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Functional changes in vocal organ morphology and motor control facilitate

the evolution of acoustic signal diversity. Although many rodents produce

vocalizations in a variety of social contexts, few studies have explored the

underlying production mechanisms. Here, we describe mechanisms of audible

and ultrasonic vocalizations (USVs) produced by grasshopper mice (genus

Onychomys). Grasshopper mice are predatory rodents of the desert that

produce both loud, long-distance advertisement calls and USVs in close-

distance mating contexts. Using live-animal recording in normal air and

heliox, laryngeal and vocal tract morphological investigations, and biomecha-

nical modelling, we found that grasshopper mice employ two distinct vocal

production mechanisms. In heliox, changes in higher-harmonic amplitudes

of long-distance calls indicate an airflow-induced tissue vibration mechanism,

whereas changes in fundamental frequency of USVs support a whistle mech-

anism. Vocal membranes and a thin lamina propria aid in the production of

long-distance calls by increasing glottal efficiency and permitting high fre-

quencies, respectively. In addition, tuning of fundamental frequency to the

second resonance of a bell-shaped vocal tract increases call amplitude. Our

findings indicate that grasshopper mice can dynamically adjust motor control

to suit the social context and have novel morphological adaptations that

facilitate long-distance communication.
1. Introduction
Acoustic signals are shaped by social selection [1,2] and constrained by the

signalling environment [3–6] or ecological adaptation [7,8] in a broad range

of taxa. Mechanistically, acoustic divergence is determined by several variables

in senders: morphological adaptations of the sound source (larynx) and/or

vocal tract filter (pharynx, nasal and oral cavities), changes in motor control

of the source and filter, and selection on driving force (lung pressure). Identify-

ing the relative contributions of each component to acoustic variation is critical

to understanding the evolution of vocal communication systems.

Most terrestrial mammals produce sounds by airflow-induced vibrations of

vocal folds [9]. By contrast, rodents produce ultrasonic vocalizations (USVs;

greater than 20 kHz) in close-distance mating contexts via an aerodynamic whis-

tle mechanism whereby tightly constricted larynges serve as an orifice to pass

expired air [10–12]. However, our understanding of vocal functional morphology

in rodents is limited to laboratory mice (Mus musculus) and rats (Rattus domesticus;
[10–15]). The great diversity of rodent mating and social systems make the

clade an excellent system to examine production mechanisms underlying signal

diversification [16].

Cricetid rodents in the subfamily Neotominae [17] commonly produce

audible (less than 20 kHz) vocalizations [18,19]. In particular, grasshopper mice

(Onychomys) are predatory rodents of western North America known for their

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2017.1158&domain=pdf&date_stamp=2017-07-19
mailto:bret.pasch@nau.edu
http://dx.doi.org/10.6084/m9.figshare.c.3820792
http://dx.doi.org/10.6084/m9.figshare.c.3820792
http://orcid.org/
http://orcid.org/0000-0001-9168-6770


(a) (b)

(c) (d)

(e) (f)

50

25

0fr
eq

ue
nc

y 
(k

H
z)

 le
ve

l

air
2 s

heliox

Figure 1. Long-distance calls of Onychomys in normal air and heliox. Each panel (a – f ) shows two calls from each of six mice in air (a,c,e) and heliox (b,d,f ). Sound
is depicted as a waveform (a – d) and spectrogram (e,f ). The first call in ( f ) is preceded by a long-distance call of another animal in the same room.
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‘wolf’s howl in miniature’ [20]. Both males and females pro-

duce long-distance advertisement vocalizations used in mate

attraction and territorial advertisement ([21,22]; figure 1).

Animals often assume an upright posture and open their

mouths widely to generate a remarkably loud call (electronic

supplementary material, videos S1 and S2; [22]). Grasshopper

mice also produce USVs in close-distance mating bouts ([18];

herein), allowing exploration into how sound production

mechanisms vary in distinct social contexts.

