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Prehistoric human impacts on megafaunal populations have dramatically

reshaped ecosystems worldwide. However, the effects of human exploitation

on smaller species, such as anatids (ducks, geese, and swans) are less clear.

In this study we apply ancient DNA and osteological approaches to reassess

the history of Australasia’s iconic black swans (Cygnus atratus) including the

palaeo-behaviour of prehistoric populations. Our study shows that at

the time of human colonization, New Zealand housed a genetically, morpho-

logically, and potentially ecologically distinct swan lineage (C. sumnerensis,
Poūwa), divergent from modern (Australian) C. atratus. Morphological

analyses indicate C. sumnerensis exhibited classic signs of the ‘island rule’

effect, being larger, and likely flight-reduced compared to C. atratus.
Our research reveals sudden extinction and replacement events within this

anatid species complex, coinciding with recent human colonization of

New Zealand. This research highlights the role of anthropogenic processes

in rapidly reshaping island ecosystems and raises new questions for avian

conservation, ecosystem re-wilding, and de-extinction.
1. Introduction
Prehistoric human harvesting of megafaunal populations has underpinned

biodiversity declines in many parts of the world [1–3], but the effects of

human exploitation of smaller animal species are less clear. The Anatidae

(ducks, geese, and swans) are a cosmopolitan avian family (150 species, 40

genera; [4]) with a long history of exploitation by humans. Indeed, anatid

remains are found in archaeological midden sites worldwide [5–7], reflecting

their ongoing importance both culturally and economically [8]. Anthropogenic

exploitation is thought to explain some prehistoric Holocene waterfowl extinc-

tion events, particularly involving large, flight-reduced or flightless island taxa

(e.g. Hawaii [9], Reunion and Mauritius [10]). Such impacts, however, have yet

to be well characterized.

In contrast to regions of the world with long histories of human–wildlife

interaction (e.g. North America; [6]), New Zealand’s (NZ) native biota (includ-

ing 27 waterfowl species in 12 genera; [11–13]) has been subjected to human

impacts only in the last millennium. Notably, one third of the region’s anatid

fauna has apparently become extinct since human colonization in the late

thirteenth century [13,14]. Additionally, many of the region’s surviving ende-

mic waterfowl taxa are threatened by predation, habitat degradation, and

hybridization with introduced waterfowl [11].

Among the extinct anatids, the fate of NZ’s original indigenous swans is par-

ticularly enigmatic. The extant black swan (Cygnus atratus) is a highly distinctive

component of modern-day Australasian wetland ecosystems. Archaeological

data indicate that at the time of first human contact, black swans were distributed

throughout NZ, including the isolated Chatham Islands (CI) [15]. However,
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Cygnus was absent from the region by the time of European

settlement in the late eighteenth century, implying anthropo-

genic extirpation during NZ’s megafaunal hunting period

(ca. 1280–1450 AD; [11,15]). NZ’s extant population of

approximately 50 000 black swans is thought to be derived

from Australian birds that were deliberately introduced

during the mid-late nineteenth century [16], although natural

self-introductions (see [17]) have also been hypothesized

[11,18–20]. While only a single species of black swan is

currently recognized (C. atratus) and seen as a rare example

of extirpation and recolonization of NZ by the same species

[11,21], some researchers have suggested from morphological

evidence that the pre-human black swan may have represented

a species complex rather than a single taxon [22,23].

New Zealand’s rich archaeological record [24] pre-

sents intriguing opportunities to unravel the often complex

dynamics between human populations and indigenous

wildlife [25–31]. Recent analyses of ancient DNA (aDNA)

have led to paradigmatic shifts in our understanding of the

evolution of NZ’s biota [32]. In particular, genetic studies of

prehistoric remains have revealed a number of ‘cryptic’ biologi-

cal turnover events, highlighting the role of density-dependent

processes constraining lineage distributions [33] and leading

to reappraisals of which lineages are truly ‘native’ [17]. In the

current study we apply aDNA and osteological approaches

to reassess the history of Australasia’s iconic black swans

including palaeo-behaviour of prehistoric populations, and to

test for dynamic biological responses to anthropogenic change.
2. Material and methods
(a) Source of specimens
Modern and historic Cygnus atratus tissue, blood, and bone

