. Validation of altered proteins in the SNpc tissue of TG mice and WT controls by western blotting

and immunofluorescence staining. (A) The protein levels of Sel1l were detected by western blot in the SNpc

tissue of TG mice and WT controls. (B) Quantification of the protein levels of Sel1l from (A) (n = 3). (C) The

protein levels of Sdhc were measured by western blot in the SNpc tissue of TG mice and WT controls. (D)

Quantification of the protein levels of Sdhc from (C) (n = 3). (E) Sel1l was monitored by dual immunolabeling of

TH (red) and Sel1l (green) in the SNpc regions of TG mice and WT controls. (F) Sdhc was assessed by dual

immunolabeling of TH (red) and Sdhc (green) in the SNpc regions of TG mice and WT controls.

https://doi.org/10.1371/journal.pone.0182092.g006
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proton ATPase 16 kDa proteolipid subunit (Atp6v0c), 6.8 kDa mitochondrial proteolipid, 60S

ribosomal protein L27a, Transportin-2, and Protein sel-1 homolog 1 (Sel1l). Over 22 proteins

were downregulated with<0.8-fold change. The top five downregulated proteins identified

were Keratin, type I cytoskeletal 10; Succinate dehydrogenase cytochrome b560 subunit, mito-

chondrial (Sdhc); Rho GDP-dissociation inhibitor 2; Hyaluronan and proteoglycan link pro-

tein 2; and Poly (U)-binding-splicing factor PUF60. The validation results showed that the

expression level of Sel1l and Sdhc in the SNpc of the TG group and WT group were consistent

with those of the TMTs proteomics by western blotting and immunofluorescence staining.

The top-ranking proteins closely associated with synucleinopathies, including Sel1l and Sdhc,

may be involved in α-synuclein pathologies in synucleinopathies. Moreover, a biological

KEGG pathway analysis of the altered proteins revealed 31 altered pathways. The top-ranking

pathways closely associated with synucleinopathies included protein processing in the ER

pathways.

A bioinformatics analysis of altered proteins in α-synuclein transgenic mice aids in the

understanding of synucleinopathy complexity and the identification of early biomarkers. The

top upregulated protein in this study was Atp6v0c, the bafilomycin A1-binding subunit of vac-

uolar ATPase[13]. Transfection of adeno-associated viral vectors harboring Atp6v0c in the

mouse caudate putamen enhanced the depolarization-induced overflow of endogenous DA

and ameliorated motor defects in a PD mouse model[14, 15]. Another study showed that

Atp6v0c knockdown significantly increased the basal levels of microtubule-associated protein

light chain 3-II, α-synuclein high-molecular weight species, and APP C-terminal fragments as

well as inhibited autophagic flux[15]. These studies suggest that Atp6v0c may be involved in

dopamine release from nerve terminals in the striatum of mice and that Atp6v0c may be help-

ful as a rescue molecule for gene therapy. Sel1l is a component of the ER stress degradation sys-

tem and changed dramatically in our study. Omura et al. reported that hypodense zonisamide

(an antiepileptic agent) improved the cardinal symptoms of PD by increasing Sel1l expression,

thus inhibiting neuronal cell death in PD patients[16]. Sel1l knockout mice, with an average

lifespan of 8–10 weeks, progressively developed motor dysfunction, including abnormal limb

clasping and impaired gross and fine motor coordination[17]. These results indicate that Sel1l

dysregulation or dysfunction may be involved in synucleinopathy pathogenesis. Sdhc is an

important component of mitochondrial complex II and was obviously downregulated in our

study. Ishii et al. reported that an Sdhc mutation resulted in increased reactive oxygen species

production, leading to apoptosis and precocious aging in Caenorhabditis elegans[18, 19]. Sdhc

ablation in mice resulted in a progressive dopaminergic neuron loss in the SNpc, and neurons

were more susceptible to mitochondrial damage[18]. Thus, Sdhc mutations and Sdhc activity

depression are strongly implicated in neuronal loss in synucleinopathies. Accordingly,

Atp6v0c, Sel1l, and Sdhc are involved in alpha synuclein biology.

Molecular mechanisms underlying synucleinopathies are extensively studied; however,

much remains unknown. Numerous studies have indicated that ER stress is involved in synu-

cleinopathy pathogenesis[20–22]. The ER is central to protein folding in eukaryotic cells, and

any perturbations altering ER homeostasis can result in the disruption of the folding process

and accumulation of misfolded or unfolded proteins (i.e., ER stress) [20–22]. Under chronic

ER stress, the accumulation of unfolded proteins and sustained unfolded protein response acti-

vates pro-apoptotic pathways and cell death, thereby eliminating damaged cells[20]. The ER

accumulation of α-synuclein was observed in PD brain tissue[21]. Moreover, the accumulation

and aggregation of misfolded/unfolded α-synuclein may promote sustained ER stress, result-

ing in the activation of death mechanisms in PD[20–22]. Here, we found that protein process-

ing in the ER pathway was obviously altered, and Sel1l, a component of the ER stress

degradation system, was significantly upregulated in the SNpc of α-synuclein transgenic mice,
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indicating that protein processing in the ER pathway is involved in synucleinopathies. Malaria

and African trypanosomiasis, the top two pathways from downregulated proteins are mean-

ingless, as they are based on the changes in hemoglobin and keratin proteins, which might be

due to contamination with animal fur hair. The contamination is unavoidable in proteomics

research although we strictly followed the operating instruction.

PD is the most prevalent of the synucleinopathies and has been the focus of much of the ini-

tial research on α-synuclein Lewy body pathology. The first motor symptoms of PD emerge

approximately 5–30 years after actual disease onset[23]. Thus, PD therapies with dopamine

agonists are used long after the number of nigrostriatal dopaminergic neurons required for

normal regulation of motor functions is lost. Therefore, studies in this area searched for pre-

clinical biomarkers that were easily accessible for analysis, including non-motor symptoms,

changes in body fluid composition, and specific gene and protein expression in blood cells

[23–25]. However, no obvious biomarkers were identified. Fortunately, technological advances

have facilitated new assessments of disease pathology (e.g., proteomic profiling). Proteomics

were employed to further our understanding of PD pathological mechanisms. Recent proteo-

mic profiling studies in PD have investigated protein changes in the cerebrospinal fluid,

plasma, and brain tissue of PD patients and in the brain tissue of MPTP- and 6-OHDA-treated

animal models[26, 27]. Proteomic research in PD patients and animal models has shown that

overt motor symptoms provide little help in the identification of preclinical biomarkers and

preventive therapies for PD.

Therefore, in this study, we first used TMTs to identify differentially expressed proteins in

the SNpc of A30P�A53T α-synuclein transgenic mice, which did not show overt phenotypes of

PD. Here, we identified altered proteins for the early and specific detection of α-synuclein

pathologies in synucleinopathies. Our findings provide information on the disease pathogene-

sis and etiology and clues for new therapeutic targets for synucleinopathies.
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