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ABSTRACT

One of the most important advances in biology has been the discovery that siRNA (small interfering RNA) 
is able to regulate the expression of genes, by a phenomenon known as RNAi (RNA interference). The discovery 
of RNAi, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a 
transformative view in biomedical research. siRNA has gained attention as a potential therapeutic reagent due 
to its ability to inhibit specific genes in many genetic diseases. siRNAs can be used as tools to study single gene 
function both in vivo and in-vitro and are an attractive new class of therapeutics, especially against undrug-
gable targets for the treatment of cancer and other diseases. The siRNA delivery systems are categorized as 
non-viral and viral delivery systems. The non-viral delivery system includes polymers; Lipids; peptides etc. 
are the widely studied delivery systems for siRNA. Effective pharmacological use of siRNA requires ‘carriers’ 
that can deliver the siRNA to its intended site of action. The carriers assemble the siRNA into supramolecular 
complexes that display functional properties during the delivery process. (Int J Biomed Sci 2017; 13 (2): 48-57)
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INTRODUCTION

In recent years, few areas of biology have been trans-
formed as thoroughly as RNA molecular biology. This 
transformation has occurred along many fronts, as de-
tailed in this issue, but one of the most significant advanc-
es has been the discovery of small (20–30 nucleotide (nt)) 
noncoding RNAs that regulate genes and genomes. This 
regulation can occur at some of the most important lev-
els of genome function, including RNA processing, chro-
matin structure, RNA stability, chromosome segregation, 
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Despite the high therapeutic potential of siRNA, its ap-
plication in clinical settings is still limited mainly due to 
the lack of efficient delivery systems (19-23).

The discovery of RNAi has opened doors that might 
introduce a novel therapeutic tool to the clinical setting 
(24-32). RNAi is charged with controlling vital processes 
such as cell growth, tissue differentiation, heterochroma-
tin formation, and cell proliferation. Accordingly, RNAi 
dysfunction is linked to cardiovascular disease, neuro-
logical disorders, and many types of cancer (33). RNAi 
pathways transcend mere expansion of the gene regulation 
toolkit: They confer a qualitative change in the way cel-
lular networks are managed (34).

MECHANISM OF RNA INTERFERENCE (RNAI)

The first step of RNAi involves processing and cleav-
age of longer double-stranded RNA into siRNAs, gen-
erally bearing a 2 nucleotide overhang on the 3′ end of 
each strand. The enzyme responsible for this processing 
is an RNase III-like enzyme termed Dicer (35-38). When 
formed, siRNAs are bound by a multiprotein component 
complex referred to as RISC (RNAinduced silencing com-
plex) (39-42). Within the RISC complex, siRNA strands 
are separated and the strand with the more stable 5′-end is 
typically integrated to the active RISC complex. The anti-
sense single-stranded siRNA component then guides and 
aligns the RISC complex on the target mRNA and through 
the action of catalytic RISC protein, a member of the argo-
naute family (Ago2), mRNA is cleaved (43-47) (Figure 1).

transcription, and translation (1-3).
Despite many classes of small RNAs have emerged, 

biological roles, associated effector proteins, various as-
pects of their origins, and structures have led to the gen-
eral recognition of three main categories: piwi-interacting 
RNAs (piRNAs), short interfering RNAs (siRNAs), and 
microRNAs (miRNAs) (4-7).

RNA interference (RNAi), the biological mechanism 
by which double-stranded RNA (dsRNA) induces gene 
silencing by targeting complementary mRNA for degra-
dation, is a tremendous innovation in the universal thera-
peutic treatment of disease and revolutionizing the way 
researchers study gene function. RNAi, first discovered 
in plants, was later demonstrated in the roundworm Cae-
norhabditis elegans , an organism in which gene expres-
sion is downregulated by long dsRNA (8, 9).

Increasing knowledge on the molecular mechanisms of 
endogenous RNA interference, siRNAs have been emerg-
ing as innovative nucleic acid medicines fo the treatment 
of incurable diseases such as cancers (10-14). Because sys-
temic administration will be required in most cases, there 
are challenges inherent in the further development of siR-
NAs for anti-cancer therapeutics, Although several siRNA 
candidates for the treatment of respiratory and ocular dis-
eases are undergoing clinical trials (15-17).

In an attempt to develop siRNA for use in clinical trials 
as drugs, various chemical modifications are being inves-
tigated to improve qualities such as low immunostimula-
tion, target organ/cell delivery, off-target effects, siRNA 
potency, and serum stability (18).

