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Abstract

Effective disease monitoring provides a foundation for effective public health systems. This has 

historically been accomplished with patient contact and bureaucratic aggregation, which tends to 

be slow and expensive. Recent internet-based approaches promise to be real-time and cheap, with 

few parameters. However, the question of when and how these approaches work remains open.

We addressed this question using Wikipedia access logs and category links. Our experiments, 

replicable and extensible using our open source code and data, test the effect of semantic article 

filtering, amount of training data, forecast horizon, and model staleness by comparing across 6 

diseases and 4 countries using thousands of individual models. We found that our minimal-

configuration, language-agnostic article selection process based on semantic relatedness is 

effective for improving predictions, and that our approach is relatively insensitive to the amount 

and age of training data. We also found, in contrast to prior work, very little forecasting value, and 

we argue that this is consistent with theoretical considerations about the nature of forecasting. 

These mixed results lead us to propose that the currently observational field of internet-based 

disease surveillance must pivot to include theoretical models of information flow as well as 

controlled experiments based on simulations of disease.
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INTRODUCTION

Despite a rapid pace of advancement in medicine, disease remains one of the most tenacious 

challenges of the human experience. Factors such as globalization and climate change 

contribute to novel and deadly disease dynamics [107], as highlighted by recent events such 

as the 2014–2015 Ebola epidemic in West Africa [139] and the ongoing Zika crisis in the 

Americas [129].

The highest-impact approach for addressing this challenge is a strong public health system 

[56, 139], including effective and timely disease surveillance, which quantifies present and 

future disease incidence to improve resource allocation and other planning. Traditionally, 

this depends on in-person patient contact. Clinic visits generate records that are 

accumulated, and these results are disseminated, typically by governments. Given 

appropriate resources, this approach is considered sufficiently reliable and accurate, but it is 

also expensive and coarse. Further, it is slow. Measurements of present disease activity are 

not available, only measurements of past activity.

These problems have motivated a new, complementary approach: use internet data such as 

social media, search queries, and web server traffic. This is predicated on the conjecture that 

individuals’ observations of disease yield online traces that can be extracted and linked to 

reality. The anticipated result is estimates of present disease activity available in near real-

time, called nowcasts, as well as forecasts of future activity informed by near real-time 

observations — as we will argue, a related but fundamentally different product.

This notion was well-received in both the popular press [66, e.g.] and the scientific 

literature. One of the first papers has been cited over 2,000 times since its publication in late 

2008 [59]. Based on these results and amid the rush of enthusiasm, Google founded web 

systems, Google Flu Trends and Google Dengue Trends, to make nowcasts available to the 

public.

However, subsequent developments have led to increasing skepticism. For example, after 

significant accuracy problems [24] and scientific criticism [95], Flu and Dengue Trends 

folded in the summer of 2015 [154].

Among the numerous studies in the scientific literature, the details of how to process and 

evaluate internet traces are varied and scattered, as are experimental contexts. Further, we 

suspect many additional studies yielded negative results and were not published. That is, 
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measuring disease using internet data works some of the time, but not always. We ask: when 
does it work and how does it work?

We address this question using Wikipedia. The present work is a large-scale experiment 

across 19 disease/country contexts curated for comparability on these two dimensions, using 

linear models atop Wikipedia traffic logs and an article filter leveraging relatedness 

information from Wikipedia categories [152]. This enables us to address four research 

questions motivated by the above conjecture and core question. These are:

RQ1. Semantic input filter. Does prediction improve when inputs are filtered for 
relatedness before being offered to a linear fitting algorithm? We found that using 

Wikipedia’s inter-article and category links as a proxy for semantic relatedness did in 

fact improve results, and that offering the algorithm unrelated yet correlated articles 

made predictions worse.

RQ2. Training duration. Does the amount of training data, measured in contiguous 
weekly data points, affect the quality of predictions? We found that our algorithm was 

less sensitive to this parameter.

RQ3. Forecast horizon. How far into the future can our algorithms predict disease 
incidence? In contrast to previous work, we found almost no forecasting value; even 

1-week forecasts were ineffective.

RQ4. Staleness. How long does a given model remain effective, before it must be re-
trained? We found that performance of good models deteriorated as staleness 

increased, but relatively slowly.

This paper is supported by open-source experiment code1 and a supplementary data archive2 

containing our input and output data, early explorations of data and algorithms, and a 

machine-readable summary of our literature review.

Our contributions are as follows:

1. Answers to the research questions based on thousands of discrete experiments.

2. A literature review comprehensive in the areas of internet-based disease 

surveillance and Wikipedia-based measurement of the real world.

3. Data and code to support replication and extension of this work. We hope to 

provide a basis for a tradition of comparability in the field of internet-based 

disease surveillance.

4. A research agenda that we hope will lead to a more robust field able to meet the 

life-and-death needs of health policy and practice.

Our paper is organized as follows. We review the relevant literature, outline the design of our 

experiment, and present our results. We close with a discussion of what this really tells us 

and our proposals for how the field should best proceed.

1https://github.com/reidpr/quac
2https://dx.doi.org/10.6084/m9.figshare.4025916.v1
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RELATED WORK

This paper falls into four contexts: traditional patient- and laboratory-based disease 

surveillance, internet-based disease surveillance, Wikipedia-based measurement of the real 

world, and the latter two applied to forecasting. This section extends and adapts the literature 

review in our previous paper [57].

To our knowledge, this review is comprehensive in the latter three areas as of April 2016. A 

BibTeX file containing all of our references is in the supplement, as is a spreadsheet setting 

out in table form the related work attributes discussed below.

Traditional disease surveillance

Traditional forms of disease surveillance are based upon direct patient contact or biological 

tests taking place in clinics, hospitals, and laboratories. The majority of current systems rely 

on syndromic surveillance data (i.e., about symptoms) including clinical diagnoses, chief 

complaints, school and work absenteeism, illness-related 911 calls, and emergency room 

admissions [86].

For example, a well-established measure for influenza surveillance is the fraction of patients 

with influenza-like illness. A network of outpatient providers report the number of (1) 

patients seen in total and (2) who present symptoms consistent with influenza and having no 

other identifiable cause [28]; the latter divided by the former is known as “ILI”. Other 

electronic resources include ESSENCE, based on data from the Department of Defense 

Military Health System [16] and BioSense, based on data from the Departments of Defense 

and Veterans Affairs, retail pharmacies, and Laboratory Corporation of America [15].

Clinical labs play a critical role in surveillance of infectious diseases. For example, the 

Laboratory Response Network, consisting of over 120 biological laboratories, provides 

active surveillance of a number of diseases ranging from mild (e.g., non-pathogenic E. coli 
and Staphylococcus aureus) to severe (e.g., Ebola and Marburg), based on clinical or 

environmental samples [86]. Other systems monitor non-traditional public health indicators 

such as school absenteeism rates, over-the-counter medication sales, 911 calls, veterinary 

data, and ambulance runs. Typically, these activities are coordinated by government agencies 

at the local or regional level.

