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Abstract

Cardiovascular disease is a recognized contributor to the pathogenesis of Alzheimer’s disease 

(AD). Heart failure (HF) is a cardiovascular subtype that can be used to model the contribution of 

cardiovascular disease to AD. Neuroimaging research indicates that HF patients exhibit a diverse 

range of structural brain alterations and epidemiological studies suggest HF may be an important 

risk factor for AD. The neural alterations observed in HF may overlap with those observed in AD 

and contribute to increased risk of AD in HF patients. To examine this possibility, we reviewed 

structural MRI studies in persons with HF. We examined subcortical brain regions affected in the 

early stages of AD (medial temporal lobes), as well as cortical alterations that typically occur in 

the later stages of AD. Our review indicates that patients with HF exhibit greater neural atrophy 

and white matter microstructural alterations of nearly every region of the Papez circuit (e.g., 

hippocampus, cingulate gyrus, thalamus, mammillary bodies, and fornix), as well-significant 

alterations in cortical and cerebellar regions. Based on animal research and past work in AD 

patients, the mechanisms for structural brain changes in HF may stem from reductions in cerebral 

blood flow subsequent to cardiac deficiency. This review supports the hypothesis that HF may 

contribute to AD risk via widespread structural brain changes, including many of the same regions 

affected by AD. Case-controlled prospective neuroimaging studies with long-term follow-ups are 

needed to clarify the risk of AD in HF and elucidate the neural underpinnings of AD risk in HF.
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Introduction

Heart failure (HF) affects more than 5 million American adults with 825,000 new cases 

diagnosed each year [1]. HF prevalence rates are estimated to increase by 46 % over 
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approximately the next 15 years due to the rising rates of cardiovascular disease risk factors 

that precede HF (e.g., hypertension, diabetes, obesity) [1]. HF is also most common in older 

adults, and thus, HF occurrence in this cohort will most certainly rise in the upcoming years 

in light of the forecasted estimates that 20 % of the US populations will be >65 years by 

2030. This pattern is troubling, as HF is associated with elevated mortality risk, recurrent 

hospital readmissions, and decreased functional independence [1–3]. Although the 

prevalence and prognostic outcomes of HF vary across HF subtypes (e.g., left vs. right; 

congestive HF), extant studies do not consistently classify study participants by HF 

subtypes. Therefore, in the current review, the term HF is used broadly, encompassing 

multiple distinct forms of cardiac failure.

HF in older adults exacerbates the risk of neurological conditions that accompany aging, 

including vascular dementia [4] and Alzheimer’s disease (AD) [5]. Vascular dementia is 

primarily characterized by cognitive decline in a stepwise manner, a temporal relationship 

between cerebrovascular disease and cognitive impairment, and neuroimaging and clinical 

evidence of cerebrovascular disease. The neurocognitive profile of vascular dementia is 

typically characterized by impairments in processing speed and executive function, as well 

as memory, although the specific domains associated with CVD ultimately depend on the 

brain regions impacted by disease-related neuropathology (i.e., single or multiple large 

cortical infarcts, small vessel ischemic damage, or lacunar infarcts). In contrast, AD has a 

progressive, gradual onset. Impairment in episodic memory (rapid forgetting of novel 

information) is the hallmark symptom of AD, along with difficulties in expressive language, 

with subsequent decline in executive functions and visuospatial abilities as AD progresses. 

Pure AD is believed to involve accumulation and poor clearance of amyloid-beta and 

neurofibrillary tangles in the absence of cerebrovascular insult. Nevertheless, 20–40 % of 

dementia cases in older adults are considered mixed AD and vascular dementia (e.g., 

combination of ischemic lesions and AD pathology) [6].