samples, covering the species’ contemporary range in Australasia,

were obtained from a variety of locations (n ¼ 47; electronic sup-

plementary material, figure S1 and table S1). Well-preserved

pre-human Holocene fossil and archaeological Cygnus remains

(AD 1280–1800), across the species prehistoric range in NZ and

CI (including the holotype of Cygnus chathamicus Oliver, 1955),

were sourced from well-constrained, radiocarbon-dated deposits,

housed in museum and university collections (n ¼ 39; electronic

supplementary material, figure S1 and table S1). To ensure inde-

pendence of samples, only common elements of the left or right

orientation were sampled from an individual deposit.
(b) DNA extraction, amplification, and sequencing
DNA was extracted from modern tissue and blood samples follow-

ing a modified Chelex protocol with 5% Chelex solution, 5 ml

proteinase K (20 mg ml21), and an overnight incubation at 568C
[34]. DNA was extracted from bone samples using the Qiagen

DNeasy Tissue Kit following the manufacturer’s instructions

with an overnight incubation at 558C. A 335 bp portion of the mito-

chondrial Control Region (CR) was amplified using the primer pair

Cygn-1F (50 GGTTATGCATATTCGTGCATAGAT 30)/ Cygn-3R

(50 ACGTATGGGCCTGAAGCTAGT 30) [35]. Each PCR reaction

(10 ml) consisted of: 0.4 mg ml21 BSA, 0.75 mM MgCl2 (Bioline),

1 � PCR buffer (Bioline), 2.5 mM dNTPs (Bioline), 0.5 mM of

each primer, 0.05 U Taq Polymerase (Bioline), and 1 ml DNA.

PCR thermocycling conditions were: 948C 9 min, 35 cycles of

948C 30 s, 508C 45 s and 728C 1 min, followed by a final extension

step of 728C 10 min. PCR products were run on a 2% 1 � TAE

agarose gel and purified using ExoSap (1 U SAP, 1.5 U Exo1

(GE Healthcare); 30 min 378C, 15 min 808C) and sequenced
bi-directionally using Big Dye terminator technology on an ABI

3730xl DNA analyser.

Ancient DNA extraction and PCR set-up was carried out at the

University of Otago in a purpose-built aDNA laboratory (Otago

Palaeogenetics Laboratory) physically isolated from other molecu-

lar laboratories. Strict aDNA procedures were followed to

minimize the risk of contamination of samples with exogenous

DNA and to authenticate aDNA sequences, including the use of

negative extraction and PCR controls [36]. No swan specimens

had been analysed in this laboratory prior to this study. DNA

was extracted from historic museum specimens using the Qiagen

DNeasy Tissue Kit following the manufacturer’s instructions

with the following modifications: addition of 20 ml of DTT

(20 mg ml21) prior to overnight incubation at 558C, followed by

the addition of 20 ml proteinase K (20 mg ml21) and a second over-

night incubation. DNA was extracted from 100–300 mg of bone

powder following Rohland et al. [37]. The same 335 bp portion of

CR as for modern specimens was amplified in three overlapping

fragments using the primer pairs: Cygn-1F/Cygn-1R (50 CATT

CATGTTGGTYGGTTGGT 30) (120 bp); Cygn-2F (50 TACCATG

YACACGGACATCAAA 30)/Cygn-2R (50 TATGTCCTGGGAG

CATTCATT 30) (101 bp); and Cygn-3F (50 CCCAAGYACACAA

CAAGGCCA 30)/Cygn-3R (138 bp). PCR reactions (20 ml) con-

sisted of: 1 M Betaine (Sigma), 4 mM MgCl2 (Life Technologies),

1 � Gold Buffer II (Life Technologies), 0.625 mM dNTPs (Bioline),

0.25 mM of each primer, 1.25 U of AmpliTaq Gold Polymerase (Life

Technologies), and 2 ml DNA. PCR thermocycling conditions were

the same as for modern specimens except amplification was con-

ducted over 60 cycles. Each PCR was replicated twice and

unsuccessful PCRs were replicated with 2 ml 1:10 DNA or 4 ml

DNA. Downstream post-PCR procedures were the same as for

modern specimens. When ambiguous sites were observed due to

DNA damage (C-T and G-A transitions), additional PCRs and

sequencing were conducted, and a majority-rule consensus was

applied [38]. DNA extraction and PCR were replicated if geo-

graphical location and genetic lineage conflicted.