These systems, especially in developed countries, are generally treated as accurate and 

unbiased.3 However, they have a number of disadvantages, notably cost and timeliness: for 

example, each ILI datum requires a clinic visit, and ILI data are published only after a delay 

of 1–2 weeks [28].

Internet-based disease surveillance

The basic conjecture of internet-based disease surveillance is that people leave traces of their 

online activity related to health observations, and these traces can be captured and used to 

3These data streams do have known inaccuracies and biases [47] but are the best available. For this reason, we refer to them as official 
data rather than ground truth.
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derive actionable information. Two main classes of trace exist: sharing such as social media 

mentions of face mask use [112] and seeking such as web searches for health-related topics 

[59].4

In this section, we focus on the surveillance work most closely related to our efforts, 

specifically, that which uses existing single-source internet data feeds to estimate a scalar 

disease-related metric. We exclude from detailed analysis work that (for example) provides 

only alerts [38, 178], measures public perception or awareness of a disease [138], includes 

disease dynamics in its model [147,170], evaluates a third-party method [95, 120], uses non-

single-source data feeds [38, 55], or crowd-sources health-related data (participatory disease 
surveillance) [34,35].

We also focus on work that estimates biologically-rooted metrics. For example, we exclude 

metrics based on seasonality [11,130], pollen counts [58,165], over-the-counter drug sales 

volume [82,98], and emergency department visits [52].

These traces of disease observations are embedded in search queries [5, 7, 9, 12, 14, 17, 21, 

25, 26, 31, 32, 33, 39, 49, 50, 53, 59, 63, 64, 71, 72 73, 77, 78, 81, 85, 87, 90, 97, 103, 104, 

109, 119, 126, 127, 131, 132, 141, 142, 144, 146, 157, 158, 162, 163, 166, 168, 169, 170, 

173, 177, 179, 180, 182], social media messages [1, 2, 8, 10, 20, 36, 40, 41, 42, 46, 51, 60, 

62, 68, 76, 84, 89, 92, 93, 115, 116, 118, 123, 124, 148, 149, 151, 176], web server access 

logs [57, 79, 101, 105], and combinations thereof [13, 19, 30, 91, 136, 143, 167].

At a basic level, traces are extracted by counting query strings, words or phrases, or web 

page URLs that are related to some metric of interest (e.g., number of cases), forming a time 

series of occurrences for each item. A statistical model is then created that maps these inputs 

to the official values of the metric. This model is trained on time periods when both the 

internet and official data are available, and then applied to estimate the metric over time 

periods when the official data are not available, i.e., forecasting the future and nowcasting 
the present. The latter is useful in the typical case where official data availability lags real 

time.

The disease surveillance work cited above has been applied to a wide variety of infectious 

and non-infectious conditions: allergies [87], asthma [136, 176], avian influenza [25], cancer 

[39], chicken pox [109, 126], chikungunya [109], chlamydia [42, 78, 109], cholera [36, 57], 

dengue [7, 31, 32, 57, 62, 109], diabetes [42, 60], dysentery [180], Ebola [5, 57], 

erythromelalgia [63], food poisoning [12], gastroenteritis [45, 50, 71, 126], gonorrhea [77, 

78, 109], hand foot and mouth disease [26, 167], heart disease [51, 60], hepatitis [109], HIV/

AIDS [57, 76, 177, 180], influenza [1, 2, 8, 9, 10, 13, 19, 20, 21, 30, 33, 40, 41, 43, 46, 48, 

53, 57, 59, 68, 72, 73, 79, 81, 84, 85, 89, 90, 91, 92, 93, 97, 101, 103, 104, 105, 109, 115, 

116, 118, 123, 124, 126, 131, 132, 141, 142, 143, 146, 148, 149, 151, 157, 163, 168, 170, 

173, 179, 182], kidney stones [17], listeriosis [166], Lyme disease [14], malaria [119], 

measles [109], meningitis [109], methicillin-resistant Staphylococcus aureus (MRSA) [49], 

Middle East Respiratory Syndrome (MERS) [158], obesity [42, 60, 144], pertussis [109, 

4In fact, there is evidence that the volume of internet-based health-seeking behavior dwarfs traditional avenues [137].

Priedhorsky et al. Page 5

CSCW. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



116], plague [57], pneumonia [109, 131], respiratory syncytial virus (RSV) [25], Ross River 

virus [109], scarlet fever [180], shingles [109], stroke [60, 162], suicide [64, 169], syphilis 

[78, 127], tuberculosis [57, 180], and West Nile virus [25].

In short, while a wide variety of diseases and locations have been tested, such experiments 

tends to be performed in isolation and are difficult to compare. We begin to address this 

disorganization by evaluating an open data source and open algorithm on several dimensions 

across comparable diseases and countries.

Wikipedia

Wikipedia article access logs, i.e., the number of requests for each article over time, have 

been used for a modest variety of research. The most common application is detection and 

measurement of popular news topics or events [3, 6, 37, 70, 80, 83, 121, 171, 172]. The data 

have also been used to study the dynamics of Wikipedia itself [133, 155, 161]. Social 

applications include evaluating toponym importance in order to make type size decisions for 

maps [23], measuring the flow of concepts across the world [160], and estimating the 

popularity of politicians and political parties [171]. Finally, economic applications include 

attempts to forecast box office revenue [44, 108] and stock performance [29, 99, 113, 114, 

164].

In the context of health information, the most prominent research direction focuses on 

assessing the quality of Wikipedia as a health information source for the public, with respect 

to cancer [96, 135], carpal tunnel syndrome [100], drug information [88], kidney conditions 

[156], and emerging infectious diseases [54].

A few health-related studies make use of Wikipedia access logs. Tausczik et al. examined 

public “anxiety and information seeking” during the 2009 H1N1 pandemic, in part by 

measuring traffic to H1N1-related Wikipedia articles [153]. Laurent and Vickers evaluated 

Wikipedia article traffic for disease-related seasonality and news coverage of health issues, 

finding significant effects in both cases [94]. Aitken et al. found a correlation between drug 

sales and Wikipedia traffic for a selection of approximately 5,000 health-related articles [4], 

and Brigo et al. between news on celebrity movement disorders and Wikipedia traffic on 

topical articles [18]

A growing number of such studies map article traffic to quantitative disease metrics. McIver 

& Brownstein used Poisson regression to estimate the influenza rate in the United States 

from Wikipedia access logs [105]. Hickmann et al. combined official and internet data to 

drive mechanistic forecasting models of seasonal influenza in the United States [67]. Bardak 

& Tan assessed forecasting models for influenza in the U.S. based on Wikipedia access logs 

and Google Trends data, finding an improvement in both nowcasting and forecasting power 

when both were combined [13]. Finally, we previously found high potential of article traffic 

for both nowcasting and forecasting in several disease-location contexts [57].

