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Trophic cascades occur in many ecosystems, but the factors regulating

them are still elusive. We suggest that an overlooked factor is that trophic

interactions (TIs) are often scale-dependent and possibly interact across

spatial scales. To explore the role of spatial scale for trophic cascades, and

particularly the occurrence of cross-scale interactions (CSIs), we collected

and analysed food-web data from 139 stations across 32 bays in the Baltic

Sea. We found evidence of a four-level trophic cascade linking TIs across

two spatial scales: at bay scale, piscivores (perch and pike) controlled meso-

predators (three-spined stickleback), which in turn negatively affected

epifaunal grazers. At station scale (within bays), grazers on average

suppressed epiphytic algae, and indirectly benefitted habitat-forming

vegetation. Moreover, the direction and strength of the grazer–algae relation-

ship at station scale depended on the piscivore biomass at bay scale, indicating

a cross-scale interaction effect, potentially caused by a shift in grazer assem-

blage composition. In summary, the trophic cascade from piscivores to algae

appears to involve TIs that occur at, but also interact across, different spatial

scales. Considering scale-dependence in general, and CSIs in particular,

could therefore enhance our understanding of trophic cascades.
1. Introduction
Globally, many populations of large predators are declining due to overharvest,

habitat loss and climate change [1,2]. These losses often trigger trophic cascades

(indirect effects of predators on non-adjacent trophic levels) with far-reaching

effects on ecosystem functions and processes, including diversity, atmosphere

composition and biogeochemical cycling [3,4]. However, even though the exist-

ence of trophic cascades is supported by unequivocal evidence [2,4], their

ubiquity is still highly debated. While some studies fail to detect cascading

effects of predators [5,6], others have begun to disclose the manifold factors

that influence the occurrence and magnitude of trophic cascades. Global drivers

of variation in trophic cascade strength include temperature, precipitation [7,8],

diversity and degree of omnivory [8,9]. At smaller scales, strong context-

dependence of top-down and bottom-up control is known to depend on factors

such as seasonality [10], nutrient loads [11], consumer behavioural responses

[12], habitat complexity [13] and functional traits of both predators [14,15]

and prey [16].

Here, we argue that an overlooked factor that may hinder our ability to

detect trophic cascades and assess their strength is the explicit consideration

of the multiple spatial scales at which trophic interactions (TIs) occur. Spatial

scale is well known to affect functional responses of predators to prey density

and, more generally, consumer–resource dynamics (e.g. [17–20]). Meanwhile,

we suggest that studies on trophic cascades have so far addressed the role of
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Figure 1. Conceptual model depicting a trophic cascade, where predators indirectly facilitate primary producers (dashed line) by controlling herbivore populations
(a), across spatial scales in three different scenarios (b – d ). (b) Interactions between trophic levels are scale invariant (i.e. in fractal-like systems); they do not depend
upon, or interact, across scales. (c) Interactions between trophic levels are scale-dependent; they change in intensity (black arrows) and/or direction (red arrows)
across spatial scales. For example, predators control over grazers acts at larger scales, while grazer control over primary producers acts at smaller scales. (d ) CSIs; TIs
are not only scale-dependent but interact across scales. For example, effects of predators at one scale may influence (strengthen or weaken) TIs at another scale.
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spatial scale from just a few out of several possible perspec-

tives. Particularly, the literature does not take into account

that trophic cascades may consist of multiple TIs that

not only occur at different scales (scale-dependence), but

also interact across scales. To explain our reasoning, we con-

trast three scenarios (figure 1b–d) of how a simple trophic

cascade (predator–herbivore–primary producer, figure 1a)

could play out across spatial scales. In the first scenario

(figure 1b), TIs and cascading effects are scale invariant
(i.e. the same relationships re-appear at different scales).

Such fractal-like ecosystem properties are generally understu-

died, but have been found in spatial and temporal patterns in

macro-ecology [21], biological networks [22,23] and recently

also in pelagic microbial food webs [24].