Figure 1. Schematic of the siRNA mediated 
RNA interference pathway. After entry into 
the cytoplasm, siRNA is either loaded onto 
RISC directly or utilize a Dicer mediated 
process. After RISC loading, the passenger 
strand departs, thereby commencing the 
RNA interference process via target mRNA 
cleavage and degradation. siRNA loaded 
RISCs are also found to be associated with 
nucleolus region and maybe shuttled in and 
out of nucleus through an yet unidentified 
process (48).
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ORIGINS SIRNAS

Fire and Mello In 1998 uncovered the world of RNAi 
and revolutionized the contemporary understanding of 
gene regulation when they made the discovery that the si-
lencing effectors in Caenorh abditis elegans were double 
stranded RNAs (49).

In 1999, siRNAs were discovered in plants and simi-
larly demonstrated to guide sequence-dependent endo-
nucleolytic cleavage of the mRNAs that they regulate in 
mammalian cells (50). By 2001, miRNAs were found to 
comprise a broad class of small RNA regulators, with at 
least dozens of representatives in each of several animal 
and plant species (51). With this discovery, in our view 
of the gene regulatory landscape two categories of small 
RNAs had become firmly embedded: siRNAs, as defend-
ers of genome integrity in response to foreign or invasive 
nucleic acids such as transposons, transgenes, and viruses, 
and miRNAs, as regulators of endogenous genes (52). 

Elbashir et al. in 2001 had successfully used synthetic 
siRNAs for silencing and determined the basic principles 
of siRNA structure and RNAi mechanics, providing the 
foundation for developing RNAi applications (53).

CHALLENGES WITH SIRNA-BASED THERA-
PEUTICS

Delivering siRNA
The discovery of RNAi has excited the scientific field 

due to its potential for wide range of therapeutic applications 
(54-58). Effective pharmacological use of siRNA requires 
‘carriers’ that can deliver the siRNA to its intended site of 
action. The carriers assemble the siRNA into supramolecu-
lar complexes that display functional properties during the 
delivery process (59). Viral vectors and non-viral vectors are 
two major categories delivery system for siRNA. The synthe-
sis and industrial scalability are offer advantages of Non-viral 
delivery systems. Peptides, polymers, and Lipids are the ex-
tensively studied non-viral delivery vehicles (60-70).

The pharmacological mediator of siRNA, has faced 
significant obstacles in reaching its target site and effec-
tively exerting its silencing activity.

The fantastic potential of siRNA to silence important 
genes in disease pathways comes with noteworthy chal-
lenges and barriers in its delivery.

Polymer- mediated Delivery Systems
For siRNA delivery, Polymers have emerged as an al-

ternative class of extensively investigated carriers (71, 72). 

Polymer-based delivery systems have been extensively 
used for plasmid DNA and more recently for siRNA (73-
75). As non-viral siRNA and plasmid vectors, many poly-
mers have been thoroughly investigated because of their 
physical characteristics and diverse chemistries and well-
characterized, and structure flexibilities, which allows for 
easy modification to fine-tune their physiochemical prop-
erties. Chitosan is reported to have low cytotoxicity and 
which is a cationic polysaccharide having muco adhesive 
properties. Cyclodextrin is another polymer that has also 
been studied as siRNA delivery system (76-88).

Peptide-Based Delivery Systems
Due to four major reasons, Peptides are viewed as al-

ternative to the cationic polymers for the siRNA delivery: 
Cell specific delivery, pH based membrane, disruption, 
Their efficient packaging and Efficient membrane trans-
port. Control over functionalization, ease of synthesis and 
stability of the peptide oligonucleotide complex make the 
low molecular weight peptides as the favorable candidates 
over lipoplexes as siRNA delivery vehicle (89-100).

Cell penetrating peptides (CPPs), also referred to as 
protein transduction domains (PTD), was observed to 
cross the plasma membrane by itself, which transactivates 
transcription of the HIV-1 genome, were first discovered a 
few decades ago when the HIV-1 Tat-protein. CPPs are the 
widely studied peptides as siRNA delivery system. The 
CPPs in three classes are classified: 1) synthetic ones, 2) 
chimeric peptides and 3) naturally derived peptides (101-
106). MPPs (Membrane perturbing peptides) are also 
studied as peptide delivery systems. Depending upon the 
DNA release behavior, The MPPs are studied in two cat-
egories: Endoosmolytic peptides and Fusogenic peptides 
that Fusogenic peptides act by mediating the DNA release 
at the endosomal pH and Endoosmolytic peptides act by 
endosomal lysis followed by DNA release (107).

Lipid -Based Delivery Systems
Various lipid-based delivery systems have been devel-

oped for in vivo application of siRNA. Lipid-based sys-
tems include liposomes, micelles, emulsions, and solid 
lipid nanoparticles (108-121). 

