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Vocal learning from social partners is crucial for the successful development

of communication in a wide range of species. Social interactions organize

attention and enhance motivation to learn species-typical behaviour.

However, the neurobiological mechanisms connecting social motivation

and vocal learning are unknown. Using zebra finches (Taeniopygia guttata), a

ubiquitous model for vocal learning, we show that manipulations of nona-

peptide hormones in the vasopressin family (arginine vasotocin, AVT) early

in development can promote or disrupt both song and social motivation.

Young male zebra finches, like human infants, are socially gregarious and

require interactive feedback from adult tutors to learn mature vocal forms.

To investigate the role of social motivational mechanisms in song learning,

in two studies, we injected hatchling males with AVT or Manning compound

(MC, a nonapeptide receptor antagonist) on days 2–8 post-hatching and

recorded song at maturity. In both studies, MC males produced a worse

match to tutor song than controls. In study 2, which experimentally controlled

for tutor and genetic factors, AVT males also learned song significantly better

compared with controls. Furthermore, song similarity correlated with several

measures of social motivation throughout development. These findings

provide the first evidence that nonapeptides are critical to the development

of vocal learning.
1. Introduction
From the earliest stages, language development in humans is guided by social

interaction. For example, infants’ prelinguistic vocalizations facilitate parental

responses [1], and infants use those reactions to refine their vocal repertoires to

match those of the ambient language [2,3]. Attention to social responses is thus

an important component of vocal learning, and developmental disorders that

affect social motivation, such as autism spectrum disorder (ASD), are associated

with deficits in prelinguistic vocal development [4,5]. What mechanisms link

social motivation and vocal learning? The neuroendocrine processes underlying

affiliative behaviour may also mediate social influences on communicative devel-

opment, but previous studies of vocal learning have not incorporated candidate

neuroendocrine mechanisms. Social influences on vocal development are present

in other vocal learners, such as songbirds [6–9], but specific pathways linking

social interaction to developmental changes in song are not known.

Song learning in birds has become a ubiquitous model for understanding

general principles underlying complex vocal learning across species, including

language learning in humans [10,11]. Zebra finches (Taeniopygia guttata), like

human infants, require interactive feedback from adult tutors to learn mature

vocal forms [12,13]. Zebra finches are highly gregarious and experience a high

degree of temporal overlap in the memorization and acquisition phases of song

learning [14], allowing social processes to influence learning. Social interaction

with a tutor is vital for normal song development [15–17], and young zebra
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finches cannot learn effectively from a passive tape-recorded

song [12,18]. Zebra finches cross-fostered under Bengalese

finches (Lonchura striata) will produce a good copy of their

foster-parent’s song, even if a zebra finch model is available

in a neighbouring cage [19,20]. Non-singing female listeners

are also known to affect song learning in the zebra finch [21].

Males raised with deaf adult females sing more frequently

and develop more atypical songs than those raised with hear-

ing females [17], and blindfolded males raised with a tutor

develop more accurate song when also raised with a female sib-

ling than without one [22]. While both vocal learning and

neuroendocrine mechanisms of social behaviour have been

investigated in the zebra finch, they have never been integrated.

It is well established that nonapeptide hormones in the

vasopressin family—arginine vasopressin (AVP) and oxytocin

(OT) in mammals; arginine vasotocin (AVT) and mesotocin

(MT) in birds, reptiles and amphibians—are involved in

social, motivational, sensory and motor processes, all of

which may support vocal learning from social partners. These

small peptide hormones, which derive from hypothalamic

and smaller accessory cell groups, modulate social behaviours

across taxa and have been identified as mediators of behaviour-

al plasticity and diversity [23–26]. Changes to vocal behaviour

are among the most common and pronounced effects of

nonapeptides. AVT/AVP affects latency, duration and acoustic

features of vocalizations in several vertebrate species, including

fish [27,28], amphibians [29], rodents [30,31] and birds [32–36].

However, the effect of nonapeptides on vocal learning in social

contexts is unknown.