In this study, we used heliox experiments, laryngeal and

vocal tract morphological investigations, and biomechanical

modelling to investigate how grasshopper mice produce

spectacular long-distance calls. If vocalizations are produced

via a whistle mechanism, fundamental frequency (F0) is pre-

dicted to increase under heliox atmosphere [23]. Conversely,

if sound is produced via airflow-induced tissue vibration,

then F0 is predicted to remain constant, but amplitudes of

higher harmonics will change relative to F0 [24]. The morpho-

logical study identified adaptations that could facilitate

long-distance call production. However, since vocal production

is based on complex coupled mechanisms between airflow,

vocal fold tissue properties and supraglottal structures, compu-

tational simulations are required [25]. Thus, our morphological

findings were used to develop computational models of vocal

fold movements to inform the physical mechanisms underlying

call production.
2. Material and methods
(a) Animals
Grasshopper mice are predatory rodents that inhabit deserts,

grasslands and prairies of the western United States and

northern Mexico. We captured northern (Onychomys leucogaster),
southern (Onychomys torridus) and Chihuahuan grasshopper

mouse (Onychomys arenicola) in an area of sympatry near Tank

Mountain (31848’46.9000 N 108848’49.9000 W) in the Animas Valley,

New Mexico, USA [26,27]. Mice were transferred to animal facilities

at Northern Arizona University, Flagstaff, AZ, USA, maintained on

a 14 L : 10 D cycle (21+28C) and provided rodent chow and water

ad libitum. Animals used in the experiments were F1 or F2 from

same-species pairs or opposite-species pairs (hybrids). A subset of

animals was transferred to Midwestern University, Glendale, AZ,

USA, for heliox experiments and morphological investigations.

(b) Acoustic recording
We recorded long-distance calls and close-distance mating vocali-

zations in normal air and heliox atmosphere. Individual male mice

(for spontaneous long-distance vocalizations) or a male–female

pair (for close-distance USVs) were placed inside a custom-made

cage consisting of 10 mm mesh inside a larger standard rat cage.

The cage was equipped with bedding, a running wheel, food

and water gel. Heliox gas (80% He, 20% O2) was injected into

the rat cage at flow rates between 20 and 40 l min21 through a

12 mm wide tube placed on the cage floor. Small holes along
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the tube facilitated uniform distribution of gas. In light gas, F0 of a

whistle increases in proportion to the amount of gas present.

Predicted effects of light gas concentrations were estimated with

a small whistle placed at the floor of the cage and connected exter-

nally by a silastic tube. The whistle was blown and recorded at

regular intervals in order to monitor the heliox concentration.

The ratio of the frequency of the whistle in air and in heliox allowed

an estimation of the expected effect for any given heliox con-

centration. We also recorded long-distance calls in air within

individual male home cages to control for the introduction of

animals into a novel environment.

Long-distance calls from seven males produced in normal air

and in heliox atmosphere were analysed for total duration, F0 at

mid-call and sound pressure level (decibel). Short-distance

mating USVs from eight males were analysed for mean F0.

All measurements were performed using PRAAT sound analy-

sis software (v. 5.3.80 for Windows; www.praat.org). Reported

means of maximum sound pressure level values are not relative to

a common standard and were only compared within individuals

between treatments.

(c) Histology
Four male mice (two O. torridus and two O arenicola) were eutha-

nized with isoflurane and then transcardially perfused. Larynges

were dissected and fixed in 10% buffered formalin phosphate

(SF100-4; Fisher Scientific) for one week. Vocal folds were inves-

tigated for the presence of collagen, elastin and hyaluronan, all of

which play an important role in vocal fold biomechanics [28–30].

Mid-membraneous coronal sections (5 mm thick) were stained

with haematoxylin–eosin for a general overview, Masson’s

Trichrome for collagen fibre stain, Elastica–Van Gieson for elastic

fibre stain and alcian blue (AB) stain (pH 2.5) for mucopolysac-

charides and glycosaminoglycans. We also performed a

digestion procedure with bovine testicular hyaluronidase (2 h

at 378C) in combination with a subsequent AB stain. Incuba-

tion with bovine testicular hyaluronidase increases specificity

for various acid mucosubstances in the AB stain. If hyaluronan

is a major component of the mucosubstances, AB stain fully

degrades. Sections were scanned with an Aperio CS 2 slide

scanner and processed with IMAGESCOPE software (v. 8.2.5.1263;

Aperio Tech.).

(d) Computational simulation of the sound production
mechanism

We expanded our previous biomechanical model on voice pro-

duction [31] to investigate how morphological features affect the

sound production mechanism and why long-distance calls reach

high sound amplitude. The larynx model is based on a two-mass

model of the vocal folds [32,33]. Acoustic characteristics of a

flared vocal tract were estimated by using the transmission line

model [34]. Details of the simulations are summarized in the

electronic supplementary material.
3. Results
(a) Acoustic recordings
Long-distance calls were flat, stable vocalizations lasting

between 0.8 and 1.4 s in air. Figure 1 shows examples of one

call recorded in normal air and one in heliox for six animals.