MIT(Massachusetts Institute of Technology) and Al-
nylam Inc., (Cambridge, Massachusetts) collaborated on a 
project to synthesize a library of more than thousand dif-
ferent lipid-like molecules and screened them for their ef-
ficiency to deliver siRNA (122). They tested these delivery 
systems in mice to treat the respiratory ailment and found 
that some of their molecules are ten times more efficacious 



AN OVERVIEW OF siRNA

www.ijbs.org    Int  J  Biomed  Sci    Vol. 13  No. 2    June  2017 51

Figure 2. Schematic of siRna nanocarriers. a) Liposomes. B) 
Polymeric nanoparticles (125)

in delivering siRNA in comparison to the existing non en-
capsulated siRNA delivery. 

For the delivery of siRNA using lipid-based systems, 
particle size, lipid composition, drug-to lipid ratio, and the 
manufacturing process should be optimized.

Liposomes have been utilized as efficient delivery vec-
tors for siRNA for almost 30 years since the successful 
use of lipofection in 1987 to transfer nucleic acids into ani-
mal and human cells (123, 124). Liposomes are commonly 
used as delivery vehicles for a broad spectrum of thera-
peutics including siRNA. Interaction of the lipids with the 
nucleic acid leads to the formation of either coated vesicles 
having nucleic acid in the core or the aggregates, both of 
which are studied as lipoplexes (Figure 2).

siRNA Conjugate Delivery Systems
Combination of two or more types of delivery vehicles 

have led to the generation of this category. These combi-
nations may be categorized as Peptide-Polymer, Liposome 
- Peptide, and Liposome-Polymer any other combination 
thereof (126-130).

Polymer and Liposomal-based delivery systems have 
been advanced the most for siRNA delivery, and have a 
vast supporting body of literature due to their extensive 
previous development for the delivery of antisense oligo-
nucleotides, DNAzymes and plasmid DNA.

For targeted delivery of siRNAs to hepatocytes, Roz-
ema et al. have developed a polymer-siRNA conjugate 
delivery system termed Dynamic PolyConjugates (DPCs) 
(131).

Recently, siRNA conjugates have shown promise as 
delivery platforms, leading to the development of well-
defined, single-component systems that optimize the us-

age of minimal amounts of delivery material (131-134). 
Studies have demonstrated invitro effectiveness of LSPCs 
(Liposome-siRNA-peptide complexes) in delivering PrP 
siRNA specifically to AchR-expressing cells, leading to 
suppressed PrPC expression and eliminated PrPRES forma-
tion (70).

Delivery of therapeutic siRNA in cancer
The siRNA has provided new opportunities for the 

development of innovative medicine to treat previously 
incurable diseases such as cancer (135-138). It is of in-
herent potency because it exploits the endogenous RNAi 
pathway, allows specific reduction of disease associated 
genes, and is applicable to any gene with a complemen-
tary sequence (139). For the rationale of siRNA-mediated 
gene therapy, genetic nature of cancer provides solid sup-
port. In fact, a number of siRNAs have been designed to 
target dominant oncogenes, viral oncogenes involved in 
carcinogenesis, or mal functionally regulated oncogenes. 
In addition, therapeutic siRNAs have been investigated for 
silencing target molecules crucial for tumor–host interac-
tions and tumor resistance to chemo- or radiotherapy. The 
silencing of critical cancer-associated target proteins by 
siRNAs has resulted in significant antiproliferative and/
or apoptotic effects (140). However, most approaches to 
RNAi-mediated gene silencing for cancer therapy have 
been with cell cultures in the laboratory, and key impedi-
ments in the transition to the bedside due to delivery con-
siderations still remain. Delivery systems that can improve 
siRNA stability and cancer cell-specificity need to be de-
veloped, nonspecific immune stimulatory effects and in-
volve the minimizing of off-target. The delivery systems 
must be optimized for specific cancers, as the route of ad-
ministration may differ depending on the nature of cancer. 
The current progress in siRNA delivery systems for liver 
(141), Breast (142, 143), prostate (144), and lung (145, 146) 
cancers is discussed (Table 1).

Efficacy
In the recent years, a number of siRNAs have been 

successfully used in experimental models. Data from pre-
clinical models are now giving rise to the translation of 
new siRNA-based therapies into clinical trials. The tar-
get selection process is extensional, requiring a thorough 
mining of pathways and databases (154). Different siRNAs 
targeting different parts of the same mRNA sequence have 
varying RNAi efficacies, and only a limited fraction of 
siRNAs has been shown to be functional in mammalian 
cells (155). Among randomly selected siRNAs, 58–78% 
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were observed to induce silencing with greater than 50% 
efficiency and only 11–18% induced 90–95% silencing 
(156).

