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Abstract

OBJECTIVE—To study peritumoral brain edema (PTBE), it is necessary to create a model that 

accurately simulates vasogenic brain edema (VBE) without introducing a complicated tumor 

environment. PTBE associated with brain tumors is predominantly a result of vascular endothelial 

growth factor (VEGF) secreted by brain tumors, and VEGF infusion alone can lead to histological 

blood-brain barrier (BBB) breakdown in the absence of tumor. VBE is intimately linked to BBB 

breakdown. The authors sought to establish a model for VBE with chronic infusion of VEGF that 

can be validated by serial in-vivo MRI and histological findings.

METHODS—Male Fischer rats (n = 182) underwent stereotactic striatal implantation of MRI-

safe brain cannulas for chronic infusion of VEGF (2–20 μg/ml). Following a preinfusion phase (4–

6 days), the rats were exposed to VEGF or control rat serum albumin (1.5 μl/hr) for as long as 144 

hours. Serial MRI was performed during infusion on a high-field (9.4-T) machine at 12–24, 24–

36, 48–72, and 120–144 hours. Rat brains were then collected and histological analysis was 

performed.

RESULTS—Control animals and animals infused with 2 μg/ml of VEGF experienced no 

neurological deficits, seizure activity, or abnormal behavior. Animals treated with VEGF 

demonstrated a significantly larger volume (42.90 ± 3.842 mm3) of T2 hyper-attenuation at 144 

hours when compared with the volume (8.585 ± 1.664 mm3) in control animals (mean difference 

34.31 ± 4.187 mm3, p < 0.0001, 95% CI 25.74–42.89 mm3). Postcontrast T1 enhancement in the 

juxtacanalicular region indicating BBB breakdown was observed in rats undergoing infusion with 

VEGF. At the later time periods (120–144 hrs) the volume of T1 enhancement (34.97 ± 8.99 mm3) 

was significantly less compared with the region of edema (p < 0.0001). Histologically, no evidence 
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of necrosis or inflammation was observed with VEGF or control infusion. Immunohistochemical 

analysis demonstrated astrocyte activation, vascular remodeling, and increased claudin-5 

expression in juxtacanalicular regions. Aquaporin-4 expression was increased in both control and 

VEGF animals in the juxtacanalicular regions.

CONCLUSIONS—The results of this study show that chronic brain infusion of VEGF creates a 

reliable model of VBE. This model lacks necrosis and inflammation that are characteristic of 

previous models of VBE. The model allows for a precise investigation into the mechanism of VBE 

formation. The authors also anticipate that this model will allow for investigation into the 

mechanism of glucocorticoid action in abrogating VBE, and to test novel therapeutic strategies 

targeting PTBE.
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Regardless of histological type, brain tumors are frequently associated with neuronal 

dysfunction resulting in focal neurological deficits, or with more global impairments of 

neurological function such as seizure activity and changes in mental status. These tumor 

effects are often caused by tumor invasion into peritumoral brain,23,24 but more often they 

result from peritumoral brain edema (PTBE). PTBE leads to an increase in brain volume and 

eventually affects intracranial pressure, which may eventually lead to brain herniation or 

even death.6,30 Current treatment regimens targeting PTBE depend heavily on corticosteroid 

administration, but relief from edema may be short-lived and associated with significant 

systemic side effects.10,12,30,43,45,57 Improved understanding of the cellular and molecular 

mechanisms underlying PTBE may lead to better treatments with fewer systemic side 

effects. PTBE is related to blood-brain barrier (BBB) breakdown, and is mediated by 

vascular endothelial growth factor (VEGF).3,17,48,58 PTBE results in vasogenic brain edema 

(VBE) surrounding brain tumors.