Long-distance calls recorded in heliox were slightly higher in

F0 (515+85 Hz; paired t-test, t6 ¼ 26.03, p ¼ 0.001) but much

lower (26.52+0.6 kHz; paired t-test, t6 ¼ 10.72, p , 0.0001)

than predicted in the presence of He, indicating an airflow-

induced tissue vibration mechanism (figure 2a). Interestingly,
calls produced in heliox were slightly shorter in duration

(20.27+0.03 s; paired t-test, t6 ¼ 8.82, p , 0.0001; figure 2b),

potentially indicating auditory-feedback-mediated vocal

control [35].

Next, we tested how different filter properties of the oro-

pharyngeal space affected sound characteristics in normal air

and in heliox. Visual inspection of spectrograms suggested

that upper harmonics in heliox were more prominent relative

to F0 (figure 1). We measured the amplitude of 2F0 and 3F0 in

normal air and in heliox relative to F0 at the center of the

long-distance call. The data are summarized in table 1 and

in figure 2c,d. In all animals, amplitude of 2F0 and 3F0 relative

to F0 were significantly higher in heliox than in normal

air (2F0: paired t-test, t6 ¼ 8.9, p < 0.0001; 3F0: paired t-test,

t6 ¼ 9.9, p < 0.0001; figure 2c). The mean relative amplitude

of 2F0 ranged from 218.7 to 230.7 dB in normal air com-

pared with 22.8 to 216.7 dB in heliox (figure 2c; table 1).

The mean relative amplitude of 3F0 ranged from 242.5 to

253.7 dB in normal air compared with 214.7 to 230 dB in

heliox (figure 2d; table 1).

Mating vocalizations consisted of frequency downsweeps,

trills, chevrons and a low-amplitude version of the long-

distance call (figure 3). A non-receptive female also produced

agonistic barks or ‘chits’ [21]. The F0 of downsweeps produced

during the mating bouts increased to 69.2+7.0 kHz in heliox

from 48.3+2.6 kHz in air (paired t-test, t7 ¼ 8.9, p , 0.0001;

figure 3). The F0 of trills and chevrons, which were produced

less often, also increased in heliox compared with air

(trills, air: 49.9+4.6 kHz, heliox: 70.8+11.7 kHz; paired

t-test, t5 ¼ 4.9, p ¼ 0.004; chevron, air: 46.7+4.5 kHz, heliox:

64.2+7.0 kHz; paired t-test, t4 ¼ 8.9, p . 0.001; figure 3). The

results suggest that USVs are produced by an aerodynamic

whistle mechanism, whereby airflow passes through the

glottis, enters the supraglottal space, and impinges on a down-

stream structure [10,12,13]. By contrast, the low-amplitude

version of the long-distance call and agonistic barks did not

shift in frequency (figure 3), suggesting an airflow-induced

tissue vibration mechanism [9]. In summary, animals appear

capable of switching between two production mechanisms

within the same social interaction.
(b) Laryngeal histology and vocal tract geometry
In order to better understand the vocal production mechan-

ism in grasshopper mice, we investigated the anatomy of

the laryngeal sound source and geometry of the vocal tract

filter. Analysis of coronal sections from four grasshopper

mice larynges revealed that vocal folds are composed of

thyroarytenoid muscle, lamina propria and epithelium

(figure 4). In grasshopper mice, the lamina propria is com-

posed of a 19.7 mm (s.d. ¼ 1.5 mm) thin layer of protein

fibres, which are shaped into vocal membranes at the vibrat-

ing edge (figure 4a–e). Vocal membranes were symmetrical

on the left and right vocal fold. Their length was measured

by adding 5 mm coronal sections. The mean dorsoventral

length of vocal membranes is 570 mm (s.d. ¼ 90 mm)

(O. arenicola: 660 and 610 mm; O. torridus: 480 and 510 mm).

Histological preparations can cause some shrinkage of

soft tissue (approx. 20% in laryngeal tissue according to

Kimura et al. [36]), making a mean vocal membrane length

of approximately 600 mm plausible.

