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Abstract

Therapies targeting signaling molecules mutated in cancers can often have striking short-term 

effects, but the emergence of resistant cancer cells is a major barrier to full cures1,2. Resistance can 

result from a secondary mutations3,4, but other times there is no clear genetic cause, raising the 

possibility of non-genetic rare cell variability5–11. Here, we show that melanoma cells can display 

profound transcriptional variability at the single cell level that predicts which cells will ultimately 

resist drug treatment. This variability involves infrequent, semi-coordinated transcription of a 

number of resistance markers at high levels in a very small percentage of cells. The addition of 
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drug then induces epigenetic reprogramming in these cells, converting the transient transcriptional 

state to a stably resistant state. This reprogramming begins with a loss of SOX10-mediated 

differentiation followed by activation of new signaling pathways, partially mediated by activity of 

Jun-AP-1 and TEAD. Our work reveals the multistage nature of the acquisition of drug resistance 

and provides a framework for understanding resistance dynamics in single cells. We find that other 

cell types also exhibit sporadic expression of many of these same marker genes, suggesting the 

existence of a general rare-cell expression program.

Melanoma is a paradigmatic example of resistance to cancer therapy, often resulting from 

mutations to the BRAF protein. The drug vemurafenib, which inhibits the mutated V600E 

BRAF protein, nearly eradicates tumors, but a small subset of cancer cells develop drug 

resistance1–3.

To understand resistance at the single cell level, we turned to cultured patient-derived 

melanoma cells. Cells isolated from two patients (WM989, WM983B) grown under normal 

conditions proliferated readily. A fractional killing dose of vemurafenib (1μM, Extended 

Data Fig. 1a–d) stopped most cells’ growth, but sporadic proliferative colonies of resistant 

cells formed. (These surviving cells’ transcriptomes resembled that of drug-resistant cells in 

patients; Extended Data Fig. 2d.) Long-term time-lapse imaging capturing the onset of 

resistance revealed that drug-resistant colonies can arise from single cells proliferating 

normally before drug addition (Supplementary video 1; Extended Data Fig. 1f), showing 

these cells are not in a dormant “persister” state.

We considered two models for resistance in single cells: a genetic “mutation” model and a 

transient, non-heritable model (Fig. 1a). In the strongly heritable “mutation” model, a cell in 

the resistant state cannot revert. In the transient model cells transition between pre-resistant 

and non-resistant states, with pre-resistant cells defined as those that give rise to resistant 

colonies upon addition of drug (Fig. 1a). We tested these hypotheses using Luria and 

Delbrück’s “fluctuation analysis”12. First, we isolated a single cell from the parental cell line 

to minimize any existing genetic heterogeneity. We expanded this cell for 7–8 divisions, 

derived several single cell cultures (~1 million cells), then added drug and counted resistant 

colonies (Fig. 1a). If resistance were heritable, then occasional early transitions to resistance 

would propagate during expansion, leading to large numbers of resistant colonies. If, 

however, the pre-resistant state is transient, then all cells in any culture are equally likely to 

form a resistant colony, making large numbers of resistant colonies unlikely.

The lack of outliers in the distributions of number of resistant colonies was incompatible 

with a heritable pre-resistant phenotype. Simulations confirmed statistical significance with 

p-values of 0.0005 and 0.0012 in WM989-A6 cells (Fig 1b; replicates with 43 and 29 

cultures) and 0.0395 for WM983B-E9 cells (WM983B-E9 data and analysis in Extended 

Data Fig. 3). Targeted DNA sequencing of 119 cancer-related genes revealed no new 

mutations in two resistant subclones (Extended Data Fig. 1e).

We then wondered whether single-cell gene expression differences marked pre-resistant 

cells. We first identified the transcriptional program associated with stable drug resistance in 

WM989-A6 and WM983B-E9 cells (clonal isolates of WM989, WM983B, respectively) and 
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stably resistant subclones (Fig. 1d; Extended Data Fig. 2a) via population-based RNA-

sequencing, revealing marker genes (1456 and 1316 genes, respectively) whose expression 

increased in resistant cells but not upon drug administration (Extended Data Fig. 2b). We 

recovered well-known markers of drug resistance, including WNT5A13, AXL14, EGFR15, 

PDGFRβ3, and JUN16.

The low average marker expression in untreated cells may mask rare individual cells with 

high expression. We used high-throughput single molecule RNA FISH to count mRNA of 

selected resistance genes in thousands of cells before drug treatment. We found a population 

of rare cells (frequencies of 1:50 to 1:500) expressing resistance genes at high levels before 

drug exposure (Fig. 1c and Extended Data Fig. 4a,c; outliers remained after GAPDH 
normalization17). After 4 weeks of treatment with vemurafenib, resistant colonies expressed 

these markers at more uniformly high levels (Fig. 1e).

To see if sporadic marker gene expression marked cells that ultimately become resistant, we 

stained live WM989-A6 melanoma cells with antibodies targeting one of the sporadic 

markers (EGFR) and performed fluorescence-activated cell sorting (FACS), isolating the top 

0.02–0.2% EGFR-stained cells. We then applied vemurafenib for 3 weeks (Fig. 1f), finding 

that EGFR-high cells produced 7.9±0.92 (standard deviation) fold more resistant colonies 

(on average 2.4 fold larger) than EGFR-mixed cells (Fig. 1f, Extended Data Fig. 5a). (RNA 

FISH confirmed higher resistance gene expression in EGFR-High cells (Extended Data Fig. 

5b–d)13–15.) Thus, rare cells with high levels of EGFR within the untreated population are 

far more likely to become resistant once drug is applied.

We confirmed the transient model by allowing EGFR-high subpopulations to grow in culture 

without drug to see if resistance reverted. The ratio of colonies in the EGFR high to the 

EGFR mixed population dropped from 13.4±10.6 to 1.17±0.47 after 1 week of growth 

before drug treatment, demonstrating that pre-resistance is not heritable on this timescale 

(Fig. 1g). (Incomplete reversion at the longest time point in culture was possibly due to 

differences in paracrine signaling between cultures.)

We wondered how widespread sporadic expression was. We performed RNA FISH for a 

panel of 19 genes on up to 40,000 single cells, including resistance markers, housekeeping 

genes, and master melanocyte regulators by developing a method for iterative RNA FISH 

using multiple cycles of hybridization (Fig. 2a; Extended Data Fig. 6a)18. We quantified 

sporadic, “jackpot” type of heterogeneity seen for AXL, EGFR and NGFR with the Gini 

coefficient19: 0 means all cells have the same number of mRNA molecules, while 1 means 

one cell expresses all the mRNA molecules while others express none (Fig. 2b). Of 23 genes 

(19 genes in our panel plus 4 additional control genes) in WM989-A6 cells, 13 genes had 

Gini coefficients greater than 0.5, indicating a large degree of inequality. Housekeeping 

genes had Gini coefficients below 0.5, and the cell cycle marker CCNA2 and slow-cycling 

marker KDM5B20 had Gini coefficients slightly above 0.5 (Fig. 2b, Extended Data Fig. 7).

This phenomenon extended to three other melanoma cell lines, primary melanocytes, and 4 

other cancer types (Fig. 2b). Each cell line had genes with very high Gini coefficients, 

showing that sporadic expression is neither unique to cancer nor melanoma. Furthermore, 
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rare-cell expression manifested in patient-derived xenografts (LOXL2, CYR61, NGFR, 

AXL, NRG1; Extended Data Fig. 8), and patient single cell RNA-sequencing data21 

(Extended Data Fig. 7a,b).