Given the cardiovascular nature of HF, it is not surprising that HF is indeed a well-

established risk factor for neurological insult that underpins vascular dementia such as stroke 

and micro- and macrovascular diseases. Yet, substantial evidence shows that sporadic AD is 

often preceded by cardiovascular disease [7] and there is evidence that suggests 

cardiovascular disease may trigger AD-specific pathology. For example, cardiovascular 

disease and related risk factors predict plasma Abeta40 levels [8], as well as increased 

amyloid-beta burden, in the brain [9, 10]. HF, in particular, is one cardiovascular subtype 

that has been used to model the contribution of cardiovascular disease to AD risk, and 

emerging evidence suggests that HF is an independent risk factor for AD [5]. For instance, 

in a large population-based study (>6000 participants), relative to older adults without 

baseline HF, those with baseline HF incidence exhibited nearly a twofold increased risk of 

developing probable AD, as defined by gradual onset, progressive worsening, and lack of 

any other causes of dementia [5]. Prior to the onset of dementia, nearly 80 % of patients with 

symptomatic HF also demonstrate a pattern of mild forms of cognitive impairment [11] that 

is similar to what is often observed in patients with AD. Patients with chronic HF exhibit 

performance reductions on tasks tapping episodic memory and executive functions relative 

to healthy and medical controls [12]. Furthermore, progressive worsening is also observed 

within the domains of episodic memory, as well as executive functions in HF patients [13–
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16]. Taken together, there is reason to believe that HF increases risk of AD because: (1) HF 

has been shown to increase risk of AD in the absence of any other causes of dementia, and 

(2) HF patients exhibit progressive cognitive decline, including within the domain of 

episodic memory, which is considered a hallmark of AD (as opposed to a stepwise pattern of 

cognitive decline seen in vascular dementia) [17].

Neural underpinnings of Alzheimer’s disease: role of cerebral hypoperfusion

AD risk and related cognitive impairments in HF may in part stem from the negative and 

independent physiological effects of cardiac dysfunction on the brain, particularly of those 

regions implicated in AD. The neural underpinnings of AD involve adverse structural brain 

changes to the medial temporal lobe (MTL), in addition to other subcortical and cortical 

structural changes [18–20]. Functional brain alterations are also associated with AD [21, 

22], which may contribute to the observed structural changes in AD. There is some evidence 

in the animal literature to support this notion. For instance, induction of chronic cerebral 

hypoperfusion (via bilateral placements on the carotid arteries in mice) leads to white matter 

changes in the short term with longer-term changes including hippocampal atrophy and 

neuronal death [23]. The histological changes also resulted in behavioral impairments, such 

as deficits in working and reference memory (memory for constant, stable information).

While ischemic-producing reductions in cerebral perfusion (e.g., stroke) often underpin 

vascular dementia, cerebral blood flow also declines with increasing age and such gradual 

disruptions in cerebral hemodynamics appear to play a critical role in the pathogenesis of 

AD [7]. For example, AD patients exhibit global cerebral blood flow reductions that worsens 

with disease progression relative to controls [24, 25]. Regional cerebral blood flow has also 

been identified as a clinical predictor of the development of AD, as decreases in MTL 

perfusion (hippocampus and amygdala) predict conversion from questionable AD to AD 

[26]. Although some controversy remains regarding whether cerebral hypoperfusion is a 

cause or consequence of AD [27], growing research suggests that cerebral hypoperfusion is 

at least one critical contributor to AD-related structural brain changes [25, 27, 28]. 

Disturbances in hemodynamics can lead to glucose and oxygen deprivation, which are 

critical for normal brain cell function. Alterations of glucose and oxygen can in turn lead to 

a cascade of biochemical disturbances that ultimately lead to metabolic and tissue damage, 

including alterations to hallmark brain regions of AD such as the hippocampus—a region 

highly sensitive to hypoxic episodes [25, 29]. These biochemical changes can trigger 

neurodegeneration and cognitive decline in AD.