In short, the use of Wikipedia access logs to measure real-world quantities is growing, as is 

interest in Wikipedia for health purposes. To our knowledge, the present work is the broadest 

and most rigorous test of this opportunity to date.
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Forecasting

Of the internet data and Wikipedia surveillance studies discussed in the above two sections, 

28 included a statistical forecasting component of some kind. (One used disease dynamics 

for forecasting [67], which is again out of scope for this review.) This forecasting falls into 

three basic classes: finding correlations, building models with linear regression, and building 

models with other statistical techniques.

Correlation analysis—The basic form of these 8 studies is to vary the temporal offset 

between internet and official data, either forecasting (internet mapped to later official) or 

anti-forecasting (internet to earlier official), and report the correlation. Thus, the claim is that 

a linear model is plausible, but no actual model is fitted and there is no test set. Various 

offsets have been tested, with up to ±7 months in one case [109].

Four of these studies report that forecasting is promising in at least some contexts [50, 79, 

87, 109], while four report that it is not [101, 103, 126, 179]. Two studies report their best 

correlations at an anti-forecasting offset [50, 87].

This approach lacks a convincing explanation for why given offsets performed well or 

poorly. Rather, the goal of these studies appears to be to illustrate a relationship between 

internet and official data in a specific context, in order to motivate further work.

Linear regression—Extending the above analysis by one step is to actually fit the offset 

linear models implied by high correlation. We found 8 studies that did this. One used ridge 

regression [13], three used ordinary least squares [13, 57, 97], one “applied multiple linear 

regression analysis with a stepwise method” [169], one used a log-odds linear model with no 

fitting algorithm specified [167], and the rest did not specify a fitting algorithm [77, 131, 

157]. We suspect that the latter four used ordinary least squares, as this is the most common 

linear regression algorithm. Again, the offsets tested varied.

Six of these studies reported positive results, i.e., that the approach was successful or 

promising in at least some contexts [13, 57, 77, 131, 167, 169], while two reported negative 

results [97, 157].

An important methodological consideration is whether a separate test set is used. This 

involves fitting the model on a training set and then applying the coefficients to a previously 

unseen test set; the alternative is to fit the model on a single dataset and then evaluate the 

quality of fit or estimates from the same dataset. The former is the best practice, while the 

latter is vulnerable to overfitting and other problems.

Three of the studies reporting positive results had no test set [57, 131, 169], two performed a 

single experiment with one training and one test set [77, 167], and one used cross-validation 

(multiple separations of the data into training/test pairs) [13]. Two of these studies, both 

reporting positive results, used Wikipedia data [13, 57].

Our work falls into this class, as we use elastic net regression [181] to test forecasting up to 

16 weeks. Our experiment is much larger than any prior work, with thousands of individual 

training/test pairs, and each test is arranged in a realistic temporal arrangement with the test 
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set immediately following the training set (as opposed to cross-validation, which 

intermingles them).

Other statistical techniques—A smorgasbord of other methods have been used to 

address the problem of statistical forecasting. All 12 of these studies reported positive results 

(though recall that negative results are less likely to be published). None used Wikipedia 

data.

The linear methods we found are linear autoregressive models [115, 124], stacked linear 

regression [143], multiple linear regression with a network component [43], and a dynamic 

Poisson autoregressive model [163]. We also found non-linear methods: matrix factorization 

and nearest neighbor models [30], support vector machines [143], AdaBoost with decision 

trees [143], neural networks [32], and matching meteorological data to historic outbreaks 

[21,151].

Further methods are time series-aware, using autoregressive integrated moving average 

(ARIMA) Box-Jenkins models [9, 12, 32, 48]. These are applicable only to seasonal 

diseases.

Five of these studies used cross-validation [21, 32, 43, 48, 124], while six had one training 

and one test set [9, 30, 115, 143, 151, 163]. One did not specify the nature of validation [12].

It is quite plausible that statistical techniques other than linear regression can produce better 

models, though as we argue later, this should be supported by solid theoretical motivation 

for a specific technique.

We elected to use linear regression for several reasons. First, this is most common in prior 

work, and we wanted to reduce the number of dimensions on which ours differed. Second, in 

general, simpler methods are preferred; we wanted to find out the performance of linear 

regression before moving on to other things. Finally, our sense (as we explore in greater 

detail below) is that a better understanding of the data and the information pipeline is a 

higher priority than exploring the complex menu of statistical techniques.

That said, our open-source experimental framework can support evaluation of these and 

other statistical methods. This may be an opportunity to directly compare different methods.

EXPERIMENT DESIGN

This section describes the data sources we used and the design of our two experiments.

Overview

Our goal was to perform a large-scale experiment to evaluate our approach for internet data-

based disease monitoring and forecasting across two dimensions: countries and diseases. We 

tested 19 contexts of 4 countries by 6 diseases at the same weekly time granularity.
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We implemented the experiments in Python 3.4 with a variety of supporting libraries, 

principally Pandas [106] and Scikit-learn [125]. Our experiment code is open source, and 

brief replication guidance is included with the code.

Our analysis period is July 4, 2010 through July 5, 2015, i.e., 261 weeks starting on Sunday 

or Monday depending on the country. This period was selected somewhat arbitrarily as a 

balance between data availability and a larger experiment.

Data sources

We used three data sources: official disease incidence data, Wikipedia article traffic logs, and 

the Wikipedia REST API. All of the data we used are in the supplement.

Disease incidence data—We downloaded official disease incidence data from national 

government ministry of health (or equivalent) websites.5 In some cases, these raw data were 

in spreadsheets; in others, they were graphs presented as images, which we converted to 

numbers using WebPlotDigitizer [140]. Each disease/country context resulted in a separate 

Excel file, which we then collated into a single Excel file for input into the experiment.

Our goal was to select a tractable number of countries and diseases that produces a large 

number of disease/country pairs in the dataset, in order to facilitate comparisons. We had 

three general inclusion criteria:

1. Incidence data (number of cases) that are publicly available for the years 2010–

2015 and reported weekly, to enable the same fine temporal granularity in every 

context.

2. Diseases diverse on various dimensions such as mode of transmission, treatment, 

prevention, burden, and seasonality. We ultimately selected six: chlamydia, 

dengue fever, influenza, malaria, measles, and pertussis.

3. Countries also diverse across the globe, targeting one per continent. Ultimately, 

we selected Colombia, Germany, Israel, and the United States. We found no 

African or Asian country that consistently reported high-quality data on 

sufficient diseases for a sufficient fraction of the study period.