Sorting for NGFR or AXL also enriched for pre-resistant cells in WM989-A6. (Extended 

Data Fig. 9). NGFR sorting enriched for pre-resistance in two of three melanoma lines tested 

(WM989-A6, SK-MEL-28; not WM983B-E9).

Since many resistance markers individually showed rare expression patterns, we wondered if 

sporadic expression events were coordinated between genes. Quantifying pairwise 

relationships in high and low expression states, yielded odds ratios between resistance genes 

ranging from 4 to 142, indicating high degrees of co-expression (Fig. 3a,b). We found two 

groups of genes: housekeeping/melanocyte differentiation factors and resistance marker 

genes (Fig. 3b; Extended Data Fig. 4d), confirmed by principal components analysis 

(Extended Data Figs. 6b,c).

We hypothesized that cells expressing multiple resistance markers were even more likely to 

be pre-resistant. We stained live WM989-A6 cells with both NGFR and EGFR antibodies 

and isolated four cell populations: double negative, EGFR positive only, NGFR positive 

only, and EGFR/NGFR positive (validated by RNA FISH; Extended Data Fig. 5e). We then 

applied vemurafenib for 2 weeks. While both EGFR only and NGFR only cells formed more 

resistant colonies than negative cells (11 and 12 versus 2), double positive cells formed the 

most resistant colonies (36) (Fig. 3c).

We also found higher order correlations for these markers. Many cells expressed high levels 

of multiple markers, with 13 of 8672 expressing 6 markers simultaneously and 2 expressing 

8 (Fig. 3d). The frequency of multi-expressing cells approached that of resistance itself 

(Extended Data Fig. 6d). Expression did not “cluster”, though the correlation structure 

revealed potential network structure (Extended Data Fig. 7d,e).

These results show that sporadic cells occupy a transient state characterized by high levels of 

resistance marker transcription. Yet, once fully resistant, drug “holidays” did not affect 

either the transcriptome (Extended Data Fig. 2b) nor the resistant phenotype (Extended Data 

Fig. 5f), showing that the resistant phenotype is stable. We therefore hypothesized that 

resistance occurs in two phases: first, rare cells become transiently pre-resistant, then adding 

drug initiates cellular reprogramming, “burning in” the stable resistant phenotype.

To determine whether adding drug led to reprogramming of pre-resistant cells, we isolated 

pre-resistant cells (by sorting for high EGFR levels) before adding drug as well as 1 week 

and 4 weeks after adding drug (Fig. 4a; Extended Data Fig. 10a). We found that pre-resistant 

cells express only a very small fraction (72 of 1456) of resistance markers (Fig. 1c) at near 

the level of activation in resistance (Fig. 4a). After adding drug, however, the percentage of 

resistance genes expressed increased; by 1 week in drug, 600 of 1456 total resistance genes 

were activated to >80%, increasing to 966 at week 4, demonstrating a progressive 

transformation of the transcriptome as cells became stably resistant (gene ontology analysis 

in Supplementary Data 1).
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An important caveat is that selection processes can create apparent changes in expression 

patterns of EGFR-High cells. We confirmed reprogramming by analyzing APCDD1, a 

marker of resistance but not pre-resistance (Extended Data Fig. 6e). APCDD1 was not 

expressed in any cell in the untreated population, but had high expression in stably resistant 

cells, demonstrating that the expression profile of the pre-resistant cells changed upon 

becoming stably resistant. Furthermore, for many resistance marker genes (EGFR, 

PDGFRβ, and NRG1), the rare high expressing cells had less expression than resistant cells, 

indicating transcriptional reprogramming (Extended Data Fig. 4b). Coupled with the 

phenotypic changes upon becoming stably resistant (Fig. 1g vs. Extended Data. Fig. 5f), 

these results demonstrate that these cells reprogram to achieve stable resistance, irrespective 

of potential selection effects.

To determine what gene regulatory changes underpinned this reprogramming, we used a 

genome-wide assay for transposase-accessible chromatin (ATAC-seq)22 to identify putative 

transcription factor binding sites (Fig. 4b; Extended Data Fig. 10a). Comparing non-resistant 

and pre-resistant cells revealed only 33 total differentially accessible sites, consistent with 

the hypothesis that the transient, pre-drug, pre-resistant state is a shallow deviation from the 

non-resistant state.

ATAC-seq revealed large changes in the pattern of transcription factor occupancy after 

adding drug, however. We categorized these changes into gains and losses of accessible 

sites, corresponding to changes in transcription factor occupancy. Between untreated cells 

and those in drug for 4 weeks, the cells lost 1787 and gained 9143 accessible sites (Fig. 4b), 

demonstrating broad cellular reprogramming. The predominant change during the first week 

was loss of accessible sites, followed by a gain of new sites from 1 to 4 weeks (gene 

ontology analysis in Supplementary Data 2). Much of the initial peak loss resulted from loss 

of SOX10 binding, whereas the subsequent gain of peaks resulted from activation of TEAD 

and Jun/AP-1 and other signaling pathways (Fig. 4c). SOX10 regulates neural crest 

development in melanocytes, and TEADs regulate invasion in melanoma23, suggesting that 

the post-drug transition to stable resistance consists of dedifferentiation followed by 

activation of new signaling pathways. Confirming this, we found that EGFR15,23 inhibition 

during reprogramming affected resistance, while inhibition during pre-resistance did not 

(Extended Data Fig. 9).

Here, we document a rare, transient state that leads to drug-resistance. Our findings are 

conceptually similar to those of Sharma et al.6, and may extend beyond melanoma; many of 

these genes show rare-cell expression in unrelated cancer cell types10 (including primary, 

non-cancerous melanocytes), suggesting the existence of a rare-cell expression program co-

opted in resistance and potentially phenotype switching24. Further elucidation of both 

plasticity and reprogramming may open new avenues for for therapeutic targeting, including 

lipid peroxidase pathways25.

Also, transient and genetic1 causes of resistance are not mutually exclusive9,26. Transient 

effects may provide initial resistance, allowing a small subpopulation of tumor cells to 

survive until some acquire secondary mutations that drive the progression to relapse. In that 

case, brief application of drug may prevent the completion of the burn-in reprogramming 
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process, leaving cells free to revert to a drug-sensitive state27. Our findings may inform such 

interval dosing strategies28,29.

Methods

Cell culture, drugs, and fixation

We grew melanoma cell lines (WM989-A6, WM983B-E9, and 1205Lu, SK-MEL-28) from 

the lab of Meenhard Herlyn, validated in the Herlyn lab by short tandem repeat profiling 

using AmpFlSTR® Identifiler® PCR Amplification Kit (Life Technologies), in Tu2% media 

containing 78% MCDB, 20% Leibovitz’s L-15 media, 2% FBS, and 1.68mM CaCl2 and 

primary melanocytes isolated from human neonatal foreskin (Fom217-1 from the lab of 

Meenhard) in Medium 254CF (Life Technologies, M254500) supplemented with Human 

Melanocyte Growth Supplement (Life Technologies, S0025). WM989-A6 and WM983B-E9 

are specific single-cell-derived subclone of WM989 and WM983B, respectively, that we 

used for all experiments to minimize genetic heterogeneity, and was chosen because its 

resistance properties were similar to the parental WM989 and WM983B cell lines. We also 

grew HeLa cells and MDA-MB-231 cells in DMEM supplemented with 10% FBS, PC-9 

cells in RPMI supplemented with 10% FBS, and SH-SY5Y cells in DMEM/F12 with 10% 

FBS. All cell lines tested negative for mycoplasma. We made stocks of 4mM vemurafenib 

(Selleckchem, S1267) and 4mM lapatinib (Santa Cruz Biotechnology, 202205B) in DMSO, 

and diluted in media to a final concentration of 1μM in all drug treatment experiments. For 

all RNA FISH experiments, we grew cells on two-well Lab-Tek chambered coverglasses. 