In two separate experiments, we manipulated the nonapep-

tide system of zebra finch chicks on 2–8 days post-hatch (dph)

via daily intracranial (IC) injections of AVT, Manning com-

pound (MC)—a potent antagonist of the AVT/AVP 1a

receptor (V1aR) and weak OT receptor antagonist—or a vehicle

control, and assessed the effect on song learning, specifically

the acoustic match to the social father. The first experiment

was designed to focus on the effect of nonapeptide treatment

on social development and pairing behaviour. Given the

wide-ranging effect of treatment in the first study on a

number of social behaviours, as well as adult song, we then

designed the second experiment to more specifically focus on

vocal learning in a naturalistic social environment. We pre-

dicted that AVT injected birds would show a better acoustic

match to their social father’s (tutor) song in adulthood than

controls, whereas MC males would show a worse match. We

further predicted that MC males would exhibit social behav-

iour deficits throughout development, which would predict

corresponding vocal learning deficits.
2. Methods
(a) Study 1: organizational effects of nonapeptides on

social development and song quality
Zebra finch offspring hatched in six large breeding aviaries

within 40 days were used as experimental subjects. Starting on

day 2 post-hatch through day 8, subjects received daily 2 ml IC

injections of (i) AVT (10 ng), (ii) MC (50 ng) or (iii) 0.9% isotonic

saline vehicle control [37–39]. This time point was chosen to

target an important period of growth and maturation of the

avian medial amygdala and, specifically, the predicted develop-

ment of AVT neurons in both hypothalamic and medial

amygdala structures [40–42]. Injections targeting more specific
brain regions are not possible at this point in development

because this is a major period of neurogenesis in the zebra

finch brain. The forebrain, in particular, is increasing in volume

by several orders of magnitude between days 2 and 8 post-

hatch [40,43]. We followed the IC injection methodology detailed

in [39,44]. Following injection, we verified that chicks exhibited

normal begging behaviour (mouth gaping) in response to tactile

stimulation before returning them to the nest. No behavioural

data were collected from the chicks during the treatment

period or prior to fledging. Both AVT and MC act at multiple

receptor subtypes in the zebra finch brain, including the VT4

(V1aR), VT3 (OT-like) and V2 receptors [38,45].

In order to study song development in a naturalistic social

setting, subjects were cared for by the parents until approxi-

mately 40 days of age, when zebra finches normally become

independent of parental feeding. After 39.8+ 5.4 days, subjects

were housed in same-sex aviaries in a separate room from the

parents. To understand the effect of treatment on social motiv-

ation throughout development, we measured responsiveness to

isolation from the family and subsequent reunion with the

male parent the day after fledging. In addition, we assessed the

changes in affiliation with the parents, unfamiliar males and

unfamiliar females each week throughout juvenile development

using a four-way affiliative preference test (see electronic sup-

plementary material, Methods and materials) [39]. Results from

this cohort showed widespread effects of nonapeptide treatment

on social development in both male and female juveniles and on

pairing behaviour and neural activity in adult males (and were

previously published [39,46]). Here, we present new results,

including song learning analyses and novel correlations, between

measures of social motivation and song learning outcomes.

As adults, males were assigned an unmanipulated, sexually

naive and unpaired female pair partner. We performed all intro-

ductions between the subjects and their partner at 90 days

post-hatch (dph) in a room with no other birds, after which they

were moved into an aviary in a colony room and housed with

the partner for 7 days. A large number of males, particularly in

the two treatment groups, failed to sing during these introduc-

tions. Thus, additional recordings were obtained either by an

observer in the colony room using a highly directional microphone

or from recordings of reunion with the partner following a 1 h sep-

aration at 97 dph. We obtained quality song recordings for final

analysis from a subset of all males (n ¼ 4/11 AVT, n ¼ 8/11 MC

and n ¼ 6/7 control). High-quality songs were recorded using

a similar method from social fathers and all other adult males

in the breeding aviaries for comparisons to juvenile songs. An

experimental timeline for study 1 is shown in figure 1.

Zebra finch males sing a highly stereotyped song, each com-

prised several introductory notes followed by a single repeated

motif with stable number of syllables [17]. To perform acoustic

analysis, a single song motif excluding the introductory notes

was randomly selected from subjects’ recordings. We assessed

song learning using SOUND ANALYSIS PRO 2.0 (SAP) to compare

the acoustic features of juvenile and tutor song [47]. Our analysis

focused primarily on the scores of song similarity, accuracy and

sequential match percentage [48]. The motifs of each juvenile’s

song were compared with the respective tutor motif, using the

same tutor motif for all of a juvenile’s analyses. For all song ana-

lyses, we used linear mixed models to analyse the effect of

treatment, with family included as a random effect. This allowed

us to control for unobserved heterogeneity resulting from indi-

vidual tutor song or family effects.