Existing animal models for brain edema are created by acute injury, leading to failure of the 

cellular Na-K pump and subsequent cell swelling and death, and do not accurately portray 

PTBE or VBE. In these models, the timeline of edema formation (within 24 hours of injury), 

location of fluid accumulation (intracellular), and direct effect on cell viability (cell death 

and apoptosis) represent cytotoxic edema.30,47,52 The cold injury model has been used 

previously as a VBE model, but the presence of significant apoptosis and cytotoxic 

edema7,19,31,33 make it unsuitable for use in the investigation of PTBE. VBE is 

characterized by intercellular edema and minimal apoptosis. Previous work has shown that 

VEGF infusion alone can lead to histological BBB breakdown in the absence of 

tumor.17,37,58

On MRI, T2-weighted or FLAIR53 sequences are used interchangeably to detect both PTBE 

and infiltrating tumor. 38 The FLAIR sequence is more sensitive in detecting tumor 

infiltration, therefore T2 hyperintensity may be more specific for brain edema.11,63 To study 

PTBE using imaging, it is necessary to create a tumor-free platform that accurately simulates 

VBE while avoiding confounding of the T2 signal from tumor infiltration. We sought to 
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establish a model for VBE with chronic infusion of VEGF that can be validated by serial in-

vivo MRI and histological findings.

Methods

Animals

Male Fischer-344 rats (n = 182) between 275 and 350 g (Charles River Inc.) were evaluated 

preoperatively and twice daily postoperatively for any signs of neurological decline and 

distress, including head tilt, circling behavior, limb weakness, lethargy, agitation, and weight 

loss. The study was approved by the Institutional Animal Care and Use Committee of the 

National Institute of Neurological Diseases and Stroke at NIH.

Infusion Preparation

A solution of 0.1% rat serum albumin (RSA) in sterile PBS was prepared, to which a trace 

amount of fluorescein isothiocyanate (FITC)–labeled albumin was added. The albumin 

mixture was then passed through a 0.45-μm filter to ensure sterility. This solution was 

aliquoted and escalating doses of rat recombinant VEGF164 (R&D Systems, 564-RV/CF) 

were added to the aliquots such that the final solutions were at concentrations between 0 and 

20 μg/ml of VEGF, with the 0 μg/ml solution used as a control solution. Osmotic pumps 

(ALZET pumps, DURECT Corp.) were filled according to instructions (ALZET 2001 for 1 

μl/hr infusion and ALZET 1007D for 0.5 μl/hr infusion) with solution (VEGF or control). 

MRI-safe flow moderators (part no. 0002496, PlasticsOne) replaced the flow moderators 

that arrived with the ALZET pumps. MRI-safe brain infusion cannulas (part no. 

3280PM/PK/SPC cut to 5 mm, PlasticsOne) were attached to 40 mm of polyethylene tubing 

and sealed with cyanoacrylate adhesive and attached to the flow moderator.

Infusion

Following anesthetic induction (5% isoflurane), the rats were transferred to a small animal 

stereotactic frame (model 900, Kopf Instruments).28 Two incisions were made following 

shaving and antiseptic application: a scalp incision and a subcutaneous incision between the 

scapulae. Using the stereotactic device, the primed infusion cannula described above was 

loaded and measured, and inserted 2.5 mm to the right of and 1 mm anterior to bregma (Fig. 

1) following drilling of the bur hole. The osmotic pump was placed in the subcutaneous neck 

incision. Ultraviolet-activated dental cement and additional nylon screws were used to 

secure brain infusion cannulas in place. Incisions were then closed with 4–0 braided vicryl 

sutures and cleaned with hydrogen peroxide. Initially, the effect of a single dose of VEGF 

(100 ng), and the effect of continuous infusion of PBS and VEGF (2, 10, and 20 μg/ml) via 

osmotic pump (1 μl/hr) was tested. This resulted in a VEGF dose of 0, 2, 10, and 20 ng/hr in 

the infused animals. We have previously observed that low-flow preinfusion with phosphate-

buffered saline (PBS) for 4–6 days allows for resolution of brain inflammation arising from 

surgical trauma due to cannula implantation. Low-flow PBS also prevents cannula occlusion 

from inflammatory infiltrate and astrocytosis at the cannula insertion site (unpublished data). 

Animals receiving a preinfusion underwent the same procedure with a 0.5-μl/hr pump filled 

with PBS for 4–6 days, which was switched out for a 1-μl/hr pump filled with a VEGF (2 

μg/ml) or control RSA solution, resulting in an effective dose of 2 ng/hr VEGF infusion.
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MRI Acquisition