(c) Phylogeographic analysis
Cygnus CR sequences were obtained from 47 modern and 39 ancient

specimens (electronic supplementary material, table S1). Contigu-

ous CR sequences (GenBank accessions MF455379-MF455462)

were constructed using Sequencher (Genecodes) from high-quality

sequence reads and aligned in MEGA 4.0 [39]. Parsimony-based

phylogeographic network analysis in TempNet [40] was conducted

on the complete CR dataset, in contrast to phylogenetic analysis due

to the small fragment size (335 bp) and the evolutionary distant

northern hemisphere outgroup—mute swan, C. olor (results not

shown). Gene diversity (HE) was calculated for modern Australian

and modern NZ/CI populations using the formula 1�
P

x2
i , where

xi is haplotype frequency.

(d) Morphometric and osteological analysis
We recorded 24 length and width measurements of postcranial

elements, and 11 cranial measurements (defined by von den

Driesch [41]), from fully grown (i.e. osteologically mature)

Cygnus specimens, covering the geographical and temporal

range of the genus in Australasia (electronic supplementary

material, table S2). Measurements were taken using Vernier

calipers to the nearest 0.1 mm, using techniques defined by von

den Driesch [41]. Only non-weathered bones where accurate

length measurements could be obtained were analysed to avoid

taphonomic biases influencing the results [21].

Morphological differentiation and diagnosibility between

modern (Australian) and prehistoric (NZ/CI) genetic lineages

(figure 1) were tested using principal component analysis (PCA)

and discriminant function analysis (DFA) in R [42]. A Simpson’s

log ratio diagram was used to visualize differences in mean
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Figure 1. Parsimony-based network reconstruction of Cygnus mtDNA CR
sequences. Haplotypes are represented by circles. Circle size is proportional to
haplotype frequency. Black circles represent undetected intermediate haplo-
types. Lineage colouring: red, modern (Australia); light red, modern (NZ/CI);
blue, prehistoric (NZ); light blue, prehistoric (CI). (Online version in colour.)
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postcranial element lengths (i.e. ‘island rule’ effects) among modern

and prehistoric lineages [43]. Relative flight ability of modern and

prehistoric lineages was assessed using the multivariate (PCA)

approach of Watanabe [44]. Mean body mass of Cygnus individuals

was reconstructed using tibiotarsus mid-shaft width measure-

ments, and the anatid body mass reference dataset of Dickison

[45]. See electronic supplementary material for full methodology.
3. Results
(a) Temporal phylogeographic analysis
Cygnus CR sequences were recovered from all 47 modern and

39 prehistoric black swans, covering the geographical and tem-

poral distribution of the genus in Australasia. Of the 335

characters in this dataset, 300 were constant, while 25 out of

35 variable characters were parsimony informative.

Black swan sequences cluster genetically into two distinct

major lineages: ‘Australia’ and ‘NZ’ (figure 1). Within the pre-

historic NZ lineage we detected geographical substructure,

with distinct mainland NZ and CI haplogroups. The NZ

haplogroup consists of 11 haplotypes (older than 1450 AD),

while the CI haplogroup, separated from NZ by one fixed

single nucleotide polymorphism (SNP), consists of three haplo-

types (older than 1650 AD). A single prehistoric CI individual

(NMNZ S.32994; electronic supplementary material, table S1)

exhibits a NZ haplotype. We interpret this genetic outlier as a

likely vagrant (see [27–29,32]). The most genetically diverse

lineage (19 haplotypes) comprises individuals from Australia,

and prehistoric, historic, and modern black swans from NZ

(younger than 1450 AD) and CI (younger than 1864 AD).

This widespread Australian lineage is distinguished from the

NZ lineage by five fixed SNPs—indeed, phylogenetic analysis

(data not shown) indicates that CR sequences from prehistoric

(NZ and CI) swans form a monophyletic group, to the exclu-

sion of modern (Australian) sequences. Gene diversity of
modern Australian swan samples (HE ¼ 0.88) was higher

than that of modern NZ/CI samples (HE ¼ 0.73).