Cerebral hypoperfusion in heart failure

Based on these findings, it is plausible that factors that negatively impact cerebral perfusion 

in older adults may increase AD risk. The critically attained threshold of cerebral 

hypoperfusion (‘CATCH’) theory states that aging in conjunction with vascular risk factors 

leads to chronic cerebral hypoperfusion that eventually falls below a critical threshold and 

triggers glucose and oxygen deprivation [30]. HF appears to be one putative factor that may 

cause brain perfusion to drop below this critical threshold to increase risk of AD. Reduced 

cardiac pumping efficiency in patients with HF leads to decreased forward outflow of blood 

from the heart resulting in a decline in perfusion of blood to the rest of the body, including 
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the brain. Cerebral blood flow reductions from cardiac inadequacy are further compounded 

by the negative effects of comorbid medical and clinical conditions (e.g., hypertension, 

diabetes, sleep apnea, and depression) on the integrity and plasticity of the arterial structure.

In patients with HF, there is evidence for reduced cerebral blood flow to bilateral 

hippocampus, parahippocampal gyrus, and right posterior cingulate cortex [31, 32], regions 

often associated with AD. There is also evidence of reduced global brain perfusion in HF, 

which has been observed in AD. For instance, patients with chronic HF had up to 31 % 

reduction in resting cerebral blood flow relative to age-matched healthy controls [33]. 

Another study showed that patients with mild-to-moderate HF had reduced blood flow 

velocity of the middle cerebral artery relative to healthy controls, 47.3 versus 56.1 cm/s, 

respectively [34].

Objective of the current review

The negative impact of HF on cerebral hemodynamics may yield structural brain changes 

that contribute to the increased risk of AD in older adults with HF. Here, we reviewed 

structural neuroimaging studies of HF patients to assess whether brain changes that are 

evident in HF overlap with brain alterations observed in AD. First, we review the 

neuroimaging literature in HF with a focus on subcortical brain regions affected in the early 

stages of AD [35–37] such as the MTL (hippocampus, parahippocampal gyrus, and 

amygdala), as well as other structures within the Papez circuit that are closely connected to 

the medial temporal lobes (fornix, thalamus, mammillary bodies, and the cingulate gyrus). 

We then review cortical alterations, which are typically affected in the later stages of AD, in 

patients with HF. Finally, we discuss the possible mechanisms of brain alterations in HF, 

particularly as it relates to AD, and propose directions for future research.

Literature review criteria

To identify relevant articles, a literature search was performed on PubMed using key words 

such as “heart failure,” “neuroimaging,” “MRI,” “DTI,” “brain,” “white mater 

hyperintensities,” or “Alzheimer’s disease.” Reference sections of articles were also 

examined to identify additional neuroimaging studies in HF. Study inclusion criteria 

included a sample mean left ventricular ejection fraction of <40 % and human HF 

participants with a mean age ≥50 years. In the review of structural neuroimaging studies in 

HF, only those that employed healthy and/or noncardiac controls were included in order to 

determine whether abnormal brain changes in HF extend beyond those associated with the 

normative aging process. For most studies, HF participants were excluded for a past history 

of stroke or infarct observed on participants’ brain image, with two exceptions. One study 

[38] had one HF patient with a history of stroke, but it did not result in residual motor 

symptoms. Another study examined global hippocampal volume, but also examined 

hippocampal infarcts [39]. Overall, there was minimal evidence for stroke in the 

neuroimaging studies reviewed here, indicating that noted brain alterations are unlikely 

attributable to processes most commonly associated with vascular dementia (e.g., large 

cortical or subcortical infarcts). All studies included participants with systolic dysfunction, 

and most samples were participants with stable HF. Some studies also involved participants 

with congestive HF, and while clinical outcomes (including cognitive) for this subgroup may 
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be distinct from clinically stable HF patients, the mechanisms and effects of reduced cardiac 

output on the brain likely remain similar. We provide the specific characteristics of the HF 

samples when available.