All MRI experiments were performed on a 9.4-T (Bruker Avance), 30-cm horizontal 

scanner. The rats were anesthetized with 1.5% isoflurane and placed in a stereotactic holder 

consisting of an 8-element surface-array receive coil tailored for rat brain MRI. This device 

was then mounted in an 85-mm volume (transmit) coil. The body core temperature was 

maintained at 37°C using a circulating water pad and monitored by means of a rectal 

temperature probe. A pressure transducer was placed under the rat and the resultant 

respiratory signal was monitored during the experiment. A line through the tail vein was 

placed for infusion of the contrasting agent. Mutually perpendicular and in-line slices (1 

coronal, 1 sagittal, and 5 axial) were acquired through the brain as scout images. Axial T2-

weighted MRI slices, encompassing the whole brain, were acquired using a fast spin-echo 

(FSE) sequence to delineate anatomical details (in-plane resolution = 167 μm, TE/TR = 

24/3000 msec, echo train length = 8, number of averages = 8, slice thickness = 1 mm [10 

slices]). In some animals this FSE sequence was repeated in the coronal plane with 5 slices 

centered about the cannula. Quantitative T2-weighted images, with identical slices (10 axial 

and 5 coronal) to the FSE sequences above (TE/TR = 15/3000 msec, number of echo images 

= 12, inplane resolution = 167 μm), were also acquired.

T1-weighted images (in-plane resolution = 125 μm, TE/TR = 5/1700 msec, number of 

averages = 8, number of segments = 8, slice thickness = 0.5 mm [10 coronal and 20 axial]) 

in the coronal and axial planes, encompassing the cannula site, were acquired using a 

modified driven equilibrium Fourier transform sequence before, and 10 minutes after, the 

administration of Gd DTPA (0.2 mmol/kg).

Evans Blue Dye Administration

After final imaging, 0.2% Evans blue dye solution at 1 ml/kg was administered 

intravenously and allowed to circulate for 20 minutes before the animal was killed. Upon 

brain tissue procurement, a gross sectioning of the brain was performed to determine the 

status of the BBB.

Tissue Processing and Histological Preparation

After the animal was killed, brain tissue was isolated and frozen in isopentane at −78.5°C. H 

& E staining was performed on slides of 10 μm of tissue. For analysis of FITC-labeled 

albumin, tissue was fixed for 20 minutes in ethanol and DAPI was added to stain for nuclei. 

Immunohistochemical analysis (performed on the Leica Bond Max automated stainer) and 

immunofluorescence (performed manually) was completed using antibodies for glial 

fibrillary acidic protein (GFAP; Genetex GTX108711, 13.3 μg/ml) to detect reactive 

astrocytosis44 in the presence of VBE. Aquaporin-4 (AQP4, Millipore 3594, 1.2 μg/ml) has 

been shown to be highly expressed in astrocytes in the presence of VBE.41,56 CD 105 

(R&D, AF6440, 1 μg/ml) and laminin (Genetex, GTX23099, 4 μg/ml) antibodies were used 

to detect vascular remodeling in the presence of VEGF.12,34 Claudin-5 (Lifespan 

Biosciences, LS-B11331, 10 μg/ml) was probed because its disruption is critical in VEGF-

mediated disruption of the BBB.1
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Data Analysis

MRI data were processed and analyzed using software routines written in MATLAB 

(Mathworks, Inc.). The T2-weighted data were fitted to a single exponential to obtain T2 

maps that yielded the local T2 values for each pixel. The pre– and post–T1-weighted image 

intensities were used to calculate the normalized signal intensity variation before and after 

Gd infusion. Due to variabilities in gains in T1 image intensities, normalized signal 

intensities were calculated as percentage variation expressed as: [(postcontrast intensity – 

precontrast intensity)/postcontrast intensity] × 100. Region of interests (ROIs; 5–10 pixels) 

were specified in each calculated map in different anatomical regions around the cannula site 

and on the contralateral side. The values generated were tabulated and evaluated. A 

connected interval threshold analysis in image analysis software (Osirix, Pixmeo Sarl), was 

applied to calculate the volumes of T2 and T1 enhancement on the DICOM coded 

images.8,42 PRISM (GraphPad Software, Inc.) was used for descriptive statistical analysis 

and presentation.

Results

VEGF Dose and Saline Preinfusion

Control animals infused with RSA solution and VEGF animals infused with 2 ng/hr 

experienced no neurological deficits, seizure activity, or abnormal behavior. Rats receiving 

doses of VEGF at 10–20 ng/hr showed signs of neurological decline (somnolence, circling 

behavior, and hyperpnea) within 72 hours of initiation of infusion and were subsequently 

killed. Edema with significant midline shift and/or intracerebral hemorrhage near the 

infusion site was confirmed on MRI in 50% of these animals (Fig. 2). A single dose of 

VEGF failed to create MRI-detectable edema at early (72 hours) or later time points (Fig. 3). 