(b) Osteological analyses
Statistical analysis of osteological datasets comprising

modern and prehistoric specimens revealed significant mor-

phological differentiation between modern (Australian) and

prehistoric (NZ) lineages (figure 2a; electronic supplementary

material). We also detected pronounced morphological sub-

structure among ancient NZ and CI Cygnus populations,

with more robust humeri and femora detected in prehistoric

mainland NZ black swans (figure 2a; electronic supplemen-

tary material). Prehistoric individuals were overall larger

and more robust (across all cranial and postcranial elements)

than modern (Australian) black swans (figure 2a; electronic

supplementary material). Size differences were particularly

pronounced for hind limb elements (i.e. femur, tibiotarsus,

and tarsometatarsus), with bones from prehistoric Cygnus
highly elongated relative to those from modern black swans

(figure 2b; electronic supplementary material). Prehistoric

NZ Cygnus likely had reduced flight ability, as indicated by

elongated hind limbs, and proportionally shorter/robust

wings in relation to hind limbs [44], compared to modern

(Australian) volant black swans (electronic supplementary

material). Body mass reconstructions (mean weights) suggest

that prehistoric NZ Cygnus were 20–32% heavier than

modern specimens (figure 2c), with weights ranging from

6–10 kg, compared to 4–9 kg for modern (Australian)

individuals (electronic supplementary material).
4. Discussion
Ancient DNA analyses of prehistoric Cygnus remains reveal

that, at the time of human colonization, NZ had a swan lineage

genetically distinct from the modern (Australian) C. atratus
(figures 1 and 3). Similarly, osteological analyses indicate sub-

stantial phenotypic differentiation between prehistoric (NZ)

versus modern (Australian) populations (figure 2). Specifically,

the extinct NZ lineage exhibited classic morphological signs of

the ‘island rule’ effect [43,46–49] (figure 2b,c), suggesting a

relatively terrestrial life history compared to that of the extant

Australian lineage. The distinctive large body size, elongated

legs, proportionally short robust wings relative to legs, and

substantially increased body mass of the extinct prehisto-

ric swans suggest that this lineage was on an evolutionary

pathway towards flightlessness [44,48].

The genetic (figure 1) and morphological (figure 2;

electronic supplementary material) findings of the current

study support recognition of distinct Australian Cygnus atratus
(Latham, 1790) and NZ Cygnus sumnerensis (Forbes, 1890)

swan species under the Diagnosable Species Concept

[11,50,51], a derivative of the Phylogenetic Species Concept

[52], designed to avoid taxonomic over-inflation [53] (see

electronic supplementary material for further discussion).

Based on additional morphological and genetic substructure

(figures 1 and 2; electronic supplementary material), we

also recommend recognition of two subspecies within

C. sumnerensis: the prehistoric CI lineage C. s. chathamicus
Oliver, 1955 and the prehistoric NZ lineage C. s. sumnerensis
(Forbes, 1890). The common name of Poūwa for C. sumnerensis
is appropriate. The Poūwa is a bird in CI Moriori legend thought

to be the prehistoric (NZ/CI) swan [54–56].



6

robust

prehistoric (New Zealand)

larger smaller

gracile

–4

0.05

–6 –4 –2 0
principal component 1 (48.0%)

pr
in

ci
pa

l c
om

po
ne

nt
 2

 (
12

.1
%

)

2 4

–2

0

2

4

6

prehistoric (Chatham Is.)

prehistoric (Chatham Is.)

modern (Australia)

prehistoric (New Zealand)

prehistoric (Chatham Is.)
modern (Australia)
Anseriformes

modern (Australia)

0

COR TMTTBTFEM
element

Si
m

ps
on

’s
 lo

g 
ra

tio
w

ei
gh

t (
kg

)

CMCULNHUM

8

0

10 353025
mean tibiotarsus circumference (mm)

2015

2

4

6

0.01

0.02

0.03

0.04

(a)

(b)

(c)

Figure 2. (a) Principal Component Analysis of pooled postcranial measurements
of modern (Australia) and prehistoric (NZ/CI) Cygnus swans. (b) A Simpson’s
log-ratio diagram, showing the logarithmic differences of mean lengths of
the postcranial elements of prehistoric Cygnus from the CI ( proxy for NZ cf.
Corvus spp.; [46]) relative to the modern (Australia) Cygnus. Abbreviations:
COR, coracoid; HUM, humerus; ULN, ulna; CMC, carpometacarpus; FEM,
femur, TBT, tibiotarsus; TMT, tarsometatarsus. (c) Relationship between mean
body mass (in kg) and tibiotarsus circumference in anatids. Data are from
Dickison [44]. (Online version in colour.)