We fixed and permeabilized cells for RNA FISH according to30.

Time-lapse imaging

We imaged the cells on a Nikon Ti-E enclosed in plexiglass incubation chamber heated to 

37℃ with 5% CO2. We seeded WM989-A6 cells into a two-well Lab-Tek chambered 

coverglasses and took brightfield images every 2 hours for 28 days. At each time point, we 

acquired a total of 702 images over a 39×18 grid of images at 10× magnification to capture 

the entire culture dish. We stitched each of tiles into one composite image for each time 

point and then compiled movies from the images using MATLAB.

Luria Delbruck fluctuation analysis

To minimize pre-existing genetic heterogeneity in the cell line, we isolated a single-cell 

clones from WM989-A6 and WM983B-E9 melanoma cell lines. We expanded these clones 

up to 100–200 cells total and then isolated single cells to derive the subclones for the Luria 

Delbruck fluctuation analysis. We then allowed the subclones to grow in culture through ~20 

doublings for WM989-A6 and ~22 doublings for WM983B-E9 to give approximately 1 

million cells and 4 million cells, respectively. After expansion, we trypsinized each 

subclone, counted the number of cells in the culture using a hemocytometer, and then seeded 

600,000 cells into 2 12-well plates (yielding 25,000 cells per well). We had a total of 43 and 

29 subclones with the WM989-A6 cell line (biological replicates) and 20 subclones for 

WM983B-E9. One day after seeding into 12-well plates, we applied 1μM vemurafenib. 

Throughout the experiment, we changed the media and drug and counted the number of 

resistant colonies twice per week. We ended the experiment when the plates stopped 
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developing new resistant colonies or when all the resistant colonies appeared to be daughter 

colonies from larger ones. Note that upon re-plating the cultures before administration of 

drug, we observed varying degrees of growth and plating efficiency, all of which served to 

increase the variance, as we found that cultures with larger numbers of cells following 

replating had generally higher numbers of resistant cells. Thus, by not taking this into 

account, our observed variance is likely higher than the actual variance, biasing against the 

transient pre-resistance hypothesis.

To show that our resulting counts of resistant colonies were likely not the result of a strongly 

heritable transition to a pre-resistant state, we simulated the strongly heritable Luria-

Delbruck process (code available at https://www.dropbox.com/sh/g9c84n2torx7nuk/

AABZei_vVpcfTUNL7buAp8z-a?dl=0). Briefly, the parameters are the initial culture size 

(set to one in our case), the ultimate sizes of the cultures (we used the largest multiple of two 

lower than the actual measured culture sizes, thus biasing against ourselves), and the 

mutation rate, which we varied as part of our simulations. For each mutation rate, we ran the 

simulations 10,000 times, and noted both the Fano factor (variance divided by the mean) and 

coefficient of variation across the simulated cultures for each iteration. We then computed a 

p-value for each mutation rate by determining how often the simulated Fano factor or 

coefficient of variation (separate p-values for each statistic) exceeded our actual 

measurements (Extended Data Fig. 3). The p-value we report is based on the most 

conservative estimate based on both the statistics we computed.

Iterative RNA FISH

We designed oligonucleotide probe sets using the Stellaris probe designer (Biosearch 

Technologies) and ordered them with an amine group on the 3′ end (sequences available in 

Supplementary Data 3). We pooled the oligonucleotides for each probe set and coupled them 

to either Cy3 (GE Healthcare), Alexa 594 (Life Technologies), Atto647N or Atto 700 (Atto-

Tec). We performed RNA FISH as previously described30 for each of the cycles of 

hybridization. We first fixed cells with formaldehyde and permeabilized with 70% ethanol. 

We next washed once with wash buffer (containing 10% formamide and 2X SSC) and then 

applied hybridization buffer (containing 10% formamide, 10% dextran sulfate, and 2X SSC) 

with the specified pool of RNA FISH probes. We hybridized for 6–12 hours and then 

washed 2 times for 30 minutes with wash buffer.

After imaging, we applied 60% formamide with 2X SSC for 15 minutes on a heat plate kept 

at 37℃. We then washed the sample 3 times with 1X PBS for 15 minutes also at 37℃ to 

remove residual formamide, which we have found can inhibit further hybridizations. Lastly, 

we washed once with wash buffer to remove residual 1X PBS and prepare the samples for 

another RNA FISH hybridization.

RNA FISH on patient derived xenografts

We fixed tissue sections by treating with 4% formaldehyde in PBS for 10 minutes and then 

permeabilized and stored them in 70% ethanol at 4℃. We performed one cycle of RNA 

FISH as described above. We mounted the samples for imaging in 2X SSC. We performed 
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these experiments with two biological replicates from different mice and different tissue 

donors.

RNA FISH imaging

We imaged each sample on a Nikon Ti-E with a 60X Plan-Apo objective and filter sets for 

DAPI, Cy3, Atto647N, Alexa594, and Atto700. We used Metamorph imaging software 

(Scan Slide application) to acquire a tiled grid of images (40 by 40 for the data sets shown in 

Fig. 2a) covering a 8.9mm by 8.9mm area of the sample. We used the Nikon Perfect Focus 

System to ensure that the images remained in focus over the imaging area.

Image analysis

We developed a custom MATLAB pipeline for counting RNA FISH spots in tiled images. 

First, this software segments the nuclei of individual cells using the DAPI images. Next, the 

software identifies regional maxima in each tiled image as potential RNA FISH spots and 

assigns them to the nearest nucleus. Through a MATLAB GUI, the user selects a global 

threshold for each RNA FISH channel to identify the individual spots. We then visually 

inspected all cells that were above the jackpot threshold and used GUI editing tools to 

remove any autofluorescent debris or artifacts from subsequent analysis. Lastly, we extracted 

the position of every cell in the scan and the number of RNA molecules for each fluorescent 

channel.

We also developed software to match cells across subsequent hybridizations, which poses a 

challenge because of slight warping in the tiled image in each acquisition. Our algorithm 

attempts to match cells locally by shifting cells in the first hybridization to all potential 

candidates in the subsequent hybridization, choosing the best match as the one that 

minimizes total distance for nearby cells. We then smooth out this shift and apply it across 

the entire tiled image field. We then matched cells by proximity, discarding cells that did not 

match uniquely to a nearby cell in subsequent hybridizations; our yield was typically > 90% 

of cells in the initial hybridization matching in subsequent hybridizations.

We decided whether or not a cell was deemed a “high” expressing cell for a particular gene 

by determining whether the number of mRNA molecules in the cell exceeded a threshold. To 

avoid bias, our default was to set a threshold that captured the top 2% of cells. If this 

percentage did not yield a reasonable threshold, we manually set a more appropriate 

threshold based on the distribution. Occasionally, autofluorescent debris in the images would 

be spuriously identified as cells, often with high numbers of false spots in them. Thus, we 

manually removed such regions, starting with cells with the highest number of identified 

RNA counts and continuing until we reached a relatively low level of mRNA below which 

manually evaluating the data was no longer feasible. This procedure ensured that we 

manually inspected all jackpot cells to verify their expression levels. For genes that did not 

exhibit sporadic expression patterns (including GAPDH, SOX10, CCNA2), we set 

thresholds by plotting the distribution and selecting a threshold that captures the tail. We 

performed all iterative RNA FISH experiments in duplicate with biological replicates. We 

calculated Gini coefficients on the distributions of RNA FISH counts for each gene using the 

“ineq” package in R. The code for this image analysis pipeline and the data files including 
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replicates (with a minimum of two independent biological replicates per dataset) are 

available at https://www.dropbox.com/sh/g9c84n2torx7nuk/AABZei_vVpcfTUNL7buAp8z-

a?dl=0.