(b) Study 2: organizational effects of nonapeptides on
vocal learning

In the second experiment, we used a within-family design to con-

trol for tutor and genetic factors which likely influence song



hatc
hing

fle
dging

subsong

0 10

injections four-way affiliative
preference tests

social isolation

test
songrecordings

20 30 40 50 60 70 80 90 100
dph

plastic song
song

crystallization

Figure 1. Experimental timeline for study 1 with developmental events (hatching, fledging and song milestones) above the line and experimental events (injections,
social isolation tests and four-way proximity tests, song recordings) below the line.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20171114

3

learning. The genetic sex of the subjects was determined on the

day of hatching and chicks were then cross-fostered at 2 dph to

create families with three male subjects (one per treatment

group, all unrelated to the social father) and one non-subject

female sibling. We conducted the experiment with four family

cohorts (n ¼ 7 families), each with a total clutch size of four.

One cohort (two families) was excluded due to high aggression

by one adult male resulting in the death of two subjects and

the male’s female partner. An additional MC subject was not

included due to incorrect genetic sexing, resulting in a total

sample size of 14 subjects (n ¼ 5 AVT, n ¼ 4 MC and n ¼ 5

control). Social rearing conditions and nonapeptide manipulations

were identical to those described for study 1. Song was recorded

every 3 days from 50 to 60 dph, every 10 days from 60 dph until

90 dph and on 120 dph for 1 h each day. Acoustic analyses fol-

lowed the procedures of study 1, but additional song recording

time at days 90 and 120 allowed us to obtain 10 motifs from each

juvenile on each recording day. Collecting these additional

motifs allowed us to perform more detailed song analyses, includ-

ing analysis of Wiener entropy, pitch and harmonic structure, as

well as syllable-level descriptions of song copying.
3. Results
(a) Song learning is sensitive to organizational

effects of nonapeptides
(i) Study 1
As predicted, nonapeptide treatment led to significant changes

to males’ crystallized song (figure 2; electronic supplementary

material, video S1). Treatment affected the similarity score

comparing subject and tutor song (x2
2 ¼ 10:9, p ¼ 0.004;

figure 3a). MC males had lower similarity than both control

and AVT males, but the difference between AVT and control

males did not reach significance. We found similar results for

accuracy, a fine-grained measure of local similarity (x2
2 ¼ 14:3,

p ¼ 0.0008; figure 3b). There was no effect of treatment on the

measure of sequential match (x2
2 ¼ 0:8, p ¼ 0.7).

(ii) Study 2
The effects of nonapeptide treatment on song similarity from

study 1 were replicated and strengthened in the second

study, which was designed to assess song development.

Treatment predicted similarity both at 90 dph (x2
2 ¼ 12:72,

p ¼ 0.002; figure 4a) and at 120 dph, when zebra finch song

is fully crystallized (x2
2 ¼ 11:16, p ¼ 0.004; figure 4b). At

both time points, all three treatment groups differed from

each other, with AVT males having the highest similarity,
MC males the lowest and control males intermediate. See

electronic supplementary material, figure S1 for individual

song similarity scores from both studies. Treatment did not

impact either accuracy (90 dph: x2
2 ¼ 1:6, p ¼ 0.4; 120

dph: x2
2 ¼ 1:8, p ¼ 0.4) or sequential match (90 dph: x2

2 ¼ 0:7,

p ¼ 0.7); 120 dph: x2
2 ¼ 1:3, p ¼ 0.5).
(b) Social motivation and attention to social cues
influences song learning

(i) Study 1
Song similarity was found to correlate with a number of

measures of social motivation throughout development.

There was a negative correlation between similarity and the

number of perch hops (activity level) when newly fledged

subjects were isolated from their parents and family

(figure 5a; x2
1 ¼ 5:9, p ¼ 0.015). Increased activity during iso-

lation is indicative of atypical social development; fledgling

zebra finches typically remain silent and motionless when

left alone during parental foraging bouts [49]. In addition,

we found that the time spent in proximity to the parents in

the four-way test of affiliative preferences at day 30 was posi-

tively correlated with similarity score (figure 5b; x2
1 ¼ 5:3, p ¼

0.021). Additionally, increased time spent in proximity to any

other birds (adult males, adult females or parents) at both

days 72 and 86 post-hatch was associated with higher simi-

larity scores (figure 5c,d; day 72, x2
1 ¼ 5:7, p ¼ 0.017; day 79,

x2
1 ¼ 2:6, p ¼ 0.106; day 86, x2

1 ¼ 7:2, p ¼ 0.0074).
(ii) Study 2
Several acoustic features of the songs differed between treat-