The lamina propria consists of collagen fibres (figure 4f ), a

thin layer of elastin fibres below the epithelium (figure 4g),

http://www.praat.org
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Figure 2. Acoustic properties of Onychomys long-distance calls produced in normal air (‘air 1’, in home cage; ‘air 2’ in experimental cage) and heliox. (a) Centroid
fundamental frequency (F0) of long-distance calls in air and heliox. Fundamental frequency was slightly higher in heliox but remained far below the predicted
frequency estimated from the frequency response of a whistle (‘expected in heliox’; see Material and methods). (b) Duration of long-distance calls produced in
air and heliox. Relative level (dB) of the second (c) and third (d ) harmonics of long-distance calls in air and heliox. Error bars indicate mean+ s.d. for individual
mice. Home cage recordings were not available for TNK03A.

Table 1. Fundamental frequency (F0) and dB levels of the second (2F0) and third (3F0) harmonic relative to F0 in normal air and in heliox.

mouse
ID

body mass
(g)

F0 (kHz) of
long-distance
call in air

F0 (kHz) of
long-distance
call in heliox

2F0 (dB)
in air

2F0 (dB)
in heliox

3F0 (dB)
in air

3F0 (dB)
in heliox

T09-01 23.3 14.4+ 0.3 14.8+ 0.2 227.6+ 3.8 211.9+ 4.1 253.7+ 7.3 222.2+ 1.5

T014-01 27.3 14.1 14.8+ 0.1 221.8 213.0+ 1.7 242.5 218.8+ 1.3

T07-03 36.1 12.2+ 0.3 12.6+ 0.2 221.4+ 6.6 22.8+ 3.5 250.0+ 7.8 214.7+ 6.6

TANK03-A 47.9 11.6+ 0.1 11.9+ 0.1 228.5+ 6.2 216.7+ 1.4 249.9+ 6.3 230.0+ 5.8

AT02-03 28.9 12.8 13.3+ 0.4 218.7 25.2+ 2.6 247.6 231.5+ 6.4

TA02-03 29.8 12.7 13.6+ 0.05 230.7 211.3+ 1.0 249.9 227.9+ 6.2

L012-01 32.4 12.5+ 0.2 12.8+ 0.1 229.7+ 7.1 27.8+ 1.3 250.6+ 4 224.1+ 0.8
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and hyaluronan (figure 4h,i). The removal of hyaluronan by

hyaluronidase digestion with subsequent AB staining indi-

cated that much of the positive stain in the vocal membrane

was attributed to hyaluronan (figure 4h,i).
We studied the geometry of oral and pharyngeal cavity

in additional male specimens of O. leucogaster (n ¼ 2) and

O. arenicola (n ¼ 1) by dissecting the thorax and injecting

dental cast into the trachea and upper respiratory tract. Neck,

head and mouth were positioned to resemble live animals

with erect posture and wide mouth gape during long-distance
vocalization (figure 5). Once the cast was solidified, specimens

were deep-frozen and sectioned in the sagittal plane (figure 5).

The total length of the oral and pharyngeal cavity measured

between vocal folds and upper incisive was 20.3+1.1 mm

(mean+ s.d.; n ¼ 3). The first segment of the vocal tract (here-

after ‘segment 1’) was narrow and tube-like (1 mm diameter)

and measured 7.0+1.0 mm (mean+ s.d.) in length. The

second segment (segment 2) resembled a flared tube, with

a diameter of 1 mm at the base and a 5 mm diameter at its

opening, and a length of 13 mm.
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(c) Computational simulation of the sound production
mechanism

(i) The sound source
The two-mass model of vocal fold vibration (figure 6a) was

simulated for grasshopper mice and house mice (Mus; see

the electronic supplementary material for details) to determine

the phonation threshold pressure (PTP) and F0 with varying

Young’s moduli. The lamina propria of a house mouse vocal

fold is 80–100 mm thick mediolaterally and does not possess

vocal membranes [37]. F0 at PTP is illustrated in a two-

dimensional graph, wherein vocal production is realized only

above the threshold line (figure 6b). In house mice, PTPs

between 0.4 and 1.0 kPa are required to produce 1–5 kHz

vocalizations. Interestingly, thinner lamina propria allows
grasshopper mice to produce much higher frequency

(10–17 kHz) calls with similar PTPs (0.5–1.2 kPa). The pres-

ence of vocal membranes increases glottal efficiency by

reducing the PTP required to initiate phonation (figure 6b).