In the more commonly studied scenario (figure 1c), TIs

are scale-dependent (i.e. they change in strength and/or direc-

tion with scale). Organisms from different trophic levels

typically differ in size and mobility, and therefore experience

and use habitats at different spatial scales [25,26]. Conse-

quently, scale-dependent patterns can arise, where different

drivers dominate at different ‘process resolution’ (i.e. the

smallest scale of spatial variation in a driving variable that

affects the outcome of the process, sensu [27]), and TIs vary

in intensity and even direction with scale [28,29]. Scale-

dependence is pervasive in ecology, and can strongly

influence consumer–resource dynamics (e.g. [20,29]). For

example, predator–prey relationships can be positive at

large scales (e.g. across productivity gradients) but negative

at small scales (due to top-down control) [30,31].

In the arguably least explored scenario (figure 1d ), we pro-

pose that TIs may not only be scale-dependent, but that TIs at

one scale can interact with (influence) TIs at another scale: a

cross-scale interaction (CSI). CSIs are defined as processes at

one spatial or temporal scale that interact with (strengthen

or weaken) processes at another scale, and often result in emer-

gent system properties such as nonlinear threshold dynamics

[32,33]. CSIs have been found to explain, for example, spatial

patterns in biodiversity [34], spread of wildfire [35], and the

effect of wetlands on lake nutrient concentrations [33]. To

the best of our knowledge, their potential role for trophic

cascades remains unexplored until now.

Given the large consequences of trophic cascades, and the

potential for threshold dynamics resulting from CSIs, we

suggest that assessing explicitly the role of spatial scale in

general, and the potential for CSIs in particular, will benefit
the understanding of trophic cascades. Consequently, we

studied the role of spatial scale for trophic cascades using

food webs in shallow coastal bays of the Baltic Sea as a

model. There, fish exclusion experiments suggest that pisci-

vorous fish (perch, Perca fluviatilis; pike, Esox lucius)

generate trophic cascades that reduce the biomass of epi-

phytic, filamentous algae by feeding on mesopredatory

fish (three-spined sticklebacks, Gasterosteus aculeatus) and

thereby facilitating algal-feeding epifaunal grazers [36–38].

However, mechanisms detected in small-scale and short-

term experiments (e.g. trophic cascades) may not translate

to large-scale processes, due to scale-dependence [19,20,30]

and the innate complexity and spatio-temporal heterogeneity

of natural ecosystems [39].

To investigate cascading effects across spatial scales, and

the potential for cross-scale interactions (CSIs), we conducted

a field survey at 139 stations spread across 32 bays. We

sampled the main components of the food web (piscivorous

fish, mesopredatory fish, epifaunal grazers, epiphytic algae,

habitat-forming vegetation) and key abiotic factors. As fish

mobility encompasses the between-bay scale, but herbivore–

algae–plant interactions should manifest at finer scales [40],

we explicitly included two spatial scales in the analyses: a

larger ‘bay scale’ (across bays, km2), and a smaller ‘station

scale’ (nested within bays, m2). We then tested alterna-

tive hypotheses about top-down and bottom-up regulation

using piecewise path analysis, a form of structural equation

modelling with the ability to solve complex multivariate

relationships among interrelated variables [41,42] and incor-

porate multiple spatial scales within the same causal

framework [43,44]. To support the hypotheses of key TIs, we

also analysed the presence of the mesopredator three-spined

stickleback in the stomachs of piscivorous fish, and assessed

predation intensity on grazers using a tethering experiment.

To investigate the occurrence of CSIs, we specifically

tested whether bay-level piscivorous fish biomass (a key

driver at bay scale) affected the station-scale relationship

between grazers and epiphytic algae.
2. Material and methods
(a) Study area
The Baltic Sea is one of the largest bodies of brackish water on the

Earth, hosting species of marine, brackish and freshwater origin.
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Strong latitudinal and offshore–inshore gradients in salinity,

temperature and wave exposure, combined with vast rocky

archipelagos, result in a high diversity of communities and habi-

tats. Shallow bays host diverse communities of aquatic

vegetation (macroalgae, charophytes and angiosperms) and

associated macro-invertebrates [45], and function as important

spawning and recruitment areas for many coastal fish species,

including Eurasian perch (Perca fluviatilis), northern pike (Esox
lucius) and three-spined stickleback (Gasterosteus aculeatus) [46].
E 16 17 18 19

Figure 2. Map of the Swedish central Baltic Sea coast, showing the locations
of the 32 sampled bays (black dots). Axis labels are latitude and longitude.
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(b) Field survey
The field survey was conducted in May–June 2014 and covered

32 shallow bays situated along a 360 km stretch of the central

Swedish Baltic Sea coast (figure 2). The bays were situated

more than 10 km apart (water distance), and encompassed gradi-

ents in (i) topographic openness to the sea, (ii) wave exposure,

(iii) distance from the open sea and (iv) nutrient loading.