VEGF infusion at 2 ng/hr created reproducible effects with the lowest risk of complications.

Early studies revealed a significant increase in the incidence of intraparenchymal 

hemorrhage (IPH) associated with VEGF infusions at 10 ng/hr (70%) and 20 ng/hr (100%). 

Significant IPHs and signs of rapid neurological decline prevented acquisition of usable 

MRI data in these rats. Therefore, MRI data were analyzed from control animals and the 

ones receiving low-dose VEGF (2 ng/hr). Of these, MRI data were usable for T2 map 

generation in all the animals that underwent control (n = 65) and 2 ng/hr VEGF (n = 88) 

infusions. ROI selection for T1 enhancement analysis was affected by juxtacanalicular 

artifacts from surgical trauma and variability in T1 signal gain. Therefore, usable data for 

normalized T1 intensity was generated from 52 control and 45 animals with 2 ng/hr VEGF 

infusion (Table 1). Representative animals (n = 15) were then used to analyze the volumes of 

T2 and T1 enhancement. The rest of this paper contains results from animals receiving 2 

ng/hr of VEGF (low-dose) only.

Surgical trauma contributed to juxtacanalicular edema formation in animals (controls and 

VEGF treated) that were not preinfused with saline. In these animals, juxtacanalicular T2 

hyperintensity was visible up to 72 hours following surgical implantation of the catheter and 

initiation of infusion (Fig. 3). Preinfusing with low-flow infusion (0.5 μl/hr PBS) for 4–6 
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days prior to formal experimental (and control) infusion allowed for resolution of surgical 

trauma and inflammation prior to data acquisition.

Brain Edema

Vasogenic edema was determined by detecting regions of T2 hyperattenuation27 in animals 

following initiation of experimental infusion by serial MRI. T2 hyperattenuation was visible 

in both VEGF and control animals as early as 12 hours of infusion, but was most prominent 

at 144 hours (Fig. 4). Animals treated with VEGF demonstrated a significantly larger 

volume (42.90 ± 3.842 mm3) of T2 hyperattenuation at 144 hours when compared with the 

volume (8.585 ± 1.664 mm3) in control animals (mean difference 34.31 ± 4.187 mm3, p < 

0.0001, 95% confidence interval [CI] 25.74–42.89 mm3).

Quantitative T2 maps of entire rodent brains (Fig. 5) were acquired with 12 increasing echo 

times, and confirmed that local T2 values were significantly elevated in animals receiving 

VEGF infusions (ANOVA, F ratio = 360.4, p < 0.0001). There were no differences in T2 

values in juxtacanalicular regions between uninfused brain (34.16 ± 3.217 msec) and RSA 

infusion sites at 12, 36, or 144 hours (range 35.81–36.10 msec). There was no statistical 

difference between juxtacanalicular local T2 values at 12 hours between the RSA and the 

VEGF groups (mean difference = 0.863 msec, 95% CI −2.161 to 3.888 msec). Significant 

increases in local T2 values were noted with VEGF infusion at both 36 hours (mean 

difference = 7.085 msec, 95% CI 0.9103–13.26 msec) and 144 hours (mean difference = 

23.78 msec, 95% CI 21.45–26.10 msec).

Disruption of the BB

Postcontrast T1 enhancement in the juxtacanalicular region indicating BBB breakdown was 

observed in rats undergoing infusion with VEGF. The enhancement was not noted reliably in 

early (24–48-hr) phases following VEGF infusion. At the later time periods (6–7 days) the 

volume of T1 enhancement (34.97 ± 8.99 mm3) was significantly less compared with the 

region of edema (p < 0.0001). In addition, the BBB breakdown was observed only in the 

juxtacanalicular region (Fig. 6). Normalized T1 values within juxtacanalicular brain were 

elevated with VEGF infusion indicating breakdown of the BBB (ANOVA, F ratio = 365.3, p 

< 0.0001). There was no significant increase in normalized T1 values at early time points (12 

hours) with either RSA (2.77% ± 4.32%) or VEGF (3.2% ± 4.56%) infusion when compared 

with uninfused brain (2.5% ± 4.45%) contralateral to the cannula. At 36 hours following 

initiation of infusion, there continued to be no increase in normalized T1 values with RSA 