This selection is a challenging optimization task due to the variety of national surveillance 

and reporting practices. We believe that the set we selected is illustrative rather than 

representative.

Of the 24 disease/country combinations above, we found data for 19, as summarized in 

Table 1.

Wikipedia access logs—Summary access logs for all Wikipedia articles are available to 

the public.6 These contain, for each hour from December 9, 2007 to present and updated in 

5Case definitions for the same disease vary somewhat between countries; interested readers should follow the references for details.
6http://dumps.wikimedia.org/other/pagecounts-raw/
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real time, a compressed text file listing the number of requests for every article in every 

language, except that articles with no requests are omitted.7

If an article’s traffic during a month was less than 60 requests, we treated that entire month 

as zero; if all months had traffic below that threshold, we removed the article from our 

dataset. We normalized these request counts by language and summed the data by week, 

producing for each article a time series vector where each element is the fraction of total 

requests in the article’s language that went to that article. These weeks were aligned to 

countries’ reporting week (starting on Monday for Germany and Sunday for the other three 

countries).

We did not adjust for time zone between Wikipedia traffic data (in UTC) and official 

incidence data (presumably in local time). This simplified the analysis, and these offsets are 

relatively small compared to the weekly aggregation.

Wikipedia API—Wikipedia provides an HTTP REST API to the public.8 It is quite 

complex, containing extensive information about Wikipedia content as well as editing 

operations. We used it for two purposes: (1) given an article, get its links to other articles, 

and (2) given an article, get its categories. This study used the link and category state as of 

March 24, 2016.

We applied the latter iteratively to compute the semantic relatedness of two articles. The 

procedure roughly follows that of Strube and Ponzetto’s category tree search [152]:

1. Fetch the categories of each article.

2. If there are any categories in common, stop.

3. Otherwise, fetch the categories of the categories and go to Step 2.

We refer to this relatedness as category distance for specificity. The distance between two 

articles is the number of fetch cycles, capped at 8. A category encountered at different levels 

in the two expansions yields the greater level as the distance. An article’s distance from 

itself is 1.

Basic experimental structure

Our approach maps Wikipedia article traffic for a given week to official disease incidence 

data for the same or a different week, using a linear model. That is, we select a small subset 

of articles (order 10–1,000) and use a linear regression algorithm on some training weeks to 

find the best linear mapping from those articles’ request counts to the official case counts. 

We then apply these fitted coefficients to later, previously unseen article traffic and see how 

well the prediction matches the known incidence numbers. This approach is illustrated in 

Figure 1.

The independent variables are:9

7This request count differs from the true number of human views due to automated requests, proxies, pre-fetching, people not reading 
the article they loaded, and other factors. However, this commonly used proxy for human views is the best available.
8https://www.mediawiki.org/wiki/API:Main_page
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• Epoch, i. Week used as the current, present week for the model. Priorweeks are 

the model’s past and used for training; later weeks are the model’s future and 

used for testing, along with the epoch. This approach follows how models are 

actually deployed — the most current data available are used for training, and 

then the model is used to predict the present and future.

• Forecast horizon, h. Temporal offset between article traffic and official data. 

Traffic that is mapped to the same week’s official data is a horizon of zero, also 

called a nowcast; traffic mapped one week into the future is a one-week horizon, 

etc.

• Training duration, t. Number of consecutive weeks of training data offered to the 

regression. The last week of incidence training data is immediately prior to the 

epoch; the last week of article traffic data is h weeks before the epoch.

• Staleness, s. Number of weeks after the epoch that the model is tested. Article 

traffic on the epoch is staleness 0, traffic the week after the epoch is staleness 1, 

etc.

A model is a set of linear coefficients ωj and intercept ω0 that maps article requests A1 

through An to official data I:

A model can produce one prediction per staleness s, at week i + s.

Accuracy is evaluated by creating a model sequence of models with consecutive epochs and 

the same horizon, duration, and staleness; this yields a time series of one prediction per 

model. We then compare the predicted time series to the official data using the coefficient of 

determination r2 ∈ [0, 1 (i.e. the square of the Pearson correlation r), which quantifies the 

fraction of variance explained by the model [117].

The key advantage of r2 is that it is self-normalizing and dimensionless, making it possible 

to compare models with different incidence units and scales. Also, it is widely used, making 

comparison with prior work possible. However, the metric does have disadvantages. In 

particular, it can be hard to interpret. Not only is it unitless, it cannot be used to assess 

sensitivity and specificity, nor answer questions like the number of infections identified by 

the model. As we argue below, future work should investigate more focused evaluation 

metrics.

Additional independent variables apply to model sequences:

• Country. We used Wikipedia language as a proxy for location [57] (see Table 1).

• Disease. (Table 1.)

9Vocabulary used in the experiment source code differs somewhat.
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Linear regression algorithm

To fit our linear models, we used elastic net regression [181], an extension of ordinary least 

squares regression with two regularizers. One minimizes the number of non-zero 

coefficients, and the other minimizes the magnitude of the coefficients.10 This reflects our 

desire for models using few articles and for setting roughly the same coefficients on articles 

whose traffic is correlated.

Elastic net has two parameters. α is the combined weight of both regularizers, which was 

chosen by Scikit-learn using cross-validation. ρ (called l1_ratio by Scikit-learn) is the 

relative weight between the two, which we set to 90% non-zero and 10% magnitude.

These choices were guided by data examination; we also considered lasso [159] and ridge 

regression [69] as well as setting the parameters manually or automatically. The Jupyter 

notebooks [128] that supported this examination are in the supplement.

Article filter

We used a two-stage article filter, using first article links and second category distance. For a 

given disease, we manually select a root article in English and follow Wikipedia’s inter-

language links to find roots for the other languages (Table 1). This is the only manual step in 
our approach. The root article and all articles linked comprise the first group of candidates.

Next, we reduce the candidate pool to those articles whose category distance is at most some 

limit d ∈ ℤ ∪ [1, 8]. This yields anywhere from a dozen to several hundred articles whose 

traffic vectors are offered to the training algorithm (which itself selects a further subset for 

non-zero coefficients).

Experiments

We performed two experiments. Experiment 1 focuses on U.S. influenza, a context familiar 

to the authors and with excellent data, thus affording a more detailed analysis addressing all 

four research questions.

In Experiment 1, we tested category distances of 1–8 with and without confounding. That is, 

for the non-confounded control, we used a single root of “Influenza”; for the confounded 

case, we added two additional root articles: “Basketball” and “College basketball”. The goal 

was to offer the algorithm correlated but unrelated and thus potentially misleading articles, 

in order to test the hypothesis that purely correlation-based feature selection can be 

problematic.