Fish communities were surveyed using Nordic survey gillnets

(European Union standardized method EN 14757: 2005). Four to

five gillnets were set out in each bay overnight (between 16.00–

19.00 and 7.00–10.00). All fish caught were identified to species

(electronic supplementary material, appendix A), measured

(total length, cm) and counted. Individual biomass was calculated

using length : weight conversion factors (Swedish national data-

base for coastal fish, http://www.slu.se/kul). Catch per unit

effort (CPUE) was calculated as biomass (kg) per net and night

of piscivores (perch and pike pooled), three-spined stickleback

(the dominant mesopredator in the system, with the potential to

control macroalgal grazers [38,47]) and roach (Rutilus rutilus),

another common mesopredator feeding mainly on gastropods

[37]. Stomachs of perch (n ¼ 634) and pike (n ¼ 34) were dissected

and the relative contribution (percentage volume) of three-spined

stickleback to total stomach content was estimated visually [48]. In

half of the bays, we also used a tethering experiment to estimate

predation intensity on Gammarus spp., a commonly occurring

grazer taxon (see the electronic supplementary material, appendix

B for detailed methods and results).

Vegetation cover and biomass, and biomass of epifauna and

epiphytic algae, were surveyed at three to six stations per bay,

defined as 5 m-diameter areas of sea-bottom at 0.5–3 m depth,

placed greater than or equal to 30 m apart. The percentage

cover of macroscopic vegetation (excluding ephemeral macroal-

gae, see the electronic supplementary material, appendix C)

was visually estimated by a snorkeller, within three randomly

placed 0.5 � 0.5 m frames. Vegetation, algae and epifauna were

collected within a randomly placed 0.2 � 0.2 m frame attached

to a 1 mm-mesh bag. In the laboratory, vegetation and epiphytic

algae were identified (electronic supplementary material, appen-

dix C) and their dry biomass determined (608C for 48 h).

Epifaunal macroalgal grazers were identified (electronic sup-

plementary material, appendix D), measured (body length,

mm), and their biomass estimated as gram ash-free dry mass

using taxon-specific length : AFDM correlations [49].

To estimate the influence of environmental forcing on differ-

ent trophic levels, nine abiotic factors known to affect bay biota

were quantified. At each station, water temperature and salinity

were measured using a Multi 340i voltmeter (WTW, Germany).

Thereafter, a water sample was collected at 0.5 m depth between

16.00 and 19.00, filtered through a 0.45 mm glass-fibre filter

(Sarstedt, Germany), and frozen. Concentrations of total and dis-

solved nitrogen and phosphorus (mg l21) were later measured

using segmented flow colorimetric analysis [50] with the

Alpkem FlowSolution IV system from OI Analytical.

Bay topographic openness (Ea, dimensionless) was estimated

as Ea ¼ 100 At/a, where At is the smallest cross-sectional area

connected to the sea (calculated from field measurements of

inlet depth and width) and a is the bay surface area, estimated
from Google Earth satellite images [51]. Surface wave exposure

(m2s21) was estimated at station and bay level using a simplified

wave model (25 m resolution), combining fetch calculations with

wind conditions while accounting for diffraction effects [52].

Finally, distance from the open sea (a proxy for offshore influ-

ence) was calculated as the shortest water distance (m) from

the baseline (the starting point for defining territorial sea,

found as straight lines between the outermost islands in nautical

charts) to the opening of each bay (using a 25 m resolution cost

distance technique in GIS).