(1.89% ± 4.12%) when compared with uninfused brain, but a significant increase (mean 

difference = 24.17%, 95% CI 21.2%–27.15%) was noted with VEGF infusion (26.67% 

± 9.69%). There was a slight but significant increase in normalized T1 values with RSA 

infusion at 144 hours (mean difference = 3.76%, 95% CI 1.1%–6.41%). An impressive 

increase in normalized T1 values was observed in juxtacanalicular regions 36 hours and 

later. At 12 hours, no difference in T1 values was observed between RSA- and VEGF-

infused brain (mean difference = 0.44%, 95% CI −3.03% to 3.9%). Terminal Evans blue 

infusion confirmed that BBB breakdown in animals receiving VEGF was limited to the 

juxtacanalicular region (Fig. 6), and that there was no BBB breakdown in animals receiving 

control infusion.
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Histological Analysis

H & E staining demonstrated local vacuolation and astrocyte activation as well as mild 

inflammatory infiltrate in animals that were not primed with PBS (Fig. 7). These changes 

and juxtacanalicular interstitial edema were observed with both control and VEGF infusions. 

In animals that received 5–7-day priming infusion with PBS, subsidence of inflammation 

was noted in control animals. In animals receiving VEGF, an impressive amount of 

juxtacanalicular neuropil separation and a lack of inflammation were noted (Fig. 7). There 

was no evidence of tissue necrosis in either the control or VEGF group. As expected, VEGF 

resulted in vascular remodeling41 with increased expression of CD105 and laminin in 

juxtacanalicular regions. Sparse, punctate endothelial localization of CD105 within laminin 

sheaths was observed in uninfused brain, with control infusion, and in regions of VBE 

without BBB breakdown. Hypertrophic, disordered laminin sheaths encasing endothelial 

cells overexpressing CD105 was noted in the juxtacanalicular regions with VEGF infusion, 

indicating robust vascular remodeling within regions demonstrating BBB breakdown by 

MRI and Evans blue infusion (Fig. 8). These observations suggest that robust vascular 

remodeling associated with BBB breakdown is limited to the juxtacanalicular regions. In 

addition, the remodeled blood vessels in the juxtacanalicular region demonstrated 

deficiencies in AQP4 coverage, likely leading to BBB breakdown. AQP4 was localized to 

cell membranes organized in orderly sheaths enclosing endothelial cells in uninfused brain 

(Fig. 9), and with control infusion. Incomplete AQP4 coverage of newly formed blood 

vessels in the juxtacanalicular region was evident with VEGF infusion (Fig. 9). These 

findings indicate that VEGF results in increased AQP4 expression but deficient AQP4 sheath 

formation in the juxtacanalicular regions. Endothelial integrity was additionally probed with 

claudin-5 (Fig. 10). With a single injection of VEGF, there is prolonged reduced expression 

of claudin-5 in the brain.1 But, with chronic infusion of VEGF (> 24 hours), we detected a 

robust cytoplasmic expression of claudin-5 along with astrocyte activation within regions of 

vascular remodeling, as has been reported earlier.22 Taken together, these findings suggest 

that chronic VEGF infusion leads to robust vascular remodeling with inadequate BBB 

formation in the juxtacanalicular regions. More distant regions with VBE did not 

demonstrate any obvious signs of BBB breakdown or vascular remodeling, suggesting that 

bulk flow of interstitial fluid4,35 from regions of BBB breakdown may be responsible for 

VBE formation due to VEGF.

Discussion

Existing Models of VBE

PTBE associated with brain tumors is predominantly a result of VEGF secreted by brain 

tumors.3,37,39 If left untreated, PTBE causes swelling and increased intracranial pressure, 

which leads to neurological deficits, herniation, and ultimately death. An accurate model of 

VBE would allow for the study of the molecular mechanisms underlying vasogenic edema 

formation, the effects of glucocorticoids, and potentially reveal novel targets for its 

treatment. Unlike PTBE, the most commonly used model of VBE (e.g., cold injury model) is 

associated with significant necrosis and inflammation.21,33 Unlike in PTBE, VEGF in the 

cold injury model appears to be released by injured and reactive astrocytes.31,44 In addition, 

other local factors including MMP-9 are released due to the effects of endothelins on injured 
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astrocytes.31 These biochemical features, as well as the histological similarity to brain 

contusions, make the cold injury model a better simulation of traumatic brain injury than 