(ii) The vocal tract filter
A 20 mm long vocal tract (segment 1 þ segment 2) shaped

like a uniform tube with a 1 mm inner diameter generates

resonances at 4.3 and approximately 13 kHz (red line in

figure 6c). If segment 2 is modelled as a flared tube with a

1 mm diameter at the transition between segment 1 and 2,

and an increasing diameter towards the open end, the first

resonance increases to 8 kHz and the second remains close

to 13 kHz (figure 6c). The simulation also suggests that the

flared mouth opening radiates approximately 30 dB more

sound power at the second formant than a uniform tube

(figure 6c).
4. Discussion
Conspicuous acoustic displays are often matched by striking

morphological innovations underlying vocal production [1].

As a consequence of their wide-ranging predatory lifestyle,

grasshopper mice have evolved long-distance calls to advertise

their presence over large distances. We found that long-distance

call production is aided by laryngeal and supralaryngeal adap-

tations, including the presence of vocal membranes. In addition,

we found that grasshopper mice alternate between an airflow-

induced tissue vibration mechanism and a whistle mechanism

to produce audible and USVs, respectively. We discuss our

findings in relation to dynamic changes in motor control of

vocal production necessary to produce distinct call types. We

then consider functional adaptations of the vocal apparatus

that promote energetic efficiency and social factors driving

the evolution of long-distance signalling.

(a) Vocal motor control of distinct production
mechanisms

Although production of audible vocalizations in rodents is

well-documented in aversive contexts (Rattus; [38]; pine

voles, Microtus pinetorum: [39]; Mongolian gerbil, Meriones
unguiculatus: [40]; house mice: [41]) and more recently

described in prosocial contexts ([18,19]; herein), the underlying

production mechanisms are unknown. Our heliox experiments

indicate that loud long-distance calls, softer pure tones and

agonistic barks are all produced by an airflow-induced tissue

vibration mechanism, whereas USVs are produced by a whistle

mechanism. Alternation between two production mechanisms,

in some cases within the same mating bout, probably necessi-

tates recruitment of distinct motor programmes. For example,

frequency patterns of rat USVs precisely match laryngeal

muscle activation, requiring call-type specific motor pro-

grammes [14]. Furthermore, USVs are generated with lower

subglottal pressures (2 kPa) than audible vocalizations pro-

duced by airflow-induced vibration of the vocal folds (5 kPa)

in rats [11]. At the very least, grasshopper mice appear to dyna-

mically adjust motor control of subglottal pressure to produce

discrete call types. Further experimentation is needed to assess

the boundaries and degrees to which laryngeal motor patterns

are conserved or recombined to generate acoustic diversity

[42,43].
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(b) Adaptations for high vocal intensity facilitating
long-distance communication

In general, lung pressure and morphological features within

and above the larynx mediate the intensity of laryngeal
vocal signals. Although we do not have empirical measures

of lung pressure in grasshopper mice, we found two intralar-

yngeal adaptations that probably promote loud, high-

frequency calls. First, grasshopper mouse vocal folds are

composed of thin lamina propria (approx. 20 mm) compared
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l2 ¼ 13 mm; r1 ¼ 1 mm for all experiments; r2 is flared and was altered
from 1 to 5 mm. (Online version in colour.)
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with similarly sized (20–40 g) house mice (80–100 mm; [37]).

Thin lamina propria enables faster tissue vibration, thus per-

mitting higher F0. Indeed, the highest F0 for spontaneously

produced audible calls in Mus (6 kHz; [44]) is much lower

than grasshopper mice (11–14 kHz; table 1). Assuming iden-

tical vocal fold tissue density and viscoelasticity between Mus
and Onychomys, lamina propria thickness probably accounts

for the observed differences in F0. The degree to which

lamina propria size contributes to species differences in call

F0 within Onychomys awaits further investigation.

Second, grasshopper mice possess vocal membranes, or

thin narrow upward extensions on the medial surface of the

vocal fold. Vocal membranes have evolved independently in

at least four mammalian orders (bats: [45]; non-human

primates: [46]; cats: [47]; rodents: this study) and are associated

with production of high F0 at high intensities. Similar to

Mergell et al. [48], our model simulations confirm that vocal

membranes increase glottal efficiency by lowering phonation

threshold pressures, particularly at high frequencies [49,50].

Airborne acoustic signals are notorious for being energetically

inefficient owing to heat loss and weak coupling between

the sound source and the environment [51]. Thus, vocal

membranes appear to be a common solution to producing

high-frequency sounds with less effort, adding to other laryn-

geal innovations that facilitate specific acoustic objectives

(e.g. fibrous mass in frogs: [52,53]; vocal fold composition in

songbirds: [54]).