RNA sequencing and analysis

We sequenced messenger RNA from WM989-A6 and WM983B-E9 melanoma cells. For 

WM989-A6, we sequenced the RNA from 8 untreated samples, 8 samples treated with 1 μM 

vemurafenib for 48 hours, 10 resistant samples in 1 μM vemurafenib, 4 resistant samples 

with drug removed for 48 hours, and 4 resistant samples with drug removed for 1 week. For 

WM983B-E9, we sequenced RNA from 20 untreated samples, 20 samples treated with 1 μM 

vemurafenib for 48 hours, 37 resistant samples in 1 μM vemurafenib, 2 resistant samples 

with drug removed for 48 hours, and 2 resistant samples with drug removed for 1 week. 

Each sample is a biological replicate. We used the NEBNext Poly(A) mRNA Magnetic 

Isolation Module and NEBNext Ultra RNA Library Prep Kit for Illumina to extract 

polyadenylated RNA and prepare barcoded RNA sequencing libraries. We sequenced each 

sample at a depth of approximately 20 million reads on a HiSeq 2000 (50 base pair length) 

or NextSeq (75 base pair length). We aligned our reads to hg19 using STAR and quantified 

reads per gene using HTseq. We then used R to perform differential expression analysis with 

DESeq2 (code available at https://bitbucket.org/arjunrajlaboratory/rajlabseqtools) to identify 

resistance marker genes. We defined resistance marker genes using DESeq2 p-value < 10−5 

and log2 fold change > 0.5.

Generation of patient derived xenografts

We collected tumor biopsies from melanoma patients as previously described by4. Fresh 

biopsies were processed under sterile conditions within 24 hours. For processing, we used a 

cross blade technique to finely mince the tissue, then briefly digested the tissue in 

collagenase IV for 20 minutes at 37℃. The tumor tissue was then implanted s.c. with 

matrigel (Corning Life Sciences) into NSG mice (6–8 weeks, male or female). Tumor grafts 

were harvested at maximum tumor size and serially transplanted for expansion. Low passage 

PDX tumors were mounted in OCT immediately after sacrifice. For RNA FISH analysis, we 

sectioned the tumors into 7μm slices and then proceeded with RNA FISH as described 

above. All sample collection and animal experiments were approved by Wistar IRB and 

Wistar IACUC, respectively. We analyzed samples from four different patients: the first of 

which (WM4335) had a BRAF-V600E mutation and was sensitive to combination 

BRAF/MEK inhibition, the second (WM4299) had a NRAS-Q61L mutation and was not 

sensitive to MEK inhibition, the third (WM4266) had a unknown mutational status and the 

patient’s cancer progressed on immunotherapy, and the fourth (WM3909) had BRAF-

V600E mutation and a PIK3R1 mutation (The data from PDX experiments are in Fig. 2d 

and Extended Data Fig. 8).

EGFR and NGFR fluorescence assisted cell sorting

We stained WM989-A6 melanoma cells for fluorescence assisted cell sorting using an 

antibody for EGFR. First, we trypsinized the cells, washed once with 0.1% BSA in 1X PBS, 

and incubated for 1 hour at 4℃ with 1:200 mouse anti-EGFR antibody, clone 225 

(Millipore, MABF120) in 0.1% BSA PBS. Next, we washed with 0.1% BSA PBS and then 
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incubated for 30 minutes at 4℃ with 1:500 donkey anti-mouse IgG antibody labeled with 

Alexa Fluor 488 (Jackson Laboratories, 715-545-150). We washed the samples again with 

0.1% BSA PBS and resuspended in 1% BSA PBS with 2mM EDTA and DAPI for 

fluorescence assisted cell sorting. We used a MoFlo Astrios (Beckman Coulter) to collect the 

top 0.02–0.2% of cells stained for EGFR. We used the DAPI stain to exclude dead cells and 

used cells that were not incubated with the primary antibody as a negative control. To stain 

WM989-A6, WM983B-E9, and SK-MEL-28 cells for NGFR, we used anti-NGFR clone 

ME20.4 fluorescently labeled with PE/Cy7 (Biolegend, 345110). We incubated the cells 

with 5uL of antibody for 10 minutes at 4℃. We then washed the samples and proceeded with 

sorting (as described above). For our negative control, we used a PE/Cy7 mouse IgG1 

(Biolegend, 400126). When sorting either EGFR-high or NGFR-high subpopulations, we 

also collected a EGFR-mixed or NGFR-mixed population control by using the same gating 

for live cells, but without gating on the EGFR or NGFR stain. When staining for both EGFR 

and NGFR, we performed the EGFR staining first then stained with the NGFR antibody. 

When sorting for EGFR and NGFR together, we collected all 4 possible populations: cells 

negative for both stains, cells positive for EGFR only, cells positive for NGFR only, and 

cells positive for both EGFR and NGFR.

ATAC sequencing and analysis

We performed ATAC sequencing on WM989-A6 melanoma cells according to22. Briefly, we 

lysed the cells and set up the transposition reaction with the Tn5 Transposes (Illumina 

Catalog #FC121-1030) at 37℃ for 30 minutes. We cleaned the reaction with a Qiagen 

MinElute Kit and then amplified the libraries using the custom Nextera PCR primers 

described in22. We sequenced our libraries on a NextSeq with 75 base pair reads at a depth 

of approximately 40–70 million reads per sample. We aligned our reads to hg19 with 

bowtie2 and then used the HOMER package for peak calling, differential peak calling, motif 

analysis, and gene ontology analysis (code available at https://bitbucket.org/

arjunrajlaboratory/rajlabseqtools). Peaks called as lost or gained if we could identify the 

peak in one of the conditions and saw a change in read count in the peak of 4 fold or higher 

across both replicates.

MTS Cell Proliferation Assay

The cell viability was estimated by using CellTiter 96 Aqueous MTS Cell Proliferation 

Assay (MTS Cat# PR-G1111). Briefly, WM989-A6 cells were seeded in 96-well plates with 

2000 cells/well. 24 hours incubation later, cells were cultured in the presence of vemurafenib 

at serial 3-fold dilution concentration. After 6 days treatment, 20ul/well MTS reagent were 

added and incubated for 4 hours. Then read plate at 490nm wavelength to estimate cell 

proliferation.

Apoptosis Assay

After treatment with vemurafenib at 1uM, 3uM for 3 days, WM989-A6 cells were harvested 

with trypsin-EDTA, centrifuged into a pellet including all floating cells, and rinsed with 

phosphate-buffered saline (PBS). Then, the cells were re-suspended in Annexin V binding 

buffer containing Annexin V APC (Biolegend Cat#640920) and propidium iodide (Sigma 
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Cat#P4864). The cells were incubated at room temperature for 15 minutes and were 

analyzed using the FACSCalibur flow cytometry.