Neuroimaging in heart failure

A variety of structural neuroimaging methods have been implemented to examine brain 

alterations associated with HF. Studies have most commonly used MRI T1-weighted 

imaging to examine volume and gray matter density, with additional studies using fluid 

attention inversion recovery (FLAIR), proton density, MRI T2 relaxometry, and diffusion 

tensor imaging (Table 1). A combination of image processing approaches has been 

employed to detect brain changes on MRI scans in HF, including voxel-based morphometry, 

manual tracing of region of interests, and semiquantitative visual assessment methods (e.g., 

Scheltens rating scale). MR sequence type and analysis approach are described for each 

study.

Papez circuit alterations in HF

Medial temporal lobes—Neuroimaging studies in patients with HF demonstrate 

structural alterations within the MTL that are similar to what is observed in AD [40] (Fig. 

1a–d). In a relatively large study, Vogels et al. [41] used a visual rating scale of 0 to 4 (higher 

scores representative of more atrophy) to quantify global MTL atrophy in 58 patients with 

stable HF and 42 age-matched healthy controls. After adjustment for demographic (e.g., age, 

gender) and medical variables (e.g., hypertension, diabetes), greater MTL atrophy was 

observed in HF participants [mean (SD) = 1.1 (0.9)] relative to healthy controls [mean (SD) 

= 0.4 (0.6)]. This study provided some of the first evidence that HF was associated with 

decline in a region commonly associated with memory function and implicated in AD.

To further clarify these findings, subsequent studies of HF patients have examined the 

structural integrity of specific MTL structures, which are differentially affected by aging 

[42] and AD [43]. Pan et al. [39] implemented visual assessment rating procedures to 

examine hippocampal atrophy in stable HF patients. The visual assessment grading scale 

consisted of 0 = no atrophy to 3 = severe atrophy. HF patients exhibited greater right, but not 

left-sided, hippocampal atrophy relative to healthy controls. Specifically, patients with HF 

exhibited an average right hippocampal grade of 1.53 (SD = 0.94), while healthy controls 

had an average grade of 0.80 (SD = 0.86). Another study using voxel-based T2 relaxometry 

also demonstrated higher T2 values (representative of cell body/membrane damage) in the 

hippocampus in persons with stable HF relative to age-matched controls [44]. In addition to 

the above cross-sectional findings, a recent longitudinal study used voxel-based 

morphometry and revealed greater gray matter loss of the left and right parahippocampal 

gyri over a two-year period in HF patients compared to their healthy counterparts using T1-

weighted MRI [45]. Regional volumetric differences in the hippocampus and surrounding 

regions in patients with HF relative to controls are presented in Fig. 1a–c.

Structural alterations in HF patients have also been observed in critical MTL white matter 

pathways. For instance, using diffusion tensor imaging, Kumar et al. [46] observed increased 

axial diffusivity, considered to represent axonal injury, in white matter pathways such as the 
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fornix and cingulum bundle in hemodynamically stable patients with HF (Fig. 1c) relative to 

healthy controls.

Cingulate gyrus—Patients with HF also exhibit abnormalities of limbic lobe structures 

such as the cingulate gyrus. For instance, greater atrophy of the anterior, subgenu, and 

posterior cingulate in stable HF patients compared to healthy control participants has been 

observed in voxel-based T2-relaxometry studies [38, 44]. Consistent with these findings, the 

anterior cingulate gyrus was one of two subcortical structures in which volume loss was 

observed in a sample of 35 patients with stable HF [47]. There is also evidence for greater 

atrophy of the left and right posterior cingulate over a two-year period when compared to 

healthy controls [45]. Diffusion tensor imaging studies further demonstrate reduced white 

matter integrity to the cingulate cortices in persons with HF relative to age-matched controls 

[46].