(c) Path analysis
To explore the importance of trophic cascades, and how these

propagate within or across spatial scales, we first formulated

alternative hypotheses about the integrated functioning of the

ecosystem (figure 3a). We hypothesized that (i) temperature

affects all trophic levels (metabolic theory of ecology [53]),

(ii) high salinity negatively affects the freshwater perch and

pike [54], (iii) topographic openness and wave exposure increases

biomass of stickleback [47], total vegetation and epiphytic algae

[55], (iv) stickleback biomass decreases with distance from the

open sea (longer migration distance [47]), (v) nutrient load

increases piscivore biomass (exploitation ecosystem hypothesis

[56]) and benefit algae and plants [57], (vi) vegetation facilitates

piscivorous fish, sticklebacks and grazers by providing substrate

and shelter [13], and (vii) epiphytic algae negatively affect habi-

tat-forming vegetation by competing for light and nutrients [58].

We also tested the hypotheses that (viii) predation effects are

influenced by habitat complexity [59,60], by incorporating inter-

active effects of vegetation cover and piscivore biomass on

sticklebacks, and of vegetation cover and stickleback biomass

on grazers. Finally, we hypothesized that (ix) trophic levels are

http://www.slu.se/kul
http://www.slu.se/kul
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top-down versus bottom-up regulated, resulting in negative or

positive collinearity between adjacent trophic levels, respectively.

After formulating the conceptual model, we used path analy-

sis to test the significance of specific combinations of paths

corresponding to each hypothesis. Models included six exogenous

variables: (i) water temperature, (ii) salinity, (iii) topographic

openness (log-transformed to reduce skewness), (iv) wave

exposure (log-transformed), (v) distance from the open sea and

(vi) dissolved phosphorus (which explained more of the variabil-

ity in the response variables than dissolved nitrogen, total
phosphorus and total nitrogen). Endogenous variables included

biomass of (i) piscivorous fish (perch and pike pooled), (ii) three-

spined stickleback (the dominant mesopredator), (iii) grazers

and (iv) epiphytic algae (percentage of total above-ground veg-

etation biomass), and (v) percentage cover of total vegetation

(excluding epiphytic algae). As preliminary analyses did not

show any significant relationships between roach and grazer

biomass, roach biomass was excluded.

Our design yielded data at two hierarchical levels; three to six

stations nested within each of 32 bays (139 stations in total).
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Multi-level relations were incorporated in our models by allowing

station-level observations to depend on bay-level parameters

(following [44]). First, we sought to explain variation in the

endogenous variables measured at bay level according to our

hypotheses, following [43]. Next, we fitted a station-level model

including all observations at station level, and bay averages of

all trophic levels as exogenous predictors. Owing to the hierarch-

ical nature of our data and the distributional properties of our

variables, we ran the path analyses (a linked set of generalized

linear mixed models) using the piecewiseSEM package, v. 1.1.1

[42] in Rv. 3.2.3 (R Development Core Team, 2015).

Prior to model fitting, we graphically examined distribu-

tional properties of all variables. When normality assumptions

were violated, a Poisson or a negative binomial error distribution

with log-link function was applied. To assure independence, the

random factor ‘bay’ (32 levels) was included in the station-level

analysis. Collinearity in each component model was checked

by calculating the variance inflation factor (VIF) for each predic-

tor. As temperature and salinity were collinear (VIF � 2), they

were included in separate models.

Finally, we compared the relative fit of alternative piecewise

models to the data, first using the test of directional separation

[61], which produces a x2-distributed Fisher’s C statistic, where

p-values of more than 0.05 indicate adequate fit, and second,

through comparison of AIC values [62]. For the best-fitting

(final) models, we calculated standardized path coefficients

(scaled by mean and variance) to compare the relative impor-

tance of predictors [41]. Marginal R2-values for endogenous

variables in the station-level model were estimated following

[63]. Model validation was performed visually by plotting

residuals versus fitted values for each component model.

(d) Cross-scale interaction
We investigated the presence of CSIs by statistically assessing

whether piscivore biomass—a key ecosystem driver at the bay

scale (see ‘Results’)—influenced the station-scale relationship

between grazers and epiphytic algae (see [33] for a similar

approach). We did so by testing the effects of the interaction

between bay-level piscivore biomass and station-level grazer bio-

mass (VIF values of less than or equal to 2) on station-level

epiphytic algae biomass, using a generalized linear mixed

model with Poisson error distribution, log-link function and

‘bay’ as random factor.