ment groups, including amplitude, Weiner entropy, pitch

and harmonic structure (electronic supplementary material,

figure S2 and table S1). However, there was no evidence that

our manipulation caused motor impairment, as acoustic

measures of the songs produced by manipulated birds fell

within normal ranges for zebra finches [50,51]. Additionally,

we explored the possibility that nonapeptide treatment either

accelerated or delayed the time for song to reach its stable

mature form. Treatment groups did not differ in any measure

of the amount of singing during the seven recording sessions

between 50 and 80 dph (i.e. latency to sing, amount of singing,

number of days in which singing occurred or earliest date of

singing). Furthermore, there was no effect of treatment on indi-

vidual variability across song bouts in any treatment group at

day 120 (similarity, x2
2 ¼ 0:37, p ¼ 0.83; accuracy, x2

2 ¼ 0:59,
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p ¼ 0.75), suggesting treatment did not impact the timing of

song crystallization.

Thus, we sought to determine the factors that led to the

differences in similarity across treatments by comparing num-

bers of tutor syllables copied in each group (figure 2). We

found that MC males copied fewer syllables from their tutor
than control and AVT males (55% versus 88% and 87%, respect-

ively) (x2
2 ¼ 6:42, p ¼ 0.04; control–AVT: Z ¼ 0.91, p ¼ 0.76;

control–MC: Z ¼ 5.72, p ¼ 0.03; and AVT–MC: Z ¼ 7.17,

p ¼ 0.02). However, the treatment groups did not differ in

either the similarity or accuracy of individual syllables (simi-

larity, x2
2 ¼ 1:26, p ¼ 0.53; accuracy, x2

2 ¼ 0:18, p ¼ 0.91).
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However, the lower accuracy of the whole song among MC

males in study 1 suggests that the accuracy of individual sylla-

bles may have been affected in this study. Surprisingly, AVT

males also did not differ from controls on any individual

feature of acoustic similarity to the tutor’s song. This indicates

that AVT males’ improved similarity score was a result of addi-

tive effects of multiple slight improvements in Wiener entropy,

spectral continuity, pitch and frequency modulation, from

which the similarity score is calculated [48].
4. Discussion
To our knowledge, these are the first findings demonstrating

the effects of early life manipulations of nonapeptides in a

species that exhibits vocal learning. Our studies provide several

converging lines of evidence suggesting that song learning out-

comes were impacted by treatment-mediated changes to social

motivation during development. First, we found several sig-

nificant correlations between song learning and measures of
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social affiliation to both parents and conspecifics during devel-

opment. Second, MC males only learned portions of their

tutors’ song, but did not differ in the acoustic match of individ-

ual syllables, suggesting that treatment effects were not driven

by generalized effects on motor capacity. MC males copied

fewer tutor syllables and several exhibited abnormal repeated

notes characteristic of isolate-reared song at the beginning of

their core motif [17]. Third, AVT males in study 2 exhibited

improved skill in matching multiple features of their song to

those of their tutors. In study 1, early life nonapeptide treat-

ment was found to alter a whole suite of motivated social

behaviours. MC males exhibited less—and AVT males

more—affiliative interest in their parents throughout develop-

ment [39]. Furthermore, although manipulated birds had

longer latencies to sing to females (electronic supplementary

material, figure S3), AVT males were several orders of magni-

tude more affiliative with their partner than both MC and

control males [46].

Our neuroendocrine manipulation, conducted very early

in development, demonstrated that a relatively non-localized

IC administration of AVT or MC could create long-lasting

effects. As the changes to social and vocal behaviour were

observed over development, long after the injections were

performed, our findings were not due to immediate activa-

tional effects on the AVT system during the first week of

life. Instead, these results suggest that AVT plays an organiz-

ational role in the development of social and vocal circuits.

Receptors for AVT, including V1aR and OTR, are widespread

throughout the male zebra finch brain in adulthood. How-

ever, we know little about the development of the AVT

system in songbirds, and there is limited evidence that the

classic song learning anterior forebrain pathway (AFP) is

directly modulated by AVT [45,52–54]. Thus, our findings

suggest that other nonapeptide-sensitive sensorimotor and

socio-motivational brain regions must be an important part

of the vocal learning pathway [55,56]. Both AVT and V1aR

appear to be involved in both sensory and motor components

of vocal behaviour in adult songbirds. Several structures in

the auditory forebrain, including the caudomedial mesopal-

lium and the caudomedial nidopallium, highly express

V1aR in zebra finches [53]. In addition to limited expression

within RA, two nuclei involved in the motor pathway of

song production contain high densities of AVT receptors:

the intercollicular nucleus (ICo, a region implicated in vocal

control) and nXIIts (the motor nucleus which innervates the

syrinx) in several species [45,52,53,57,58].