PTBE.33 Other strategies to induce vasogenic or interstitial brain edema including direct 

cerebral fluid perfusion, 13 intracerebral hemolysate injection,29 or intracerebral lysolecithin 

injection55 are mechanistically and temporally significantly different from PTBE. In this 

report, we demonstrate that an accurate model of VBE similar to PTBE can be created by 

chronic infusion of VEGF into rat striata via a stereotactically placed cannula. Similar to 

PTBE, the current model of VBE is characterized by a distinct lack of necrosis, and by the 

presence of interstitial edema. MRI revealed an extension of edema along the white matter 

tracts, as is expected in PTBE.20

The current model utilizes miniosmotic pumps for chronic delivery of VEGF to induce VBE 

in a refinement of a technique originally devised to study the effect of VEGF on BBB 

breakdown.37 Similar to our model, the previous model of chronic VEGF infusion found 

minimal inflammation and necrosis. Unlike the previous studies that involved termination of 

the experiment to demonstrate cellular/molecular changes, we demonstrate a model that 

allows investigation of temporal evolution of VBE in vivo with serial high-field MRI. We 

believe that this model represents an accurate representation of VBE with chronic exposure 

to VEGF.

Serial In-Vivo Imaging With High-Field MRI

Serial MRI is essential to understanding the evolution of VBE formation. In-vivo imaging 

allows for demonstration of brain events that are not captured or demonstrated by terminal 

histopathological examination.9 Increasingly, serial imaging has been adopted to understand 

the mechanisms of brain edema formation and BBB breakdown. 26,36,55,60 In VBE induced 

by lysolecithin, serial MRI demonstrated the trend of edema formation and resolution. When 

combined with histopathological examination, the authors inferred that increased AQP4 

expression may be helpful with resolution of VBE.55 Serial imaging also allows for 

investigation of novel agents and their effects on BBB breakdown.36,51 The cold injury 

model induces an unpredictable amount of BBB breakdown and subsequent edema;26 

therefore, we were interested in creating a reliable model that could be imaged serially to 

determine the evolution of BBB breakdown (T1 enhancement) and VBE (T2 hyperintensity). 

The current model distinctly demonstrates that both BBB breakdown and VBE appear at 

later than 12 hours with chronic VEGF exposure. Additionally, although there is an 

impressive increase in the region of VBE following continued VEGF infusion up to 144 

hours, the region of BBB breakdown is limited to the juxtacanalicular region (Fig. 6). These 

findings suggest that VEGF induces BBB breakdown and VBE that is temporally but not 

geographically linked. These findings in the current model replicate the findings in patients 

with malignant brain tumors in which the volume of BBB breakdown is smaller than the 

volume of T2 hyperintesity.59

Chronic Intracerebral VEGF Infusion

Chronic VEGF infusion by miniosmotic pump was successfully used to demonstrate BBB 

breakdown without significant inflammation in the juxtacanalicular region. 37 In the current 

model, we demonstrate that chronic VEGF infusion reliably results in VBE in the ipsilateral 
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hemisphere. Both the local T2 values and the volume of T2 hyperintensity were significantly 

elevated with chronic VEGF infusion (Fig. 5). Exposure to VEGF results in a pleiotropic 

response in brain.50 There is evidence that the duration of VEGF exposure may result in 

different responses; for example, claudin-5 expression62 in endothelial cells is increased 

with chronic exposures (> 24 hours) when compared with a single dose exposure.1 In the 

current model of chronic exposure to VEGF, we have found a similar increase in claudin-5 

expression in cytoplasmic location in the juxtacanalicular region (Fig. 10). We believe that 

cytoplasmic claudin-5 expression indicates vascular remodeling,25 and that the cytoplasmic 

location prevents formation of an effective BBB in these vessels. Single-dose intracerebral 

injection of VEGF leads to astrocyte induction (GFAP overexpression) and AQP4 

overexpression in perivascular regions and within astrocyte cytoplasm.41,54,61 In the current 

model, we confirm these findings by demonstrating GFAP overexpression (Fig. 10). VEGF 

also leads to neovascularization or vascular remodeling in brain.40,41,61 In the current model, 