(e) Effects of piscivores on grazer assemblage
composition

Our CSI analysis showed that effects of grazer biomass on algae

at station scale depended on piscivore biomass (see ‘Cross-scale

interaction’ below). To investigate whether a shift in grazer

assemblage composition (e.g. from dominance of inefficient

to efficient grazer taxa) could help explain the CSI effect

(e.g. [63]), we used a permutated multivariate analysis of var-

iance (PERMANOVA), and tested whether grazer composition

(percentage of each taxon to total grazer biomass) was influ-

enced by piscivore biomass, including three covariates: plant

cover, salinity and bay openness (for detailed methods and

results, see the electronic supplementary material, appendix E).
3. Results
(a) Path analysis: trophic cascade across spatial scales
Our path analyses suggest that high biomass of piscivores

had cascading effects down the food web through scale-

dependent TIs, which ultimately reduced algal biomass.
Our best-supported bay- and station-scale models fitted the

data well (bay scale: Fisher’s C ¼ 27.57, p ¼ 0.120; station

scale: Fisher’s C ¼ 14.87, p ¼ 0.387; figure 3b). At the

bay scale, piscivore biomass negatively affected stickleback

biomass, which in turn reduced grazer biomass (table 1

and figure 3b). Moreover, these TIs were well supported

by (i) the significant contribution of stickleback to piscivore

stomach content (electronic supplementary material,

appendix F) and (ii) the tethering experiment, where bay-

level stickleback biomass alone explained predation rates on

tethered grazers (electronic supplementary material,

appendix B). As a consequence of these linked interactions,

high piscivore biomass indirectly increased bay-level grazer

biomass. Furthermore, bay-level algal biomass increased

with stickleback biomass (table 1), a link included in the

model as a correlated error, given the lack of theoretical sup-

port for a direct causal relationship. At the bay level, this

relationship did not appear to be mediated by reduced graz-

ing pressure on epiphytic algae. Instead, grazer biomass

increased with epiphytic algae at the bay scale. At the station

scale, however, grazer biomass suppressed epiphytic algae.

Also, epiphytic algae negatively affected vegetation cover, a

link that was not significant at bay scale, but decreased the

model AIC value from 79.6 to 73.6 when modelled as corre-

lated error (table 1 and figure 3b). In summary, the strength

and the direction of some paths was scale-dependent,

suggesting that TIs perform differently at different scales.

(b) Path analysis: environmental forcing
As expected, water temperature increased piscivore biomass

and vegetation cover (table 1 and figure 3b), while topo-

graphic openness increased vegetation cover and stickleback

biomass (table 1 and figure 3b). Contrary to predictions,

salinity did not affect piscivore biomass, and although we

found a significant negative effect of distance from open

sea on stickleback biomass, the model including this path

fitted the data poorly (Fisher’s C ¼ 58.4, p ¼ 0.001), and had

considerably higher AIC than the best model (106.4 versus

73.57, respectively). Dissolved phosphorus increased veg-

etation cover at both bay and station scales, and epiphytic

algae and piscivore biomass at bay scale (table 1 and

figure 3b). Furthermore, the best-supported model contained

correlated errors between dissolved phosphorus and (i) stick-

leback biomass, a positive correlation most probably

reflecting covariation with unmeasured forcing variables,

and (ii) station-level algae biomass (negative correlation),

suggesting local depletion of nutrients around areas with

high algal biomass (table 1). Finally, wave exposure had no

influence (significant paths) at bay or station scale.

(c) Path analysis: the role of vegetation as habitat
Contrary to expectations, vegetation cover did not influence

piscivore biomass, but increased both stickleback and

grazer biomass (table 1 and figure 3b), most probably by pro-

viding habitat and shelter. The vegetation effect on grazers

was among the strongest found at bay scale, and was also

observed at station scale. Combined with the negative effect

of grazers on epiphytic algae, and the negative effect of epi-

phytic algae on vegetation, these paths suggest a mutual

facilitation (positive feedback) between grazers and veg-

etation. Finally, the hypothesis that habitat complexity

mediates (interacts with) predation was not supported, as
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Figure 4. Relationship between station-level epiphytic algae (% biomass
of total above-ground vegetation) and grazer biomass (g AFDW), and
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than 2, epiphytic algae and grazer biomass instead correlate positively
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no significant interaction effects between vegetation cover

and piscivore or stickleback biomass were found.