Western Blot

WM989-A6 cells were cultured in 1uM, 3uM vemurafenib medium for 3 days. The cells 

were collected with or without floating cells and were lysed with TNE buffer with protease 

inhibitors. 30ug protein extracts were electrophoresed on 12% SDS-Page gels and 

transferred on the Nitrocellulose membranes in Bio-rad Trans-Blot Turbo transfer system. 

The membranes were blocked with ODYSSEY Blocking Buffer (LI-COR #927-40000) for 

1hr at room temperature and incubated at 4°C overnight with the following primary 

antibodies: pMek(Cell signal #9121s), pErk(Cell signal #4370s), pS6(Cell signal #9121s), 

caspase3(Cell signal #9662), parp(Cell signal #9542s), b-actin(Sigma #A5441). After 2nd 

antibodies incubation, membranes were visualized by LI-COR Odyssey infrared imaging 

system.

Targeted DNA sequencing

We sequenced WM9-A6 (main WM9 subclone), intermediate subclone A6-B1, and two 

resistant subclones, A6-B1-A2 and A6-B1-A3. We obtained resistant subclones by isolating 

cell clusters and expanding in the presence of drug. For each cell line, 500 ng of genomic 

DNA was sheared randomly into 200 bp fragments with the Covaris™ S200 UltraSonicator 

(Covaris®). Sheared DNA was A-tailed and ligated with adaptor-embedded indexes using 

the NEBNext® Ultra™ DNA Library Prep Kit for Illumina® (New England BioLabs, Inc.). 

DNA quality, fragment size, and concentration of library preps were measured using 

Agilent’s DNA 1000 chips in conjunction with the 2100 Bioanalyzer (Agilent 

Technologies). Samples were equimolarly pooled and sequenced with a 2.318Mbp 

SureSelectXT Custom Target Enrichment Kit (Agilent Technologies) targeting 119 genes 

(Extended Data Fig. 1). Paired-end sequencing (2×125bp) was carried out on the HiSeq™ 

2500 sequencing system (Illumina) at the next Generation Sequencing Core Facility. Mean 

target coverage of 346X was achieved.

Short-sequenced reads were aligned to the GRCh37 human reference genome using the 

Burrows-Wheeler Aligner (BWA) tool (Li and Durbin, 2009). Duplicate reads were 

removed, as well as reads that map to more than one location, off-target reads, and variants 

annotated with the incorrect transcript. Somatic SNVs/indels were detected using the 

MuTect (14), Scalpel scalpel.sourceforge.net), VarDict (github.com/AstraZeneca-NGS/

VarDict), and Freebayes (15) algorithms. Ensembl calling was done as in the bcbio-nextgen 

pipeline (github.com/chapmanb/bcbio-nextgen). Variants were annotated with ANNOVAR. 

Annotated variants with a read depth less than 20, as well as all synonymous variants, and/or 

variants present in the germline samples, were excluded. Furthermore, variants were 

removed if the minor allele frequency (MAF) was greater than or equal to 0.1% in the 

population databases ExAC (http://exac.broadinstitute.org/) and/or 1000 Genomes (1000 

Genomes Project Consortium et al., 2012).
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Extended Data

Extended Data Fig. 1. Treatment of WM989 cells with vemurafenib induces cell death initially, 
but after weeks of treatment, colonies of resistant cells develop
a. Percent viability of WM989-A6 cells treated with vemurafenib for 6 days (MTS assay). b. 
Annexin-V staining in WM989-A6 cells after 3 days of treatment with vemurafenib 

measured by flow cytometry. The percentage of cells that are positive for annexin-v is 

labeled on the plots. c. Western blot for pMEK, pERK, and pS6 after 3 days of treatment 

with vemurafenib. d. Western blot for caspase-3 and PARP after 3 days treatment with 
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vemurafenib. This demonstrates that WM989-A6 cells are highly responsive to BRAF 

inhibitor treatment with inhibition of signaling downstream of BRAF and apoptosis of 

sensitive cells. e. We performed targeted DNA-sequencing on a panel of 119 cancer and 

melanoma-related genes. We performed sequencing on the parental WM989-A6 subclone 

used throughout this work, along with WM989-A6-B1 subclone. From the WM989-A6-B1 

subclone, we isolated two resistant subclones, WM989-A6-B1-A2 and WM989-A6-B1-A3. 

All of these cell lines had the same mutational profile. Thus, we can say that none of the 

clinically documented mutational profiles (such as in KRAS) appeared as genetic resistance 

mechanisms in our experiments. This does not in and of itself preclude, however, mutations 

to other genes or non-coding mutations to regulatory regions. f. Twenty-eight day time-lapse 

images of WM989-A6 cells before and then after application of cytostatic dose of 

vemurafenib. Sister cells are labeled in the images. There were approximately 18,000 cells at 

the time that we applied drug, and a total of 9 resistant colonies formed on the culture dish. 

We observed instances in which two sister cells exhibited divergent phenotypes, for instance, 

one would respond to drug while the other would continue growing, eventually forming a 

resistant colony. These results suggested the possibility of a non-genetic resistance 

mechanism, although do not constitute proof.
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Extended Data Fig. 2. RNA-sequencing identifies genes whose expression is specific to resistance
a. Schematic of transcriptional profiling experiments. We harvested cells for analysis before 

drug, 48 hours after drug application and then on stably resistant cultures. b. Heatmaps 

depicting expression changes across all differentially expressed genes. Each row represents a 

separate RNA-sequencing experiment taken from a different Luria-Delbruck subclone. 

Resistant cultures obtained from subculturing resistant colonies. All genes shown have a 

greater than 1.4 fold change and adjusted p-value less than 10−5 in at least one experimental 

condition. Color represents log2 of fold change across the conditions. c. Fold changes in 
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expression in drug response (blue; fold change of 48 hours in drug vs. no drug) and 

resistance (red; fold change of resistant cells vs. no drug) for WM989-A6 cell line. Bolded 

gene names are the genes that were selected for analysis by RNA FISH in WM989-A6 cells 

(Fig. 2a). P-values for differential expression of the drug response or resistance are indicated 

by asterisks next to each bar and cutoffs are labeled below the plots. d. RNA sequencing of 

patient tumors pre-treatment and post-treatment from Sun et al. Nature 2014 shows changes 

in gene expression for many of the same resistance marker genes found in WM989-A6 cells. 

Heatmap depicts the log2 fold change for each gene. Samples are normalized by patient. The 

genes displayed here are the same panel of genes used for RNA FISH in WM989-A6 cells in 

Fig. 2a. This analysis demonstrates that there is significant overlap between the 

transcriptional signature of resistance in WM989-A6 cells and resistant patient samples. e. 
We wondered whether the set of pre-resistance associated markers was a privileged subset of 

the genes upregulated upon the cell becoming drug-resistant. We performed our analysis on 

WM989-A6 cells, comparing untreated cells, cells treated with vemurafenib for 48 hours, 

and resistant cells to identify marker genes that are upregulated uniquely during drug-

resistance (n=1,456) and EGFR-high to EGFR-mix for pre-resistance markers (n=212) 

(significance defined as log2 fold change of 0.5, p=0.00001). We found that there was a 

strong overlap of 41 genes, but there were also clearly genes specific to both drug-resistance 

and pre-resistance, suggesting that they are not the same biological process per se.
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Extended Data Fig. 3. Luria-Delbrück fluctuation analysis demonstrates that WM989-A6 and 
WM983B-E9 cells develop drug resistance through a non-heritable mechanism
a. We simulated the strongly heritable hypothesis for a range of different mutation rates. At 

each mutation rate, we ran the simulation 10,000 times. We used the parameters specific to 

this experiment for the WM983B-E9 cell line, including the total number of divisions and 

subsampling of the cultures prior to drug treatment. Each column of plots assumes a 

different mutation rate which is labeled above. The first row contains histograms of the 

median number of colonies from each simulation, the second row contains histograms of the 