Mammillary bodies and fornix—Kumar et al. [48] conducted region of interest analyses 

on limbic system structures such as the mammillary bodies and the fornix. Mammillary 

body volumes were quantified using manual tracing procedures, and voxel counts were used 

to calculate fornix cross-sectional areas. Relative to healthy controls, medically treated HF 

patients exhibited smaller volume of both the left and right mammillary bodies and fornix 

cross-sectional areas; these effects remained significant after age, gender, and total 

intracranial volume were taken into account. Using a 0 (normal) to 3 (mostly decreased) 

visual grading scale, Pan et al. [39] also revealed smaller right mammillary body volume in 

HF [mean (SD) grade = 1.18 (1.13)] versus healthy controls [mean (SD) grade = 0.52 

(0.74)]. In addition, higher T2 relaxation values have been documented in the output fibers 

of the fornix to the septum [44].

Thalamus—There is recent evidence of structural decline in thalamic nuclei in persons 

with HF. Woo et al. [44] employed voxel-based relaxometry in stable HF patients and 

healthy controls and found HF persons exhibited higher T2 relaxation values of an area 

extending from the septum to the anterior thalamus (as well as to the hypothalamus and 

cortical areas that influence hypothalamic activity). Patients with HF have also been shown 

to exhibit both higher axial and radial diffusivity of the bilateral anterior thalamus [46]. In 

addition to the anterior thalamus, smaller volume of the right and left thalamus and the right 

dorsal midbrain and into the posterior and right medial thalamus has also been observed in 

HF patients versus healthy controls [38, 45].

Summary—Relative to control participants, persons with HF exhibit structural alterations 

of nearly every region of the Papez circuit. MTL and related limbic system structures have 

integral roles in episodic memory abilities [49–51] and have been proposed to serve as 

diagnostic markers of early AD [52, 53]. These findings raise the possibility that HF may 

increase AD risk via insult to subcortical brain structures that are typically affected in the 

early stages of AD.
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Cortical and cerebellar alterations in HF

As shown in Fig. 2, patients with HF exhibit patterns of cortical alterations that overlap with 

cortical alterations observed in AD [54], including lateral temporal and parietal regions. 

Next, we review cortical and cerebellar changes in HF.

Frontal lobe—Almeida et al. [47] observed that when compared to healthy controls, 

atrophy was particularly prevalent in the right inferior frontal gyrus, left and middle superior 

frontal gyri, the right middle frontal gyrus, and the precentral frontal gyri of HF patients. 

Voxel-based morphometry analytic approaches have also demonstrated smaller volumes in 

HF patients compared to healthy individuals of the right caudal orbitofrontal cortex and the 

ventral and superior lateral frontal cortex [38]. Likewise, left frontal cortical atrophy, as 

examined by visual assessment, has also been found in HF patients relative to controls [39]. 

MRI T2-relaxometry studies have provided evidence for left and right atrophy of the ventral 

medial prefrontal cortices in this population [44], and myelin damage (i.e., increased radial 

diffusivity) has also been observed in the bilateral frontal regions in persons with HF when 

compared to controls [46].

Temporal lobe—There is widespread volume loss of the temporal lobe cortices in HF. 

Neuroimaging studies that utilized voxel-based morphometry have revealed specific gray 

matter loss in the following temporal lobe regions among patients with HF: the right 

superior temporal lobe gyrus, right middle temporal lobe gyrus, and the inferior temporal 

lobe cortical areas that surround the hippocampus and extend into the parahippocampus and 

fusiform gyrus [38, 47]. A longitudinal study also suggests the possibility of accelerated 

atrophy of the left superior and middle temporal gyri [45]. Myelin damage has also been 

observed in the right superior temporal white matter of HF patients relative to control 

subjects [46].

Parietal lobe—There is bilateral volume loss of the parietal and lateral parietal-occipital 

cortex and regions involving the left precuneus in patients with HF compared to their healthy 

peers [38, 47]. A study examining brain changes over a two-year time period in HF and 

healthy individuals also found greater gray matter loss in the right inferior parietal lobule in 

HF patients [45]. Reductions in white matter microstructure are also evident in the bilateral 

parietal lobes among HF patients relative to healthy controls [46].