(d) Cross-scale interaction
The station-scale path model showed that the relationship

between grazers and epiphytic algae was on average negative

(see above). However, the additional cross-scale analysis

revealed that the grazer–algae relationship actually shifted

from positive to negative with increasing piscivore biomass

(interaction effect between grazer and piscivore biomass: like-

lihood ratio test statistic ¼ 129.76, p , 0.001; figure 4). Below

a piscivore biomass of around 2 kg CPUE, grazer biomass

increased with epiphytic algae biomass (indicating bottom-

up regulation). However, above this apparent biomass

threshold, the grazer–algae relationship turned increasingly

negative (indicating top-down control) with increasing

piscivore biomass. This suggests that high grazer biomass

at the station scale more effectively controlled algae in

bays with higher rather than lower piscivore biomass: a

cross-scale interaction.

(e) Effects of piscivores on grazer assemblage
composition

Results from the PERMANOVA analysis showed a shift in the

grazer assemblage composition with increasing piscivore bio-

mass (electronic supplementary material, appendix E). In bays

with low piscivore biomass, Idotea spp. and Gammarus spp.

dominated, while in bays with high piscivore biomass, the

assemblages were instead dominated by a mix of freshwater

grazers, including Asellus aquaticus (Isopoda, Crustacea),

Hydroptila sp. larvae (Trichoptera) and chironomid larvae.
4. Discussion
By combining (i) an extensive food-web survey along gradi-

ents of multiple abiotic factors, (ii) the assessments of two

key TIs and (iii) causal inference, we assessed the strength

of trophic cascades across two spatial scales, and the occur-

rence of CSIs, in shallow bay ecosystems. Our results

support the occurrence of a four-level trophic cascade
(from piscivorous fish to epiphytic algae) that results from

scale-dependent TIs and, possibly, a cross-scale interaction

between piscivore biomass at bay scale, and grazer control

over algal biomass at station scale. At bay scale, high biomass

of perch and pike regulated three-spined stickleback, a major

mesopredator in these ecosystems [47], which in turn regu-

lated predation intensity on, and biomass of, algal grazers.

At bay scale, grazer biomass increased, albeit weakly, with

algal biomass. Meanwhile, at station scale, grazers reduced

algal biomass and facilitated vegetation, which in turn had

positive effects on grazers. Moreover, the station-scale

relationship between grazer and epiphytic algae changed

direction and strength with increasing biomass of piscivorous

fish, indicating the presence of a cross-scale interaction.

Small-scale experimental exclusion of predatory fish has

been shown to increase stickleback abundance, reduce

grazer biomass and boost algal biomass [36,38,39]. Our

results not only show that these mechanisms are strong

enough to influence natural food webs and ecosystems

along a highly heterogeneous coastline; they also suggest

that these TIs are scale-dependent, and that they may interact

across scales. Both theory [20] and empirical data [27] suggest

that consumer–resource dynamics depend on the spatial

scale of resources and species habitat use. While scale-depen-

dent interactions are well recognized in the literature, CSIs

have received much less interest, but could play a pivotal

role by generating emergent properties like thresholds or ‘tip-

ping points’. For example, the effect of wetland size on lake

phosphorus can shift from positive to negative with changing

levels of regional agricultural intensity [33], and rapid wild-

fire spread in forests can be explained by the interaction

between local scale features and large-scale connectivity

[35]. Here, we found that the station-scale biomass of epiphy-

tic algae depended on an interaction between bay-level

piscivore biomass and the station-scale biomass of grazers.