Finally, grasshopper mice possess supralaryngeal adap-

tations that facilitate loud calls. Grasshopper mice assume a

conspicuous posture whereby the head is raised and the

mouth is widely opened to produce a call that can purportedly

travel in excess of 100 m [55]. Empirical and modelling results

suggest that F0 of long-distance calls is tuned to the second res-

onance of the vocal tract (formant tuning), and that the bell-

shaped mouth opening increases vocal intensity. The contri-

bution of the mouth opening theoretically amplifies the signal

by close to 30 dB, in accordance with empirical measures of

upright calls (�95 dB sound pressure level re: 20 mPa at

33 cm) and softer mating calls produced while prone with

little mouth opening (�52 dB; B. Pasch 2017, unpublished
data). Such formant tuning is a strategy to adjust one of the

vocal tract’s lower resonances to match one of the lower harmo-

nics. Songbirds, for example, tune the first vocal tract resonance

to F0 during their songs by elaborate movements of the orophar-

yngeal–oesophageal cavity [8,14]. Similarly, human singers

adjust the second or third resonance to the second or third har-

monic while singing high notes [56,57]. Anatomical

specializations of the head and neck associated with a
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predatory, carnivorous lifestyle may confer grasshopper mice

with greater flexibility in mouth opening [58,59].

Simulation of the mouse’s vocal tract transfer function also

suggests increased radiation efficiency for frequencies between

8 and 15 kHz caused by a flare-shaped mouth. The amplifying

effect of a bell-shaped mouth opening is based on improved

coupling between the sound source and air, a phenomenon

well-documented in horn acoustics, loudspeaker design [60],

and mouth opening and lip configuration of singing humans

[61]. The flared resonance chamber transfers higher frequencies

better than lower frequencies [60]. A similar effect occurs in

crickets [62], frogs [63] and bats [64] that exploit bell-shaped

structures in the environment to improve sound propagation.

Finer scale recordings coupled with detailed modelling efforts

are needed to better quantify radiation efficiency.

In summary, our findings suggest that optimization of vocal

fold morphology is associated with adjustments to vocal tract

resonance to facilitate long-distance signalling. Comparative

analyses across a wider range of vocal rodents of different

body sizes and vocal tract lengths will clarify the relative impor-

tance of peripheral mechanisms in the evolution of acoustic

displays. We predict that specializations for long-distance voca-

lizations are associated with morphological adaptations in the

vocal apparatus to increase intensity, while USVs used in

mating favour complexity arising from central control of breath-

ing and laryngeal movements [65].

(c) Evolution of production mechanisms for long-
distance communication in muroid rodents

Although USV production in close-distance social contexts is

ubiquitous among muroid rodents [66–69], lower frequency

audible vocalizations are common in at least one subfamily

(Neotominae; [18,70]). What processes catalysed the evolution

of such vocalizations? One hypothesis posits that USV

production confers immunity from acousticallyorienting preda-

tors [71,72], and evolutionary release from predators permitted

production of lower frequencies. However, many mammalian

predators are sensitive to frequencies of more than 50 kHz

[73,74], and reptilian and avian predators can hear up to 5 and

10 kHz, respectively [75]. Thus, while ultrasonic signalling

probably confers senders a relatively private channel owing to

the high directionality, scattering and attenuation [13,76,77],
factors other than predation probably contribute to the origin

of long-distance audible vocalizations [78].

Advertisement vocalizations often function to mediate

both intra- and intersexual interactions, implicating social

structure and spatial organization as critical factors in the evol-

ution of long-distance calls [1]. In non-human primates, the

evolution of loud calls is associated with resource and/or

mate defence and mate attraction [79]. Moreover, call F0 and

the active space (carrying distance) of vocalizations are

strongly associated with home range size [79,80]. Indeed,

home ranges of grasshopper mice are five to nine times

larger than predicted by body mass [81,82]. Wide spacing

among individuals, either owing to resource availability

and/or strong territoriality, necessitates a mechanism to facili-

tate detection of mates and/or competitors over large

distances. Under this scenario, selection acted on small vocal

organs to produce high intensity signals that propagate far dis-

tances. Indeed, biomechanical models suggest that sound

pressure level increases with F0 at rates up to 10 dB per

octave provided that lung pressure is raised proportionally

[61,83]. Comparative analyses that explore the rich diversity

of rodent social and spatial organization in relation to sound

production mechanisms will help clarify the adaptations

enabling this extraordinary mode of communication.
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