Occipital lobe—To date, there is limited evidence for structural alterations of the occipital 

lobe in HF patients. One study has reported reduced white matter microstructure in bilateral 

occipital regions in HF patients relative to control participants [46].

Cerebellum—Cerebellum volume is decreased in HF [38], and T2 relaxation values are 

higher in the cerebellum among HF patients relative to controls [44]. Regional volume 

reductions of the cerebellum have been found among the bilateral quadrangular lobules, 

right fastigial, and deep cerebellar nuclei [38]. Reductions in white matter integrity have 

been reported in right cerebellar culmen and quadrangular lobule, left pyramid of the vermis 

and inferior cerebellar peduncle, and caudal cerebellar cortex [46].
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Summary—HF patients exhibit reductions in cortical volume and white matter 

microstructure throughout the cortex, although few studies have reported volumetric 

reductions in occipital regions. The specific overlap of neural alterations observed in AD and 

those observed in HF is difficult to assess quantitatively due to the fact that most extant HF 

studies do not report findings using a specific neuroanatomical template space (e.g., MNI 

atlas) [55]. Nevertheless, qualitatively, it appears that many of the same neural regions 

associated with AD are also impacted by HF. It is important to note that reduced cortical 

volume and white matter alterations are not necessarily specific to AD. In fact, because 

cortical changes occur in the later stages of AD and the neuroimaging studies reviewed here 

included nondemented persons, the cortical alterations may reflect non-AD pathology. As 

such, the additive cortical insult compounded with subcortical alterations to regions sensitive 

to AD pathology among patients with HF indeed raises the possibility of a mixed dementia 

etiology.

Discussion

Persons with HF have long been known to be at increased risk of vascular dementia. 

Cardiovascular disease is also a recognized contributor to AD pathogenesis, and emerging 

research links HF in particular with increased AD risk. Recent studies have employed a 

range of structural neuroimaging modalities to clarify the mechanisms for poor neurological 

outcomes in HF. Findings from these studies show that HF patients exhibit brain alterations 

in many of the same brain regions impacted by AD, including volume reductions and 

reduced white matter integrity of Papez circuit structures, as well as other subcortical and 

cortical regions. Several aspects of these findings warrant discussion.

HF increases risk of vascular dementia via ischemic injury (i.e., single or multiple large 

cortical infarcts, lacunar infarcts, small vessel disease). It is possible that cerebrovascular 

disease in HF superimposed on preexisting AD risk factors (e.g., older age, genetics) leads 

to earlier onset of AD pathology relative to those without HF. This cascade of events would 

be consistent with a mixed dementia etiology. Alternatively, it is also plausible that the 

pathophysiological effects of age-related declines in cerebral perfusion on HF independently 

increase AD risk through mechanisms not yet known, but may involve disruptions in the 

blood–brain barrier. For example, reduced cerebral blood flow has been shown to alter 

cerebral beta amyloid metabolism, a hallmark AD pathology, in HF-induced mice [56]. 

Therefore, alterations in amyloid metabolism in HF may indeed stem from the negative 

impact of cerebral hypoperfusion on the blood–brain barrier and subsequent dysfunction in 

amyloid-beta clearance that ultimately triggers a cascade of molecular events (i.e., amyloid 

cascade hypothesis of AD) and leads to AD-related neurodegeneration (see Erickson and 

Banks [57] for a review of blood–brain barrier disruption and AD).