Fano factor from each simulation, and the third row contains histograms of the coefficient of 
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variation (CV) from each simulation. In each plot, the value corresponding to our 

experimental findings are labeled by the vertical line. The p-value to reject the strongly 

heritable hypothesis based upon the Fano factor or CV at each mutation rate is below the 

plot. b. Histogram of the number of resistant colonies from the Luria Delbruck fluctuation 

analysis in WM983B-E9 with a total of 20 clones. c,d. We performed the Luria-Delbrück 

fluctuation analysis twice with the WM989-A6 cell line. As described for a, we simulated 

the strongly heritable hypothesis for a range of different mutation rates. The plots in panels c 

and d are from separate biological replicates with a total of 43 and 29 clones. The super-

Poisson distribution we observed may potentially be due to variation in plating efficiency or 

proliferation rates between clones; the pre-resistant state may also be heritable over small 

numbers of divisions.
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Extended Data Fig. 4. RNA FISH on thousands of melanoma cells reveals rare cells that express 
high levels of resistance marker genes
a. Histograms of transcript abundance for resistance marker genes (top) and nonresistance 

markers (bottom). The vertical lines represent the threshold for designating cells as either 

“high” or “low” expressing for a particular gene. The cells labeled by the red carpet below 

the histogram are high expressing, and the cells labeled by the gray carpet are low 

expressing. The data set shown contains a total of 8672 cells and is one of two biological 

replicates. b. In an untreated population of cells, rare cells express resistance marker genes at 

much higher levels than the population average, sometimes at levels similar to the drug 
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resistant state. Boxplots showing the distribution of mRNA counts per cell for untreated 

WM989-A6 cells and resistant WM989-A6 cells. The untreated data set is the same data as 

shown in a. For the resistant WM989-A6 cells, we performed iterative RNA FISH with the 

same panel of genes. The untreated data set contains a total of 8672 cells and the resistant 

data set contains a total of 4082 cells (1 of n=2 biological replicates are shown for each 

dataset). Asterisks next to the gene names indicates that the max expression of the untreated 

sample is greater than or equal to the median of the resistant sample, demonstrating that for 

these 7 of 9 genes, the “high” cells have expression levels potentially equivalent to resistant 

cells. However, we also point out that given that the sampling of high expressing cells in the 

untreated samples is low, it is difficult to explicitly compare the distributions to say that the 

expression in the rare high-expressing cells is equivalent to that in stably resistant cells. c. 
Rare cells expressing sporadic but high levels of resistance markers are still present when 

each gene is normalized by GAPDH mRNA counts. Each histogram shows the distribution 

of GAPDH normalized counts for a particular jackpot gene. The counts for each gene in 

each cells has been divided by the GAPDH counts in that same cell. This accounts for any 

volume-dependent differences between cells. Cells that had GAPDH counts less than 50 

were dropped from this analysis (these cells were infrequent and gave abnormally high 

numbers after normalization, thus were dropped). With these cells removed, the data set 

contains a total of 8477 cells. d. Heatmap shows the odds ratio for co-expression between all 

pairs of genes in WM989-A6 cells (1 of n=2 biological replicates shown). Dark gray boxes 

label pairs where there were zero cells with counts high expression threshold for both genes. 

The heatmap in the middle has the same thresholds for designating cells as “high” or “low” 

as used in Fig. 3b. Meanwhile, the heatmap on the left shows the same analysis with the 

thresholds set to 1⁄2 of the their value in 3b and the heatmap on the right shows this analysis 

with thresholds set to twice their value in Fig. 3b. When the thresholds are at 1⁄2, the result is 

very similar to that in Fig. 3b. However, increasing the threshold by 2X leads to many gene 

pairs that do not have any cells that are “high” for both genes (indicated by the dark gray 

boxes). e. Heatmap showing odds ratios for WM989-A6 data after 4 weeks in drug (1 of n=2 

biological replicates shown).
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Extended Data Fig. 5. Sorting for EGFR-high cells enriches for pre-resistant cells and removing 
drug from resistant cells does not appear to reverse the resistant phenotype
a. Quantification of 3 biological replicates of the experiment depicted in Fig. 1f. b,c. 
Histograms showing the transcript abundance measured by RNA FISH in untreated and 

FACS sorted EGFR-high and mixed cell populations (n=1). The green histograms are from 

the EGFR-high population and the gray histograms are the mixed population. The 

percentage of high-expressing cells are labeled on each plot. Panel b shows resistance 

marker genes EGFR, WNT5A, SERPINE1, and PDGFRβ, and panel c shows melanocyte 
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development genes, SOX10 and MITF, and a housekeeping gene, GAPDH. d. Histograms of 

percentage of cells that have high expression of a particular number of genes simultaneously. 

The left histogram is from the FACS sorted EGFR-high cells, and the right histogram is 

from the mixed population. e. Boxplots summarize the single-cell RNA FISH counts for 

EGFR and NGFR in flow sorted populations shown in Fig. 3c. These results show that 

sorting the high populations indeed enriched for EGFR and NGFR mRNA, thus validating 

the sort procedure (n=1). Furthermore, it shows that the double sorting does not further 

enrich for either EGFR or NGFR mRNA alone, showing that the effects of the double sort 

do not arise from a further enrichment of either EGFR or NGFR-high cells per se, but rather 

the combination of both in the same cell. f. Isolated resistant subclones are stably resistant to 

vemurafenib. We established stably resistant subclones of WM989-A6 cells grown in 

vemurafenib by culturing genetically homogeneous WM989-A6 subclones, adding drug, 

then isolating small resistant colonies and expanding them in the presence of drug into large 

populations. For three such resistant subclones, we removed drug for a period of three weeks 

(drug “holiday”), then added drug back for a week and looked for response. Generally, the 

cells looked fairly similar to the pre-holiday state and continued to proliferate, indicating 

that they remained insensitive to drug despite the prolonged holiday from drug exposure. 

The bottom panel is a control experiment consisting of a non-resistant parental line exposed 

to drug, showing the morphological changes associated with drug response.
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Extended Data Fig. 6. Iterative RNA FISH enables quantification of genes that are expressed in 
rare cells and control genes that are expressed throughout a population
a. RNA counts are consistent whether a gene is probed on the first cycle of iterative RNA 

FISH or subsequent cycles. Boxplots summarizing RNA FISH mRNA counts for each gene 

in the 19 gene panel (shown in Fig. 2a). We probed each gene from the panel in resistant 

WM989-A6 cells without performing iterative hybridizations (n=1 with further validation 

performed on a 5 gene panel; note that we used resistant cells because the generally higher 

expression levels allowed for more robust comparisons). We then performed iterative RNA 
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FISH with all the probes and compared the total mRNA counts. We took image z-stacks of 

each sample and captured a total 15–25 cells per sample. Expression levels were similar 

between the first round of hybridization and all subsequent hybridization cycles. The color 

of the boxplot indicates the hybridization cycle during which we used each probe. The p-

value for differences in RNA counts between the cycles are labeled above each plot. Some 

variability may be due to sampling with genes that have low and/or highly variable 

expression, and in these instances, we expect some differences in the two count distributions. 