This hypothesis is hinted at in Ginsberg et al. [59], whose feature selection algorithm was 

driven by correlation between search queries and ILI. This model ultimately included the 45 

most-correlated queries, which were all influenza-related. However, of the 55 next-most-

correlated queries, 19 (35%) were not related, including “high school basketball”. Models 

with up to the top 80 queries performed almost as well as the 45-query model, with varying 

10That is, elastic net is roughly the weighted sum of lasso regression (minimize non-zero coefficients) and ridge regression (minimize 
coefficient magnitude).

Priedhorsky et al. Page 12

CSCW. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlation up to roughly 0.02 worse, and may have contained unrelated queries (Figure 1 in 

the citation). The 81st query was the unrelated “oscar nominations”, which caused a 

performance drop of roughly 0.03 all by itself. That is, one can imagine that slightly 

different circumstances could lead a Ginsberg-style model to contain unrelated, possibly 

detrimental queries.

The remaining independent variables are: 9 horizons from 0–16 weeks, 7 training durations 

from 16–130 weeks (roughly 4 months through 2½ years), staleness from 0–25 weeks for 

horizon 0, and staleness 0 for other horizons, for a total of 185,236 models11 comprising 

3,808 model sequences.

Experiment 2 broadens focus to all 19 disease/country contexts and narrows analysis to 

research questions RQ2–RQ4. We built models for category distance limits of both 2 and 3 

and chose the best result, as detailed below. The other independent variables are the same as 

Experiment 1. In total, Experiment 2 tested roughly 432,721 models12 and 9,044 model 

sequences.

Next, we present the key results of these experiments. All output is in the supplement, but 

we report only specific analyses.

RESULTS

Our hope for this work was to uncover a widely applicable statistical disease forecasting 

model, which would complement traditional surveillance with its real-time nature and small 

number of parameters.

This section presents results of testing this notion. In Experiment 1, we explore U.S. 

influenza in some detail, then broaden our focus in Experiment 2 to all 19 disease/country 

pairs.

Experiment 1: U.S. influenza

Example predictions—In this experiment, we tested 3,808 U.S. influenza model 

sequences. Some of these worked well (informally, succeeded), and others worked less well 

(failed). Figure 2 illustrates some of these predictions, with Figure 2a being one of the most 

successful. The other subfigures highlight the effects of the four research questions:

• RQ1: Figure 2b illustrates the risks of offering non-flu-related articles (in this 

case, basketball-related) to the fitting algorithm. In addition to increased noise, 

there is a large spike in the prediction for the week of May 27, 2012. Possible 

explanations include the controversial 2012 National Basketball Association 

(NBA) draft lottery on May 30 [22] and the death of Hall-of-Famer Jack 

Twyman on May 31 [102].

11The number of models takes into account boundary effects (e.g., whether there is enough training data available for a given epoch) 
as well as models invalid due to missing data.
12The total number of models created was 464,080, but we estimate that 23,267 of them were for the confounded U.S. influenza, 
ignored in Experiment 2, and 8,092 for Colombia influenza, which we excluded because we had official data for only one season.
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• RQ2: Though accuracy is relatively insensitive to training duration, as we detail 

below, Figure 2c shows an example of a noisy prediction likely due to 

insufficient training data.

• RQ3: Figure 2d illustrates the hazards of forecasting; even this modest 2-week 

horizon yields a noisy, spiky model.

• RQ4: Figure 2e illustrates a model stale by roughly 4 months; that is, these 

models have a 16-week gap between the epoch (the end of training) and when 

they were applied. They are still able to capture the general shape of the flu cycle 

but are not as accurate as fresher models.

The following sub-sections explore these aspects of accuracy in detail, first the value of 

semantic relatedness (RQ1), then how the models are less sensitive to training duration and 

staleness (RQ2 and RQ4), and finally the models’ near-total inability to forecast (RQ3).

Semantic relatedness matters (RQ1)—We tested the value of limiting model inputs to 

articles semantically related to the target context in two ways: by testing the effect of likely-

correlated but unrelated articles (basketball) and relatedness limits based on Wikipedia 

categories. We held forecast horizon and staleness at zero. The results are shown in Figure 3.

Comparing the control case of a single root article, “Influenza” to the confounded one of 

adding two additional roots, “Basketball” and “College basketball”, yields two results: 

confounding the models either makes things worse, sometimes greatly so, (training duration 

78 weeks or less) or has little effect (training of 104 weeks or more). This suggests that 

casting a wide net for input articles is a bad idea: it is unlikely to help, it might hurt a lot, 

and it can be very costly, perhaps even turning a workstation problem into a supercomputer 

problem.13

A complementary experiment tested category distance limits of 1 to 8. All training durations 

showed a roughly similar pattern: distance 1 was clearly sub-optimal, distance 2 had the 

highest accuracy or nearly so, and distance 3 or more showed a plateau or modest decline. 

Considered with the results above, this implies that somewhere in the gap between category 

distance 8 and entirely unrelated articles, a significant decline in accuracy is probable. This 

suggests that a relatively small limit is most appropriate, as higher does not help, and 

offering the fitting algorithm more articles is risky, as we showed above.

In short, we show that an input filter based on some notion of relatedness is useful for 

Wikipedia-based disease prediction, and we offer a filter algorithm that requires minimal 

parameterization — simply select a root article, which need not be in a language known to 

the user due to inter-language links.

Training and staleness matter less (RQ2, RQ4)—We tested the effect of training 

duration from 16 to 130 weeks (4 months to 2½ years) with all 8 distance limits and forecast 

horizon and staleness held at zero, as well as staleness from 0 to 25 weeks (6 months) with 

three training values, distance at 2, and forecast horizon at zero.

13Our two experiments totaled roughly 12 hours on 8 cores.
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Training durations of 26, 52, and 78 weeks at distance 2 show similar r2 of roughly 0.76, 

while 39 weeks dips to r2 = 0.64 (Figure 4); we suspect this is due to severely overestimating 

the peak magnitude in the 2013–2014 season. Other category distances yield a similar 

pattern, with distance 2 being close to the best at all training durations. We speculate that 

this general plateau of 6–18 months’ training is because the fit selects similar models, 

yielding similar results.

This suggests that optimizing training duration should have lower priority than other model 

parameters and that considerations other than pure accuracy may be relevant. For example, 

influenza is a yearly, seasonal disease; 39 weeks is ¾ cycle, which may be an awkward 

middle ground that often attempts to combine small fractions of two influenza seasons with 

summer inactivity. On the other hand, 52 weeks and 78 weeks capture 1 and 1½ cycles 

respectively, which plausibly is more robust. Another implication is that one shouldn’t 

simply train on all the data available; conversely, potential models need not be discarded a 
priori if training data are limited.

Staleness also showed relative insensitivity (Figure 5). At 78 weeks training, accuracy 

started at r2 = 0.77 for staleness 0 and gradually declined to roughly 0.6 by 25 weeks. 