we found that there was a robust vascular remodeling with increased endothelial cell CD105 

expression, and laminin formation in the juxtacanalicular region (Fig. 8), but no remodeling 

in ipsilateral brain (from the edematous brain region) or in the contralateral brain regions. In 

the juxtacanalicular region, we also found evidence of an incomplete AQP4 sheath 

surrounding the blood vessels (Fig. 9). These findings provide insight into the mechanisms 

of BBB breakdown, and VBE formation with VEGF infusion, and are similar to the ones 

found in tumoral/peritumoral regions in the clinical literature.34

Utility of the Chronic VEGF Infusion Model

The peritumoral region is a heterogeneous, non-MRI contrast-enhancing region with 

significant VBE.23,24 An accurate model of VBE that simulates PTBE will allow 

investigators to understand the precise mechanisms of vasogenic edema formation in the 

peritumoral brain region. For example, the role of AQP4 in the formation and resolution of 

VBE remains incompletely understood.2,5 We hope to use the precise temporal and dose 

control of VEGF delivery in the current model to help discern the role of AQP4 in VBE. The 

current model may also be used to investigate the mechanisms of action of glucocorticoids 

in reducing PTBE. Glucocorticoids appear to affect both endothelial function in the brain/

tumor14,15 as well as tumor viability12 and VEGF production.18 The current model may 

prove useful in determining the role of glucocorticoids in reestablishing endothelial integrity 

without the confounding effects on tumor behavior. Lastly, the current model may be used to 

study the distribution of infusate with convection-enhanced delivery of antitumor drugs in 

the setting of VBE.49 The lack of clinical efficacy of drugs delivered by convection-

enhanced delivery may be due to an inability to predict the distribution of infusate in light of 

PTBE.46 Previous work with computer simulation and the cold injury model have suggested 

significant differences in the infusate distribution in the setting of brain edema.4,16 The 

current model will allow for an investigation of precise MR-imaged distribution of drug 

infusate8 in the setting of VBE, and allow precise determination of drug quantitation from 

brain slices32 with and without VBE.
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Conclusions

We report that chronic brain infusion of VEGF creates a reliable model of VBE. This model 

lacks necrosis and inflammation that are characteristic of previous models of VBE. The 

model allows for a precise investigation into the mechanism of VBE formation (such as the 

role of AQP4 and claudin-5). We also anticipate that this model will allow for investigation 

into the mechanism of glucocorticoid action in abrogating VBE, and to test novel therapeutic 

strategies targeting PTBE.
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Fig. 1. 
Placement of the infusion cannula. Infusion cannulas were inserted stereotactically 1 mm 

anterior to the bregma and 2.5 mm lateral to the midline. The striatum was targeted for 

infusion. Edema was noted within striatum and the external capsule regions with VEGF 

infusions.
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Fig. 2. 
High-dose VEGF infusion causes IPHs. These axial T2-weighted MR images of animals 

receiving high-dose VEGF infusion (> 10 μg/ml) revealed severe edema extending along the 

external capsule (asterisk, A and B), and midline shift (B). A high incidence of IPH with 

local mass effect (arrowheads) in the juxtacanalicular region was also observed (C). The 

direction of cannula insertion is indicated by the arrow.
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Fig. 3. 
Preinfusion followed by VEGF infusion creates edema without confounding features of 

early surgical trauma. Representative coronal brain MR images of animals receiving control 

solution (A–C), a single 100-ng VEGF injection (D–F), 2 ng/hr of VEGF without 

preinfusion (G–I), and 2 ng/hr of VEGF following preinfusion with PBS (J–L). The upper 
row (A, D, G, and J) contains T2-weighted images, the middle row (B, E, H, and K) contains 

T1-weighted images, and the lower row (C, F, I, and L) contains T1-weighted postcontrast 

images. The injection or infusion site is marked by arrowheads. Neither the control infusion 

nor a single injection of VEGF resulted in edema (A and D) or BBB breakdown (C and F). 