Studies in humans and rodents support the notion that cerebral hypoperfusion is one 

important contributor to structural brain changes in HF. Moreover, cross-sectional and 

longitudinal work shows that cerebral hypoperfusion in HF predicts poorer cognitive 

performance, including within the domain of episodic memory [58–60]. Cerebral 

hypoperfusion in HF is likely a manifestation of cardiac deficiency and reduced forward 

blood outflow. However, HF is also typically accompanied by vascular comorbidities such as 
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hypertension, type 2 diabetes mellitus, obesity, and sleep apnea. These conditions can also 

negatively impact cerebral blood flow in HF not only via suppressed cardiac function, but 

also through micro- and macrovascular insults. Taken together, the extant evidence for 

cerebral hemodynamic disturbances in HF supports the notion that AD risk and accelerated 

cognitive declines in HF may involve gradual deterioration in cerebral perfusion levels.

The impact of cerebral blood flow on the brain in HF remains poorly understood due to the 

reliance on indirect assessment of blood perfusion (i.e., transcranial Doppler), rather than the 

direct assessment of cerebral blood flow using techniques such as arterial spin labeling MRI, 

a cost-effective and noninvasive assessment of brain perfusion that allows for regional 

examination of cerebral blood flow [25, 61]. Regional examination of cerebral blood flow in 

HF patients may clarify whether perfusion is reduced among brain regions affected in 

patients with AD (e.g., MTL) [25, 61]. The lack of functional MRI studies in HF is also 

noteworthy, as functional MRI is a useful biomarker for AD [62]. Functional MRI detects 

alterations in blood oxygenation, which is associated with neural activity [63], and is often 

used to detect activation in response to a stimulus [64] or network connectivity [62]. To 

better understand the neural correlates of memory impairment in AD, functional MRI has 

been used to examine alterations in neural activation in regions typically associated with 

AD, such as the hippocampus and parahippocampal gyrus, as well as brain regions not 

historically associated with AD (e.g., the precuneus) [22]. Although functional MRI has 

been used to examine the neural substrates of autonomic nervous system impairments 

among small samples of HF patients [65, 66], no studies of HF patients have examined 

functional MRI activity associated with task performance (e.g., during episodic memory 

encoding or retrieval [67, 68] or large-scale patterns of fMRI connectivity) [50]. Alterations 

of functional MRI activity in HF seem likely given that a recent functional MRI study 

demonstrated that cardiovascular disease risk factors (e.g., hypertension, diabetes) are 

associated with task-related hyperactivation of the inferior parietal lobe. The functional MRI 

activity was correlated with worse performance on a task of executive functions [69] and 

interpreted as a reduction in neural efficiency.

Lastly, it is possible that cerebral hypoperfusion may lead to structural brain alterations, 

which in turn lead to cognitive impairment and increased risk of AD in HF patients [70, 71]. 

However, no single study in humans has confirmed each of these links. If confirmed, such 

findings may have significant therapeutic implications. In particular, structured exercise is a 

highly recommended noninvasive behavioral treatment recommendation for the management 

of HF that improves vascular health. Such vascular benefits may subsequently lead to 

enhanced cerebral perfusion, thereby minimizing reductions in neural integrity, and 

positively impact cognition and attenuate dementia risk. Indeed, past work demonstrates 

changes in cerebral blood flow velocity and increased cognitive function following cardiac 

rehabilitation in older adults with cardiovascular disease [72]. More broadly, exercise and 

aerobic fitness are positively associated with cognition, including episodic memory [73, 74] 

and brain structure and function in healthy older adults [75, 76]. These effects have been 

observed in brain regions affected by AD that are also negatively impacted in HF, including 

the MTLs [77–80]. These findings may in part be attributable to cerebral blood flow, as 

exercise improves cerebral perfusion [72] and increased cerebral blood flow to the 

hippocampus has been linked with better memory performance [81]. Exercise is also 
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associated with an array of other metabolic, micro- and macrovascular, neurohormonal, and 

brain-based (e.g., neurogenesis, synaptogenesis) benefits [82, 83] that likely promote 

neurocognitive function. These findings suggest that exercise may attenuate the negative 

neural and cognitive decline observed in HF.