Training of 52 and 104 weeks showed a broadly similar pattern with generally lower r2, 

except that the former had very poor performance from staleness 3 to 12. This was caused 

by a huge, erroneous predicted spike in spring 2015, caused in turn by the models for epoch 

248 and 249 making severe overestimates. We suspect that these models unluckily chose 

articles with traffic data quality problems.

This result is encouraging because staleness is a parameter determined by data availability 

rather than user-selected. That is, models robust to high staleness might be usable to fill 

longer delays in official data publication, and our results suggest that Wikipedia data can be 

used to augment official data delayed much longer than the 1–2 weeks of U.S. ILI.

Forecasting doesn’t work (RQ3)—We tested forecasting horizons of 0 to 16 weeks, 

with four training durations, category distance of 2, and staleness of 0 weeks.

Figure 6 shows model sequence examples for forecasts of 0 (nowcasting), 1, and 2 weeks. 

These results are not encouraging. While the nowcast performs relatively well (r2 = 0.77), 

the 1-week and 2-week forecasts perform poorly (r2 = 0.41 and 0.51, respectively). In 

addition to greater noise, the forecasts show a tendency for spikes (e.g., January 2014 in 

Figure 6b) and an “echo” effect of the same length as the forecast horizon. We speculate that 

the latter is due to training data that includes summer periods when phase does not matter; 

when applied to times near the peak when it does, the model cannot compensate.

Figure 7 quantifies this situation. All four training periods show rapid decline in forecasting 

accuracy, even with a single-interval horizon of 1 week.

These results contrast with prior work. For example, we reported several situations with high 

correlations between Wikipedia article traffic and official data under a forecasting off-set 

[57]. However, this work had no independent test set; i.e., it reported training set 

correlations, which are very likely to be higher than test set correlations. Similarly, Bardak 
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& Tan [13] reported linear regression models whose performance was best at a 5-day 

forecast. This work tested a large number of algorithms and parameterizations and used 

internal cross-validation rather than a test set that strictly followed the training, the latter 

being a more realistic setting.

In short, it appears that statistical forecasting of disease incidence with summary Wikipedia 

access logs may be risky; whether this applies to internet data in general is another 

hypothesis. We return to these broader issues in the discussion section below.

Experiment 2: Compare diseases and locations

Recall that our goal was to obtain comparable disease incidence data in a dense variety of 

diseases and locations, hoping that this would enable comparisons on those two dimensions 

for the training, horizon, and staleness research questions (RQ2, RQ3, RQ4). That is, what is 

the relationship between these parameters and properties of given diseases or locations?

The best r2 score for any parameter configuration in each disease/country context is listed in 

Table 1 above. These range from r2 = 0.06 for Israel malaria to 0.93 for Germany influenza, 

with most of these best scores being rather poor. Thus, these generally negative results do 

not support the analysis we originally envisioned, though we do observe that all contexts 

with small case numbers perform poorly.

Instead, we analyze the four best-performing contexts (Germany influenza, Colombia 

dengue, Germany pertussis, and U.S. influenza) as individual case studies; this number is 

somewhat arbitrary but does appear to capture all the contexts above the accuracy inflection 

point. For all three questions, results were generally consistent with Experiment 1.

Parameterizing category distance was guided by our count of how many articles fell at which 

category distances (category_distance.ipynb in the supplement), which suggested using 3, as 

well as the results of Experiment 1, which suggested 2. We ran the experiment at both 

distances and report the distance which yielded the best mean r2 across all training durations 

at horizon zero, staleness zero.

Training and staleness still matter less (RQ2, RQ4)—Figure 8 illustrates accuracy 

of the four best-performing contexts by training duration, with horizon and staleness both 

held at zero. In addition to U.S. influenza, both Germany influenza and Colombia dengue 

both show plateaus of insensitivity to training duration, though these plateaus fall at different 

parts of the range, roughly 16–52 weeks and 52–130 weeks respectively. We speculate that 

this is because cultural and disease-related properties both affect how the models work, 

which in turn influences parameterization.

Germany pertussis shows a different trend: highest performance is at 16 weeks, with a 

steady and large decline as training increases. Examining these models (see supplement) 

shows that they are autoregressive; essentially, the best fit sets all article coefficients to zero, 

and the estimate is the mean of the training period. Colombia dengue shows a similar pattern 

to a lesser degree. With short training periods, this yields higher r2 because it is responsive.
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That is, in these cases, Wikipedia has little to add. We speculate that this is caused by some 

combination of the Wikipedia data lacking sufficient signal, the official data being noisy 

(variation of 20% or more from week to week is common), and pertussis being a non-

seasonal disease (dengue and influenza both are). This result is consistent with Goel et al., 

which found a similar result for Yahoo search queries and influenza [61].

Figure 9 illustrates accuracy by staleness, with horizon held at zero and each context 

presented at its best training period. Germany influenza is consistent with the U.S.: very 

modest decline with increasing staleness. Colombia dengue and Germany pertussis show 

results consistent with the training discussion above: autoregressive models that predict the 

mean of recent history decline in performance as they reach further into the future.

Forecasting still doesn’t work (RQ3)—Figure 10 illustrates the accuracy of best-

performing models by forecast horizon, at staleness zero and the best four training durations. 

Like the U.S., Germany influenza shows immediate and dramatic decline in performance. It 

appears that there may be some forecasting promise for Colombia dengue, as its 

performance decline is much slower.

However, Figure 11 illustrates the nowcast and 2-week forecast predictions for Colombia 

dengue. These show that the high r2 is misleading. While the forecast accurately captures the 

overall trend, it misses the critical growth period of early 2013. That is, the same echo effect 

seen in U.S. influenza forecasting results in good predictions when we care least and 

erroneous ones when we care most. This highlights the pitfalls of non-time-series-aware, yet 

popular, metrics such as r2. That is, apparently high-performing models may not actually be 

so, and careful examination of the data as well as appropriate metrics are necessary.

DISCUSSION

In this section, we address the implications of our results: what does this study tell us, and 

what should we do next?

What have we learned?

Our most direct findings are related to the four research questions. First, we found that 

filtering inputs with semantic relatedness improves predictions and that filters based on 

minimal human input are effective (RQ1). This is consistent with the adage “garbage in, 

garbage out” and prior admonishments on the risks of big data [95]. A further valuable 

implication is that predictions and prediction experiments are tractable on workstations, not 

just supercomputers.

Second, we found that our linear approach is less insensitive to both the amount (RQ2) and 

age (RQ4) of training data. This simplifies parameter tuning and implies that in some cases, 

nowcasting models can be quite robust.