<1650

<1450

1860s

(a)

(b)

(c)

Figure 3. Extinction and replacement of Cygnus swans following human
colonization of NZ and CI. At the time of human arrival in the NZ region
(a) C. atratus was restricted to Australia, while C. sumnerensis was restricted
to NZ. Within 200 years of human settlement (b), C. sumnerensis was extinct.
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Our study provides a rare example of a putatively flight-

reduced and perhaps semi-terrestrial swan lineage. Indeed,

only two suggested flightless swan taxa (both extinct), one of

uncertain affinity within Anatidae, have previously been

recorded in the fossil record [44,57,58] compared to numerous

flight-reduced or flightless ducks and geese [44,49,59]. While

substantial changes in relative body size are commonplace in

insular island species [10,49,59–61], they have not previously

been clearly characterized within Cygnus (e.g. [44,57]). Simi-

larly, convergent reductions in flight ability—via increased

body size, shortened wings in relation to legs, and elongation

of hind limbs—are common features of island avifaunas
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[44,46,48,61]. The pronounced changes in body size and

flight ability in C. sumnerensis no doubt evolved rapidly,

given probable colonization of NZ within the past one to two

million years as the climate cooled and the landscape became

more open with onset of Pleistocene glacial cycles [47].

The increased body mass no doubt led to more robust wing

bones, especially humeri, to offset this weight gain. The

‘island rule’ effect is characterized here for the first time in insu-

lar C. sumnerensis, which had a large body size, reduced flight

ability, and elongated hind limbs (especially tarsometatarsus to

femur ratio) relative to its ‘continental’ sister taxon C. atratus
(figure 2). Notably, the elongated hind limbs of C. sumnerensis
imply a relatively terrestrial lifestyle (figure 2b), favouring

more terrestrial locomotion [43,62] and ground foraging [46],

and leading to increased force required for take-off [48] or

defence against large-bodied aerial predators [49]. This tran-

sition towards flightlessness likely reflects the absence of

terrestrial mammalian predators from prehistoric NZ and CI,

and also the relatively small number of prehistoric large-

bodied aerial raptors (two species: Haast’s Eagle and Eyles’

Harrier) [14,48].

Following human settlement of the NZ region, this once

diverse Cygnus species complex experienced a rapid loss of

diversity, with extinction in NZ by the mid-fifteenth century

and CI by the mid-seventeenth century (figure 3). The extinct

lineages were subsequently replaced by Australian C. atratus
(figure 3). This newly characterized ‘turnover’ event highlights

that extinction can potentially facilitate major phylogeographic

shifts, and parallels similar extinction-colonization events in

costal and marine megafauna [25–27,29,32]. Anthropogenic

impact and predation by introduced mammals no doubt

caused the rapid extinction of C. sumnerensis—indeed, the pres-

ence of Cygnus remains in archaeological midden deposits

attests to their use as food [24]. While there is some evidence

to suggest that ‘vagrant’ C. atratus were present in NZ shortly

after the extinction of C. sumnerensis (AM LB216, NMNZ

S.46032; electronic supplementary material, table S1), ulti-

mately successful ‘replacement’ did not occur until the mid to

late nineteenth century [11,15,54,55]. The marginally reduced

gene diversity detected in modern NZ/CI C. atratus compared

to modern Australian C. atratus suggests only a modest founder

effect (and thus a substantial founding size) relative to the

findings of previous anatid translocation studies [63].

Our findings may raise a dilemma for species conservation

[17], ecosystem re-wilding [64,65], and de-extinction [66]—new

arrivals (or ‘native invaders’ [14]) do not represent the original

endemic fauna, so could be seen as alien and unwanted pests,

especially in anthropogenically modified landscapes. Cygnus
atratus may not be an ecological replacement of C. sumnerensis
despite their close genetic affinity. The public perception of the

newly arrived C. atratus as alien or unwanted is no doubt

influenced by their deliberate introduction, despite additional

evidence of possible self-introduction events by modern

black swans. Alternatively, one could argue for the conserva-

tion of C. atratus given congeneric status to C. sumnerensis
akin to extinction-replacement events on mainland NZ

within Megadyptes and Eudyptula penguins, and Phocarctos
sea lions [25,26,31]. As shown by our study, aDNA can provide

an evidence-based assessment of these often values-driven

philosophical debates.

While numerous studies have revealed anthropogenic

changes to prehistoric ecosystems [1,67], effects on taxa

such as anatids have remained poorly understood, despite

the broad cultural and economic importance of these birds

[8]. The current study reveals sudden extinction events

within an anatid species complex, coinciding with recent

human colonization of an isolated archipelago. This research

highlights the role of anthropogenic processes in rapidly

reshaping island ecosystems [68] and raises new questions

for avian conservation [17], ecosystem re-wilding [64,65],

and de-extinction [66].
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