To the best of our knowledge, our study is the first to suggest

that CSIs can also affect TIs and trophic cascades, and deter-

mine a shift between top-down and bottom-up control. One

potential mechanism behind this CSI could be the demon-

strated shift in the grazer assemblage composition with

increasing piscivore biomass, from relatively inefficient gra-

zers such as Idotea spp. in bays with low piscivore biomass,

to dominance of more efficient grazers of ephemeral algae

(e.g. Asellus, Chironomidae) in bays with high piscivore bio-

mass [64]. Another potential explanation could be non-

consumptive effects of abundant mesopredatory stickleback

at low piscivore biomass (landscape of fear) changing

grazer behaviour from feeding to hiding, thus boosting

algal biomass. Such behavioural effects are increasingly

recognized to affect both green and brown food webs [65,66].

Environmental forcing also influenced shallow bay com-

munities, particularly at the larger scale. Piscivore biomass

increased with both temperature and nutrient loading, in

line with theory [53,56] and empirical studies [54]. Bay open-

ness increased stickleback biomass and was the strongest

predictor of vegetation cover, followed by temperature and

dissolved phosphorus (see also [46,53]). On the one hand,

the strong environmental forcing supports the assumption

that abiotic conditions determine spatial variation at large

scales, while small-scale variation is predominantly driven

by biotic interactions such as competition, predation and

facilitation [67]. On the other hand, even after accounting

for environmental forcing, we found clear evidence of
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top-down control from piscivorous fish down to grazers

across the 32 bays, together covering considerable abiotic

variability and a 360 km stretch of the coast. Consequently,

biotic interactions involving piscivorous fish appear to funda-

mentally influence ecosystem structure and function also at

large scales.

The results from our extensive field survey add to a grow-

ing body of evidence that piscivorous fish play a key role for

coastal ecosystem health, by reducing biomass of ephemeral

algae and, potentially, buffering effects of eutrophication

[68–70]. Our study also suggests that these effects depend

on a threshold piscivore biomass (here, around 2 kg per net

night). Predatory fish are also important for commercial

and recreational fisheries in the Baltic Sea and elsewhere

[71]. Consequently, ecosystem-based management actions

[72] that maintain or enhance their stocks could help main-

tain multiple ecosystem services and benefits to society [73].

Our finding that TIs not only occur at different scales

(dictated by the scale at which the organisms function) but

also appear to interact (in a statistical sense) across spatial

scales is unlikely to be restricted to shallow bay ecosystems.

Instead, we hypothesize that CSIs is a general phenomenon

in food webs that link organisms acting at different scales,

and that the explicit consideration of these interactions

could help us better understand other well-known trophic

cascades [4]. Consequently, where similar types of data are

available for other ecosystems, our approach of explicitly

including the spatial scale of the natural history of key

species, and their potential interactions across those

scales, could be applied to further refine the understanding

of the processes at work and to design better monitoring

programmes.

Going beyond trophic cascades, our study echoes the con-

ceptual arguments of hierarchy theory and the discontinuity

hypothesis, which emphasize the hierarchical organization of

ecosystems across discrete spatio-temporal scales (see [74,75]

for reviews). Even if different processes dominate at specific
scales, effects and disturbances could propagate up or

down the hierarchy. For instance, the disruption of the

grazer–epiphyte–vegetation feedback loop at station scale

(e.g. following nutrient enrichment or mesopredator release)

may lead to an abrupt decline of foundation species (veg-

etation) at bay scale. From a management perspective, this

translates into two imperatives: to monitor the right ecosys-

tem components at the right spatial scales, and to identify

and steer away from potential thresholds. In summary, a

more explicit consideration of the hierarchical spatial dimen-

sion of food webs in general, and the potential for CSIs in

particular, is a crucial step to better understand the processes

at work, to forecast ecosystem dynamics, and to effectively

monitor, manage and preserve natural ecosystems and the

services they provide.
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surface water turnover time in coastal waters using
digital bathymetric information. Environmetrics 5,
433 – 449. (doi:10.1002/env.3170050406)

52. Isæus M. 2004 Factors structuring Fucus
communities at open and complex coastlines in the
Baltic Sea. PhD thesis, Stockholm University,
Stockholm, Germany.

53. Brown J, Gillooly J, Allen A, Savage V, West G. 2004
Toward a metabolic theory of ecology. Ecology 85,
1771 – 1789. (doi:10.1890/03-9000)

54. Olsson J, Bergström L, Gårdmark A. 2012 Abiotic
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