Finally, and contrary to prior work, we found very little forecasting value, even just one time 

step ahead (RQ3). Why the different outcomes? We identify eight non-exclusive possible 

explanations:
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1. We made mistakes (i.e., our code has bugs). The opportunity for peer review is 

one motivation for making our code open-source.

2. Prior work made mistakes. For example, we suspect that our promising results in 

[57] are due to lack of a test set.

3. We targeted the wrong contexts. This work selected mostly for data availability 

and comparability (e.g., diseases notifiable in many locations) rather than 

likelihood of success or local prevalence, which may have reduced the power of 

our experiments.

4. We used the wrong measure of semantic relatedness. While it appears that our 

category distance metric offers fairly broad plateaus of good performance, it is 

quite plausible that different approaches are better. We recommend that future 

experiments investigate this question, perhaps by combining our framework with 

one or more open-source relatedness implementations [110,145, e.g.].

5. We used the wrong statistical methods. Though our choice of elastic net linear 

regression is not particularly novel, and prior work has obtained promising 

results using similar approaches, it is plausible that other statistical approaches 

are better.

For example, all linear regression ignores the inherent auto-correlation of time 

series data and cannot respond to temporal errors such as timing of outbreak 

peaks. Also consistent with prior work, we weighted uninteresting off-season 

disease activity the same as critical periods around the peak.

The path forward is to test other statistics. Our framework is general enough to 

support evaluation of other algorithms, which we plan and encourage others to 

do.

6. Using language as a proxy for location is inadequate in this setting. For example, 

while the language we selected for each country delivers the majority of 

Wikipedia traffic for that country (Table 1), often-substantial minority traffic is 

from elsewhere.

7. Wikipedia or Wikipedia data are inferior to other internet data sources for these 

purposes. This question could be addressed using qualitative studies to evaluate 

disease-relevant use patterns and motivations across internet systems, in concert 

with further quantitative work to systematically compare Wikipedia to other 

internet data.

8. Forecasting is a really hard problem. This returns to our core question: when and 
how is disease measurement using internet data effective?

We find the last item the most intriguing. That is, though the others likely play a role, we 

argue that it is the crux of the issue. This argument is rooted in a simple distinction: that 

forecasting the future is fundamentally different, and more difficult, than nowcasting the 
present.
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The internet-based approach to disease measurement is based in the (very probably true) 

conjecture that individuals leave traces of their health observations online. These traces, 

however, are snapshots of the present, not the future. This is why, under the right 

circumstances, nowcasting likely adds value to traditional disease surveillance systems with 

reporting lag.

On the other hand, it is not obvious why successful nowcasting should extend to forecasting. 

Why should lay health observations, let alone their highly imperfect internet traces, be 

predictive of future disease incidence? If one could forecast disease using a statistical map 

between internet data and later official data, this would suggest that individuals create online 

traces weeks or months prior to similar observations finding their way into traditional 

surveillance systems.

In some contexts, this is plausible. Forexample, Paparrizos et al. recently reported that 

searches for symptoms of pancreatic cancer such as ulcers, constipation, and high blood 

sugar significantly lead the diagnosis [122], though with a high false positive rate.

In others, this implication is unconvincing. For example, influenza and dengue fever move 

much faster than pancreatic cancer and do not have distinctive leading symptoms. Also, their 

seasonal patterns are likely more reliably informed by non-internet data sources such as 

weather reports. Thus, despite previous work to the contrary, we are unsurprised by our 

models’ inability to forecast.

We argue that forecasting disease requires capturing the mechanism of its transmission. One 

approach to this is to deploy the statistical model with an informed sense of which and how 

leading symptoms are likely to be present, as Paparrizos et al. did; another is to combine 

internet and/or official data with mathematical transmission models rooted in first principles. 

This approach uses internet data to constrain mathematically plausible forecast trajectories, 

much like weather forecasting, and has shown promise on multiple-month horizons 

[67,147].

More specifically, we speculate that an internet-based disease surveillance system useful in 

practice might have four components: (1) official data arriving via a tractable number of 

feeds, large enough for diversity but small enough that each feed can be examined by 

humans at sufficient frequency and detail, (2) internet data feeds, again arriving in a tractable 

manner, (3) mathematical models of disease transmission appropriate for the diseases and 

locations under surveillance, and (4) algorithms to continually re-train and re-weight these 

three components. These algorithms would use recent performance on validated, 

epidemiologically appropriate metrics (probably not r2) to make evaluations and 

adjustments. The system would emit incidence nowcasts and forecasts with quantitative 

uncertainty, as well as diagnostics to enable meaningful human supervision. For example, if 

a specific Wikipedia article has been informative in the past but then suddenly becomes non-

informative, this change might be alerted.

This brings us to the question of how to follow the present study. We propose focused 

improvements to the approach we presented as well as a broader look at what might be best 

for the field in the long term.
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Direct extensions of this work

This study raises several focused, immediate questions. Some of these can be answered 

using the supplement, and others would require new experiments.

First, we did no content analysis of the articles selected by our algorithm, either at the filter 

stage or by the elastic net for nonzero coefficients. We also have not compared the 

automatically derived related-article lists with manually curated ones, nor studied why some 

seasons did better than others. These would provide additional insight into the information 

flow.

Second, the statistics and algorithms have various opportunities, including non-linear 

models, regression that includes time series data properties such as auto-correlation, more 

advanced semantic relatedness metrics, more focused metrics such as the timing and 

magnitude of peaks, automatic parameter tuning, and ensemble approaches. (These 

improvements would be straightforward additions to the experiment source code.)

Finally, the Wikipedia data have drawbacks. A technical issue is that article traffic is noisy; 

for example, we observed some articles where one hour had many orders of magnitude more 

hits than the preceding and following hours. Characterizing and mitigating the noise 

problems may help.

A more important concern is that language is a questionable proxy for location and unlikely 

to be viable at the sub-national level. We see two solutions to this problem. First, the 

Wikimedia Foundation and Wikipedia community could make available geo-located traffic 

data; privacy-preserving methods for doing so are quite plausible [134]. Second, the 

Wikipedia-based semantic distance measure could be combined with a different data source 

for quantifying health observations.

One possibility is the Google Health Trends API [154], which makes available geo-located 

traffic counts for both search queries and conceptual “entities” [150] to approved 

researchers. One could use Wikipedia to specify a set of time series and Google to obtain 

them. A disadvantage is that these Google data are not available to the public, as Wikipedia 

traffic is. However, understanding the value-add (if any) would support a cost-benefit 

analysis of this issue.

Laying a better foundation

We opened the paper by asking “when and how does it work”, hoping to find the answers by 

comparing across diseases and countries. We did not turn up enough positive results to do 

this comparison, which caused us to reconsider the approach in general.