Off-target silencing effect
An early glimpse into the possible existence of off-tar-

get gene regulation by siRNAs came from gene expression 
profiling of siRNA studies. The specificity of RNAi is not 
as robust as it was initially thought to be. It is now well es-
tablished that siRNA off-targets exist for many siRNA and 
that most siRNA molecules are probably not as specific 
as once thought. The introduction of siRNA can result in 
off-target effect, i.e. the suppression of genes other than 
the desired gene target, leading to dangerous mutations of 
gene expression and unexpected consequences (157). The 
majority of the off-target gene silencing of siRNA is due 
to the partial sequence homology, especially within the 
3’untranslated region (3’UTR), exists with mRNAs other 
than the intended target mRNA (158). This mechanism is 
similar to the microRNA (miRNA) gene silencing effect. 
The off-target effect can also be a result of the immune 
response. RNA is recognized by immunoreceptors such 
as TLRs (Toll-like receptors) (159), leading to the release 
of cytokines and changes in gene expression. Although 
the sequence dependence of the immune response is not 
fully understood, some immunostimulatory motifs have 
been identified and they should be avoided (160). Chemi-
cal modification of siRNA, such as 2’-O-methylation of 
the lead siRNA strand can also taper the miRNA-like off-
target effects as well as the immunostimulatory activity 
without losing silencing effect of the target gene. Overall, 
therapeutic siRNA must be carefully designed. A combi-

nation of computer algorithms and empirica testing is also 
encouraged to allow effective design of potent siRNA se-
quences and minimize off-target effect (Figure 3).

CONCLUSION

The design and engineering of siRNA carriers gained 
significant momentum in recent years, as a result of ac-
cumulation of predictable and therapeutically promising 
molecular targets. RNAi technology has progressed rap-
idly from an academic discovery to a potential new class 
of treatment for human disease. Initial observations that 
were useful for studying gene function in worms were 
quickly translated to other organisms, and in particular to 
mammals, revealing the potential clinical applications of 
siRNA, including an ability to induce persistent, potent, 
and specific silencing of a wide range of genetic targets. 
For any new therapeutics, safety is still the primary con-
cern. While the off-target effect of siRNA is a major issue 
that needs to be addressed by improving the knowledge in 
this area, the long-term safety of siRNA is still not clear. 

siRNA therapeutics are now well poised to enter the 
clinical formulary as a new class of drugs in the near fu-
ture. siRNA-based therapies are emerging as a promising 
new anticancer approach, and a small number of Phase I 
clinical trials involving patients with solid tumours have 
now been completed. siRNA-based therapeutics hold great 
potential for cancer therapy and treatment of other diseas-
es. However, many challenges, including rapid degrada-
tion, poor cellular uptake, and off-target effects, need to be 
addressed in order to carry these molecules into clinical 
trials. siRNA therapeutics have several distinct advan-

Table 1. Examples of siRNA delivery systems in treatment of cancers

Delivery systems Targeted gene Property Animal model

Polymer Her-2 PEI Ovarian cancer xenograft (147)

Polymer PTN PEI Orthotopic glioblastoma (148)

Polymer Akt1 Poly (ester amine) Urethane-induced lung cancer (149)

Liposome Bcl-2 Cationic liposome Liver metastasis mouse model (150)

Liposome Raf-1 Cationic cardiolipin liposome Prostate cancer xenograft (11)

Liposome EphA2 Neutral liposomes (DOPC) Ovarian cancer xenograft (12)

Liposome EGFR Liposome-polycation-DNA Lung cancer xenograft (151)

Liposome Her-2 Immunoliposome Breast cancer xenograft (152)

Liposome HBV SNALP HBV vector-based mouse (153)

PEI, polyethyleneimine; SNALPs, stable nucleic acid–lipid particles.



AN OVERVIEW OF siRNA

www.ijbs.org    Int  J  Biomed  Sci    Vol. 13  No. 2    June  2017 53

tages over traditional pharmaceutical drugs. RNAi is an 
endogenous biological process, so almost all genes can be 
potently suppressed by siRNA. The identification of high-
ly selective and inhibitory sequences is much faster than 
the discovery of new chemicals, and it is relatively easy to 
synthesize and manufacture siRNA on a large scale. As 
the treatment of cancers usually requires systemic deliv-
ery rather than more easily achievable local delivery, the 
progress of siRNA treatment for cancer has been relatively 
slow compared with that of other diseases curable by local 
siRNA administration.

Delivery, especially systemically administered siRNA, 
is another important barrier to be overcome. Although 
new materials and delivery systems are being investigated 
to enhance the delivery efficiency, approval procedures 
could be hindered by the complicated formulation. On the 
other hand, eyes and lungs are promising tissues for local 
delivery of naked siRNA, especially the former, which is 
reflected by the high number of clinical trial studies tar-
geting this site. It is not surprising to see the first siRNA 
therapeutics to be approved is for ocular therapy in the 
very near future.
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