Rats with no preinfusion demonstrated both edema (asterisks, G) and hemorrhage 

(arrowhead, H) and BBB breakdown (arrowhead, I). The presence of hemorrhage and 

surgical trauma significantly distorted normal brain structures. Preinfusion allowed for 

resolution of initial surgical trauma resulting in clearly demonstrated edema (asterisks, J) 

and BBB breakdown (arrowhead, L). All images were obtained at 144 hours.
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Fig. 4. 
Progression of edema formation on T2-weighted axial MRI. Sequential T2-weighted 

imaging of animals receiving control (A and B) infusion revealed a lack of edema formation 

at 12 hours (A) or 144 hours (B) near the cannula site (arrowheads). In animals receiving 

VEGF infusion, an early lack of edema (C) was followed by juxtacanalicular edema, and 

edema along the external capsule (asterisks) in late (i.e., 144 hours) images (D).
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Fig. 5. 
VEGF infusion results in increased volume and intensity of the T2-weighted signal. Three-

dimensional segmentation analysis reveals a significantly increased region of T2 

hyperintensity at 144 hours with VEGF infusion (A). Quantitative analysis of the T2 signal 

in the juxtacanalicular regions revealed a significant increase in the T2 signal due to VEGF 

infusion at 36 hours and beyond (B). Graphic demonstration of quantitative T2 mapping as a 

heat map reveals the extent of T2 hyperintensity. Early imaging at 12 hours with control (C) 

or VEGF (E) infusion and late (144-hour) imaging with control infusion (D) did not reveal 

an increased T2 signal. Edema within the striatum, white matter, and subcortical structures 

(F) with VEGF infusion at 144 hours is shown. *p < 0.05, ****p < 00001.
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Fig. 6. 
Volume of BBB breakdown is less than vasogenic edema. The volume of postcontrast T1 

hyperintensity is significantly lower than the volume of T2 hyperintensity at 144 hours (A). 

Normalized T1 values in the juxtacanalicular region are elevated at 36 hours and beyond 

with VEGF infusion (B). Terminal Evans blue infusion (C) confirmed that the region of 

BBB breakdown was limited to the juxtacanalicular region in animals receiving VEGF 

(lower). Evans blue infusion (C) in animals receiving control solution (upper) did not reveal 

BBB breakdown. Note the expected coloration in choroid plexus bilaterally. Representative 

axial MR images from 1 animal demonstrate that the vasogenic edema (asterisks) on T2-

weighted images extends beyond the juxtacanalicular regions (D–F). Postcontrast T1 

enhancement (asterisks) in the same animal is limited to the juxtacanalicular region (G–I). 

****p < 00001. Figure is available in color online only.
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Fig. 7. 
VEGF infusion causes interstitial edema without necrosis or inflammation. H & E 

preparations of the cannula site revealed significant local hypercellularity, inflammation, and 

edema with both control (A) and VEGF (B) infusions started immediately upon cannula 

insertion (cannula site denoted by asterisk). In animals that were preinfused with normal 

saline, edema and inflammation subsided in control animals (C). In animals infused with 

VEGF following priming (D), interstitial edema was noted, which was marked by a distinct 

lack of inflammatory infiltrate or necrosis. Bar = 100 μm. Figure is available in color online 

only.
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Fig. 8. 
VEGF infusion leads to vascular remodeling in the juxtacanalicular region. Increased 

intensity of CD105 signal (FITC) and laminin formation (Texas red) is demonstrated in 

addition to increased cellularity in the juxtacanalicular region with VEGF infusion (bottom 
row) when compared with control infusion (Control) or uninfused brain (Opp). Regions with 

vasogenic edema ipsilateral to VEGF infusion (Ipsi) did not demonstrate intense vascular 

remodeling. Bar = 100 μm.
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Fig. 9. 
VEGF leads to deranged neovascularization. Although AQP4 overexpression is noted in 

juxtacanalicular regions with VEGF infusion, inadequate coverage (arrowheads) of newly 

formed endothelial tubes (CD105 [FITC]) is observed (lower row). In uninfused brain 

(upper row), AQP4 tubes (Texas red) are closely aligned with endothelial tubes (CD105 

[FITC]) demonstrated by colocalization on the merged image. Bar = 100 μm.
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Fig. 10. 
Chronic VEGF infusion does not lead to a reduction in claudin-5 expression in the 

juxtacanalicular region. Claudin-5 expression was not reduced in the juxtacanalicular region 

with VEGF infusion unlike as reported in previous studies with a single-dose VEGF 

injection. Robust cytoplasmic claudin expression was noted in regions of neovascularization. 

In uninfused brain (Opp), claudin-5 was localized to a membranous pattern as expected. Bar 

= 100 μm.
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