There is some loss for some genes in later cycles, but we do not believe that affects our 

qualitative findings of rare, high-expressing cells. b. Housekeeping genes correlate more 

with each other than with resistance markers and vice-versa. We performed RNA FISH on 

8672 non-drugged cells with probes targeting LOXL2 and AXL (both of which exhibit rare-

cell expression) and LMNA and GAPDH, both of which are control genes not associated 

with resistance (1 of n=2 biological replicates shown). We then performed principal 

component analysis to determine which genes covary with which other genes. We 

transformed the vector representing the expression levels of each cell into the space spanned 

by the first two principal components. Arrows represent transformations of unit vectors of 

the specified gene into this same space. We observed two rough axes of variability, one 

corresponding to the GAPDH and LMNA and the other to AXL and LOXL2. Thus, these 

results show that there is substantial covariation in housekeeping genes and in resistance 

markers, but that these two axes of variation separate. c. Same plot as in panel b, but with the 

RNA FISH data shown for WM989-A6 in Figure 2b. d. There are subpopulations of cells 

that have high expression of multiple resistance marker genes. Histogram of number/fraction 

of cells that have high expression for a particular number of genes simultaneously, both 

before, immediately after and then 4 weeks after application of drug (1 of n=2 biological 

replicates shown). We found that immediately after adding drug, there was a large general 

decrease in the amount of high-expressing cells, but a few cells remained that expressed 

several marker genes at once. This suggests, but certainly does not prove, that these multi-

expressing cells may be the pre-resistant cells. At best, it establishes that such a 

correspondence is plausible. e. We used RNA FISH analysis to look (in WM989-A6 cells) at 

the expression of APCDD1 cells, which was identified as a potential marker of drug-induced 

reprogramming (as opposed to pre-re- sistance). We measured APCDD1 expression in a 

total of 61,770 (20,030 in replicate 1 and 41,740 in replicate 2) cells before adding drug and 

11,452 (7,138 in replicate 1 and 4,314 cells in replicate 2) cells after cells became stably 

resistant (n=2 biological replicates shown). Given the number of cells analyzed, we expected 

that roughly 30 cells in the untreated population would be pre-resistant (assuming 

conservatively that the frequency of pre-resistance is 1:2000), but despite that, we found 

essentially no cells with APCDD1 expression levels approaching those of even the median 

resistant cell. Thus, expression of this gene must have changed upon the pre-resistant cell 

becoming stably resistant in the presence of drug, as opposed to a selection effect in which 

high levels of expression in pre-resistance cells become prevalent due to those cells 

surviving rather than reprogramming.
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Extended Data Fig. 7. Gini analysis on other single cell expression data sets and network 
structure for rare high expressing cells
a. Rare cells expressing high levels of resistance genes are suggested by single cell 

sequencing data from Tirosh, Izar, et al. Science 2016. Histograms of normalized single-cell 

expression data for 9 marker genes, including all malignant cells from this data set. b. Study 

of Gini coefficients based on single cell RNA-sequencing data (looking at patient 79 with 

469 cells; results similar for other patients). As per GiniClust (Jiang et al. Genome Biology 

2016), we first plotted the Gini coefficient vs. the maximum expression level out of all cells 

examined (results similar if one uses the mean instead of max). As they did, we found a 

strong anti-correlation, which presumably results from the large number of artifactual zeros 
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in the datasets that inflate Gini coefficients in general for lowly expressed genes. As a 

positive control, we examined 405 genes that we know to be jackpot genes (high fold change 

in EGFR-High vs. EGFR-mix), and we found that they were essentially randomly scattered 

throughout the distribution. We then plotted genes we performed RNA FISH on. We found 

again that they were squarely in the middle of the distribution and not towards the top right 

of the region, which is where one would expect to find abnormally high Gini coefficient 

genes. There are two possible interpretations of our data. One is that the Gini coefficients of 

the genes we selected are not especially different from those of similarly expression matched 

cells, and so the genes we selected do not comprise a deviant subset of all genes. Another is 

that single cell RNA-sequencing data has a number of known and unknown artifacts that 

make Gini analysis difficult. We favor the latter based on our experience with RNA FISH 

and the results of Battich and Stoeger et al. Cell 2015, but our current analysis leaves us 

unable to resolve this for now. We do, however, note that Tirosh et al. do report low 

frequency AXL positive cells via immunofluorescence, which is directly comparable and 

consistent with our RNA FISH results. c. Gini analysis of 26 references genes from 

Padovan-Merhar et al. Molecular Cell 2015. Padovan-Merhar et al. performed RNA FISH to 

obtain single cell RNA FISH counts for a panel of 26 genes across a range of expression 

values and degrees of variability. We calculated the Gini coefficient for each gene. We found 

that 24 out of the 26 genes had low Gini coefficients (less than 0.5), while two had Gini 

coefficients slightly higher than 0.5. None were as high as the highest amongst our panel of 

pre-resistance markers. These results suggest that our panel of resistance markers have 

higher degrees of rare-cell expression behavior than average, although a more unbiased RNA 

FISH analysis with a more complete set of genes would make such a conclusion more 

definitive. d. Phixer analysis reveals the network structure of rare-cell expression (see 

Supplementary Discussion 1). Histogram of the φ-mixing coefficient (edge strength) for all 

edges in the inferred network for melanoma undrugged cancer cells. To illustrate the 

network we select the 34 most strongest edges (non-shaded portion), and this corresponds to 

selecting edges with φ ≥ 0.18. e. Gene interactions obtained using the phixer algorithm 

applied to the single-cell RNA FISH data from cancer cells. Each directed edge and its 

corresponding strength (φ-mixing coefficient) quantifies the effect of an upstream gene on 

the probability of rare-cell expression of a downstream gene.
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Extended Data Fig. 8. Analysis of multiple patient-derived xenografts reveals cells that 
sporadically express high levels of some resistance markers
a. Table summarizing results of our patient-derived xenograft experiments, including the 4 

different models and all the genes tested with each. b. Histograms show full distribution of 

mRNA expression for genes for which we saw convincing signal. Note that for some 

expressing genes, there were sporadic noise spots in the analysis, leading to some cells with, 

say, transcript counts of 1–2 that are probably spurious. c. Image panel of marker gene 

expression in the patient-derived xenografts. d. Computational representation of CYR61 
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mRNA expression in patient-derived xenografts. Each cell is represented by a dot on this 

plot and the color of the dot represents the number of RNA in that particular cell as indicated 

by the color scale bar. e. Histograms show full distribution of mRNA expression for CYR61 
and LOXL2 in WM4335.