This question has three pieces — when, how, and work — none of which have been 

adequately answered, by us or (to our knowledge) anyone else. To explain this, we invoke 

the three pillars of science: theory, experiment, and simulation [65]. The field of internet-

based disease measurement rests on just experiment, and further, the experiments in question 

(including ours) are observational, not controlled.
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That is, a study proposing a new method or context for such disease measurement must not 

only show convincingly that it does work but also when and how; otherwise, how can we 

avoid the risky potential attractor of unrelated yet correlated features? How do we know 

whether a positive result is robust or how close a negative one was to success? In this 

section, we propose a research agenda to bring together all three pieces, which may build a 

new foundation for the field and make it reliable enough for the life-and-death decisions of 

health policy and practice.

When—Under what circumstances can an approach be expected to work, i.e., what are the 

relevant parameters, what is their relationship to success, and what are their values in a given 

setting? Recall the core conjecture of the field: that individuals’ observations of disease yield 

online traces that can be transformed into actionable knowledge. This conjecture’s truth is 

clearly non-uniform across all settings: parameters such as disease, location, temporal 

granularity, number of cases, internet penetration, culture-driven behavior, various biases, 

exogenous causes of traffic, internet systems(s) under study, and algorithm choice all play a 

role. The relevant parameters are poorly known, as the sensitivity of a given approach to 

their values.

How—This requires a theoretical argument that a given approach, including all its pieces, 

can be trusted to work, which in turn requires understanding, not simply a high r2. Without 

this, one has little reason to believe or disbelieve a given result.

A related issue is correlation vs. informativeness. Finding correlated signals is not the same 

as finding informative signals; recall that in the U.S., basketball is correlated with influenza. 

Decent theory will provide a basis to argue that a given signal is in fact informative (or not).

Work—One must quantify the value added over traditional surveillance alone; simply 

matching official data well does not do this. We need evaluation metrics that are relevant to 

downstream uses of the model and provide contrast to plausible alternatives.

For example, very simple models such as autoregression are often competitive on metrics 

like r2, as demonstrated above and by others [61]. However, constraining mechanistic 

models with internet-based ones seems most useful with estimates of inflection points, rather 

than incidence. Knowing outbreak peak timing even a week or two sooner can provide much 

value, and inflection points such as the peak are when simple models might break down. 

That said, inflection points must be accurate, and the current internet-based approaches are 

noisy.

The bottom line is: We argue that this field needs (1) mathematical theory describing the 

flow of disease-related information from human observations through internet systems and 

algorithms to actionable knowledge and (2) controlled experiments, which are not possible 

in the real world but can be performed using simulated outbreaks and simulated internet 

activity.

Priedhorsky et al. Page 21

CSCW. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In short, we claim that the right question is not “what happens when we try X” but rather 

“what are the relevant fundamental characteristics of the situation, and how does X relate to 

them”. This cannot be answered by observation alone.
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Figure 1. 
Schematic illustration of one model and its parameters, and how it fits into the weekly 

cadence of our experiments. The basic goal of a model is to map an article traffic vector, for 

some selection of articles, to official disease incidence (a scalar). The epoch is the current 

week from the perspective of the model, i.e., weeks before the epoch are treated as the past 

and weeks after the epoch as the future. We assume that official data are available until the 

week prior to the epoch (i.e., a 1-week reporting delay). The model’s training duration is the 

number of example weeks used to fit the model (here, 4 weeks); the last week of training 

data is always immediately before the epoch. Its forecast horizon is the temporal offset 

between the traffic vector and the official data; a value of zero is a nowcast and values 

greater are forecasts. Once fitted, the model can provide predictions; a prediction stale by 0 

weeks uses the epoch’s article traffic; staleness greater than 0 use article traffic after the 

epoch.
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Figure 2. 
Five of the 3,808 U.S. influenza model sequences we tested, highlighting representative 

results for each of the four research questions. Each point in the blue predicted series is from 

an independently trained model. The remainder of this section explores the reasons why 

some models might succeed and others fail.
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Figure 3. 
RQ1: Accuracy of U.S. influenza nowcast models by category distance limit, for two 

representative training durations. The non-confounded model performs consistently better 

than the confounded model for training durations up to 1½ years (78 weeks) and roughly the 

same at 2 and 2½ years (104 and 130 weeks). Further, all models’ performance is best or 

nearly so at a distance limit of 2. This suggests that a semantic article filter such as ours is in 

fact desirable.
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Figure 4. 
RQ2: Accuracy of U.S. influenza nowcast models by training duration. Performance is 

relatively insensitive to this parameter, with reasonable results throughout the tested range, 

and the best value somewhere in the range of 6 to 18 months. This suggests that training 

duration should be a lower priority than other model parameters.
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Figure 5. 
RQ4: Accuracy of U.S. influenza models by model staleness (i.e., temporal gap between 

training and testing). Performance declines steadily with increasing staleness, though the 

general trend is slow. These results also differentiate training duration of 78 weeks from 

others, as it is more robust to staleness. This suggests that using Wikipedia data to fill the 

gap left by even significantly delayed official data is feasible.
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Figure 6. 
RQ3: Two U.S. influenza models. While nowcasting is effective, even modest levels of 

forecasting have markedly lower accuracy, due to noise and an “echo” effect. This suggests 

that forecasting using Wikipedia data requires performance metrics sensitive to phase shift.
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Figure 7. 
RQ3: Accuracy of U.S. influenza models by forecast horizon. Performance declines 

markedly even with a horizon of just one week. This suggests, in contrast to prior work, that 

forecasting disease using Wikipedia data is risky. (Other category distances display a similar 

pattern.)
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Figure 8. 
RQ2: Accuracy of high-performing global models by training duration. In addition to U.S. 

influenza, Germany influenza and Colombia dengue also show performance plateaus in 

training duration; however, the trends and usable ranges vary. On other other hand, Germany 

pertussis is competitive only at 16 weeks training and drops off rapidly at longer values. This 

suggests that other parameters may still be of higher priority, and that good performance on 

a small number of training durations may be cause for concern.

Priedhorsky et al. Page 39

CSCW. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
RQ4: Accuracy of high-performing global models by staleness. Performance decline is slow 

for U.S. influenza and Germany and somewhat faster for the other two contexts, though still 

considerably less than for forecasting. This suggests that using Wikipedia data to fill 

reporting delays of official data is feasible in some cases.
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Figure 10. 
RQ3: Accuracy of high-performing global models by forecast horizon. While the U.S. and 

Germany influenza models decline rapidly, Colombia dengue and Germany pertussis 

declines more slowly. This raises hopes of workable forecasting.
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Figure 11. 
RQ3: Nowcasting vs. forecasting Colombia dengue. Because forecast error is concentrated 

in a critical period, the high r2 is misleading. (Other horizons are similar.) This is consistent 

with our initial conclusion that even short-term forecasting is implausible with Wikipedia 

data, despite promising results in Figure 10.
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