In addition, our data suggest that changes to social motiv-

ation impact song learning outcomes, and that nonapeptides

acting in the highly conserved mesolimbic reward and social

behaviour networks provide a plausible neurobiological

mechanism [23,24]. Numerous studies in other species provide

evidence that nonapeptides may play an important role

in experience-dependent development of social behaviour

[59–71]. In zebra finches, AVT-immunoreactive fibres and

V1aR are densely expressed in the ventral tegmental area

(VTA), a region central in reward, motivation and reinforce-

ment learning circuits [45,52,53,72]. AVT cell groups in the

medial amygdala and medial bed nucleus of the stria termina-

lis (BSTm) send substantial projections to VTA. The subsequent

connections between VTA and the nucleus accumbens (NAcc)

form an important part of the mesolimbic reward pathway,

which modulates the behavioural responses to rewarding or

motivating stimuli. Our previous research showed that males
treated with AVT have altered expression of V1aR and immedi-

ate early gene activity in the medial amygdala and BSTm,

suggesting treatment changed the activity of this pathway [46].

The VTA also projects to the song learning system via

dopaminergic input to the striatal Area X, innervating this

nucleus most strongly during socially motivated singing

[73]. Furthermore, the activity of dopaminergic cells in the

VTA during song learning from a social partner is associated

with better learning outcomes [9,74]. Thus, the pathway con-

necting the VTA to the AFP may allow for motivational

modulation of song learning.

These studies provide a plausible neurobiological foun-

dation for links between social motivation and song learning

systems as an explanation for our findings. However, our

data do not allow us to rule out the possibility that alterations

to early vocal or social behaviour, rather than long-term organ-

izational effects of nonapeptides on the brain, resulted in the

observed changes to song development. We targeted our

manipulation to alter the species-typical trajectory of the AVT

system early in development, which probably resulted in wide-

spread changes to multiple brain systems important in social

function, including the hypothalamic–pituitary–adrenal

(HPA) axis, sensorimotor systems and socio-motivational sys-

tems. For example, it is possible that treatment stimulated

vocalization at the time of treatment, facilitating later vocal

motor behaviour. However, zebra finches do not make vocali-

zations at all until at least 3 dph and then they may or may not

vocalize during feeding from 4 to 12 dph [75]. It is also possible

that, by altering interactions between parents and offspring at

the time of treatment, these early life manipulations of the AVT

system could have resulted in a self-reinforcing feedback loop

in parent–offspring social interactions, leading to lifelong

changes to social behaviour. For example, early life manipula-

tions of the HPA axis via corticosterone administration in wild

zebra finch chicks alter begging vocalizations, which in turn

alters parental feeding behaviour [75]. Thus, AVT manipula-

tions may alter early vocalizations or interactions between

parents and offspring in the nest.
5. Conclusion
A major innovation necessary for the evolution of vocal

learning is thought to be the linkage between the neural rep-

resentation of social partners, motivational circuitry and

communicative systems [56]. Consistent with this idea, we pro-

pose that nonapeptide treatment has altered males’ motivation

to attend to socially relevant cues, or has changed the salience of

those cues, during vocal learning. The reduced similarity in MC

males’ song may result from reduced attention or sensitivity to

behavioural feedback from tutors, whereas AVT males were

more motivated to affiliate with and attend to social partners.

Our findings indicate that the developing brains of song-

birds are modulated by nonapeptides in ways that are crucial

for communicative development. Nonapeptides are known to

play a role in diverse physiological functions including the

stress response via regulation of the HPA axis, sensorimotor

processes and social behaviours—all of which may impact the

process of vocal learning. Despite well-known associations

between social deficits and language impairments, this study

is among the first to assess the effect of developmental exposure

to AVT/AVP on a vocal learner of any species. Given the strong

parallels between songbird and human vocal learning at
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multiple levels of organization [76], nonapeptides probably

play a similarly important role in the communicative develop-

ment of humans. Further investigation is urgently needed, as

exogenous administration of nonapeptides is currently being

tested in clinical trials in children diagnosed with ASD, a devel-

opmental disorder associated with deficits in social motivation

[4,5]. Our findings open the door for further work on the neural

and neuroendocrine mechanisms underlying social and

communicative development.
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