Extended Data Fig. 9. Analysis of resistance after sorting by NGFR or AXL
a. We sorted three cell lines (WM989-A6, WM983B-E9, and SK-MEL-28) by NGFR 

antibody staining and applied vemurafenib for three weeks to look for differences in 
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resistance. In WM989 cells and SK-MEL-28 cells, we observed an increased amount of 

resistant cells after NGFR sorting (2 biological replicates shown). In WM983B cells, we did 

not observe an enrichment in resistant cells, suggesting that NGFR is not resistance marker 

in this cell line (2 biological replicates shown). b. We performed analysis of RNA-

sequencing transcript abundance levels in a number of independent subclones of WM983B-

E9 both before drug addition, after 48 hours of drug addition, and after isolating stably 

resistant subclones. We found that NGFR was strongly associated with resistance in 3 of 10 

clones, whereas in WM983B-E9, just 2 of 37 showed upregulation of NGFR. c. We sorted 

WM989-A6 cells by AXL antibody staining and applied vemurafenib to look for differences 

in resistance. Three biological replicates shown here. For each replicate, we recovered a 

different number of cells from the sort causing each experiment to have a different number 

of cells at the start of drug treatment. These numbers are shown in parenthesis above each 

image. After sorting, biological replicates 1 and 2 were in drug for 28 days before imaging 

and biological replicate 3 was in drug for 17 days before imaging. d. Example of plots from 

fluorescence assisted cell sorting plots showing the existence of a population of dead cells 

that we excluded. e. Validation of the AXL sorting by RNA FISH analysis post-sort. f. 
EGFR signaling affects the burn-in phase of resistance. Pre-treatment with lapatinib and 

vemurafenib and corresponding quantification of number of resistant colonies. g. Co-

treatment of lapatinib and vemurafenib (also vemurafenib, lapatinib and vehicle only). No 

growth inhibition for lapatinib and vehicle only. (1 of n=2 biological replicates). h. 
Schematic of resistance model.
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Extended Data Fig. 10. RNA-sequencing on FACS sorted EGFR high cells shows that 
sporadically expressing genes are more highly expressed in EGFR-high cells than the mixed 
population
a. We sorted EGFR-high cells at different time points in vemurafenib treatment (untreated 

n=3, 1 week n=2, and 4 weeks n=2) and performed RNA sequencing and ATAC sequencing 

on the sorted populations. Bar plots showing percentage of the resistance transcriptome that 

has become activated at different levels in each of the samples. Activation index is defined as 

log2 of the fold change divided by the total log2 fold change for the gene between the bulk 

non-resistant and bulk stably resistant populations. We then performed ATAC-seq analysis to 
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identify differentially accessible sites between the sorted cell populations; example tracks 

shown displaying accessible site loss and gain from one of two replicates. b. Dot plot 

comparing the gene expression differences between EGFR-high and the mixed cell 

population. The y-axis shows the log2 fold change between the EGFR-high and mix cells, 

and the x-axis shows the different time points in drug (untreated, 1 week, and 4 weeks). Dots 

that fall above the zero line represent samples that have higher expression in the EGFR-high 

cells and dots that fall below the zero line represent samples that have lower expression in 

the EGFR-high cells. The genes summarized here are the same panel of genes used for 

multiplex RNA FISH in Fig. 2a. Each dot represents a separate biological replicate. There 

are 3 biological replicates for the untreated condition, 2 biological replicates for week 1, and 

2 biological replicates for week 4. We found that 8 of the 10 genes that exhibited rare 

expression behavior also exhibited increased expression in the EGFR-high cells (EGFR, 

AXL, NGFR, WNT5A, SERPINE1, JUN, LOXL2 and PDGFRB). c. Control genes do not 

show as much enrichment in the EGFR-high subpopulation as the pre-resistance marker 

genes. We sorted by EGFR antibody to isolate the EGFR-high subpopulation of cells and 

then performed RNA sequencing on these populations as well as an EGFR-mixed 

population. Dot plots show the log2 fold change in gene expression for a set of control genes 

and a set of resistance marker genes. Each dot represents a separate biological replicate 

(paired EGFR-high/EGFR-mixed). The horizontal line at y=0 represents no change in the 

EGFR-high samples relative to the EGFR-mix. For the resistance marker genes (EGFR, 

AXL, and NGFR), there is significantly more expression in the EGFR-high sample, while 

the control genes do not show large differences, showing that they do not correlate with the 

expression of the resistance markers. d. EGFR-high cells are proliferating based upon 

expression of cell cycle markers. Barplot showing the fraction of max expression for cell 

cycle genes (CCNA2 and CCND1) across EGFR-high, EGFR-mixed, and EGFR-negative 

populations at each time point. e. EGFR-high cells do not express markers of slow-cycling 

subpopulations. Barplot showing the fraction of max expression for KDM5A and KDM5B, 

which are both markers of slow-cycling subpopulations in melanoma (Roesch et al. 2010; 

Sharma et al. 2010), across EGFR-high, EGFR-mixed, and EGFR-negative populations at 

each time point. Note that we only collected an EGFR-negative sample at 4 weeks because 

this was the only time point where the EGFR-high cells represented a significant portion of 

the total mixed population (>1%).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Resistance to vemurafenib is not heritable, and pre-existing pre-resistant cells are 
marked by very high expression of resistance genes
a. Alternative models for heritability of the resistant phenotype and simulated outcomes of 

each model. b. Distributions of resistant colonies in WM989-A6 (n=2 biological replicates 

of 43 and 29 clones; WM983B-E9 in Extended Data Fig. 3). c. Transcriptome analysis 

before drug, 48 hours after drug and stably resistant cultures (see Extended Data Fig. 2). 

Heatmap depicts “marker genes” whose expression increased in resistant cells relative to 

untreated. d. Computational representation of single-cell RNA FISH (8672 untreated cells) 

for AXL, NGFR, and EGFR mRNA; each dot is a cell colored by number of mRNA (1 of 

n=2 biological replicates). e. Single-cell AXL RNA FISH (1966 cells) after 4 weeks 

treatment with 1μM vemurafenib (1 of n=2 biological replicates). f. FACS of cells with an 

EGFR antibody; isolated an EGFR-high and mixed cell population, then applied 

vemurafenib. Two-well chamber of populations after 3 weeks vemurafenib(1 of n=3 

biological replicates, Extended Data Fig. 5a). g. Ratio of number of colonies in EGFR-high 

vs. mixed wells after cells grew without drug for varying periods before vemurafenib 

application. Error bars represent standard error of the mean (3 biological replicates).
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Figure 2. Multiplex single cell RNA FISH reveals rare cells with high, sporadic expression of 
resistance markers across multiple cell lines
a. High-throughput imaging and reiterative hybridization scheme. b. Gini coefficients of 

single-cell RNA FISH data for 4 melanoma cell lines, primary melanocytes, and 4 other 

cancer cell lines (1 of n=2 biological replicates shown).

Shaffer et al. Page 34

Nature. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Rare cell expression of resistance marker genes is coordinated between genes, leading 
to cells expressing multiple markers
a. AXL vs. VEGFC mRNA in individual WM989-A6 melanoma cells. Dotted lines 

represent thresholds for high/low. Inset tabulates cells. b. Odds ratio for co-expression. Dark 

gray boxes indicate zero double-positive cells (1 of n=2 biological replicates). c. Co-stain 

and sort for EGFR and NGFR into 4 populations: double negative and positive, and EGFR/

NGFR positive only, followed by 1μM vemurafenib (2 weeks). Resistant colonies circled in 

the images (1 of n=2 biological replicates). d. Two cells across multiple rounds of 

hybridization. RNA FISH signal in white; cell nuclei in blue.
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Figure 4. Vemurafenib induces stepwise reprogramming of pre-resistant cells into a stably-
resistant state
a. EGFR-high cells isolated at different time points in vemurafenib treatment (untreated, 1 

week, 4 weeks); RNA sequencing on sorted populations (3 biological replicates for 

untreated; 2 biological replicates at 1 week, 4 weeks, Extended Data Fig. 10). Percentage 

activation for resistance genes; activation index is log2(fold change) compared to EGFR-mix 

baseline divided by total log2 fold change between bulk non-resistant and bulk stably 

resistant populations. Bars show percentage of resistance genes at varying degrees of 

activation. b. ATAC-seq identified differentially accessible sites; tracks from one of two 

replicates. c. Peaks called as lost or gained if we could identify the peak in one of the 

conditions and saw a change in read count in the peak of 4 fold or higher across both 

replicates. Motifs and transcription factors identified using HOMER differential peak calling 

and de novo motif tools.
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