Conclusions and future directions

The neuropathological staging of AD initially begins with MTL pathology (e.g., 

hippocampus) that gradually progresses to isocortical regions [36]. Cardiovascular disease is 

a well-known contributor to AD pathogenesis, and evidence in HF supports this claim. 

Neuroimaging studies show that patients with HF exhibit regional reductions in brain 

volume and white matter microstructure in those same regions typically affected in the early 

stages of AD, such as the Papez circuit (e.g., hippocampus, cingulate gyrus, thalamus, 

mammillary bodies, and fornix). Persons with HF also exhibit structural alterations to 

cortical regions affected in the later stages of AD. The overlap in structural brain alterations 

between HF and AD suggests that HF may contribute to AD risk via additive pathology to 

the same regions affected in AD and/or alterations in brain regions not typically associated 

with AD.

Currently, the specific etiology of adverse neurological outcomes in HF is unclear. While we 

provide empirical evidence that supports the association between HF and increased AD risk, 

it remains unclear whether dementia in HF is a manifestation of AD or a cerebrovascular 

etiology, or the more likely possibility of a mixed dementia. To better differentiate between 

these etiological considerations, future studies that implement amyloid imaging are needed 

to delineate the etiological underpinnings between HF and AD risk and determine whether 

the heightened AD risk occurs through mechanisms other than cerebrovascular disease, such 

as increased amyloid burden. Prospective multimodal studies employing arterial spin 

labeling MRI, structural imaging (T1-weighted or diffusion tensor imaging), and amyloid 

imaging may further elucidate the associations among HF, cerebral perfusion, structural 

brain indices, and AD-related neuropathology [84]. For instance, such a study could 

potentially identify the temporal cascade of neural alterations associated with HF, that is, 

whether reductions in cerebral blood flow precede increases in amyloid burden or alterations 

in neural structure (reductions in volume or white matter integrity), or whether the onset of 

structural alterations and amyloid burden occurs at different time points. A better 

understanding of the impact of HF on the brain may clarify whether cognitive impairments 

and dementia risk in this population can be attenuated via interventions (e.g., exercise) that 

positively impact brain structure and function.

Limitations

Some of the extant studies are limited by small sample sizes and use of visual assessment 

semiquantitative rating scales. The extent and impact of white matter signal abnormalities on 

cognitive outcomes in persons with HF are unclear due to the lack of FLAIR imaging. 

Increased white matter hyperintensities increase risk of AD [85], and there is a strong 

inverse association between total and subcortical white matter hyperintensities with HF 

severity [40]. HF patients are at elevated risk of white matter hyperintensities in light of 
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cerebral perfusion alterations and increased prevalence of medical conditions (e.g., obesity, 

diabetes) that affect white matter integrity [40, 86]. White matter hyperintensities may thus 

represent an important contributor to AD pathogenesis in HF possibly via impairments in 

neuronal function and contributions to cortical thinning [70, 85], which is a sensitive marker 

of cognitive decline and AD progression [87, 88]. Lastly, the above review is not completely 

exhaustive of brain alterations in HF, and extant research demonstrates cortical and 

subcortical alterations to brain regions that regulate autonomic functions (e.g., thalamus, 

hypothalamus, insular cortex), motor abilities, and higher cognitive functions (e.g., basal 

ganglia). Alterations to these brain regions may also contribute to AD risk in HF via 

nonconventional and/or poorly understood mechanisms.
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Fig. 1. 
Comparison of MTL atrophy in patients with HF and AD. a Rostral coronal view of greater 

gray matter loss in the inferior temporal lobe of the parahippocampal and fusiform gyri in 

HF patients relative to controls (adapted from Figure 2 published in Journal of Applied 

Physiology, 95, Woo MA, Macey PM, Fonarow GC, Hamilton MA, Harper RM, Regional 

brain gray matter loss in heart failure, 677–684, 2003). b Higher T2 relaxation values 

observed in the posterior hippocampus of HF patients relative to controls (adapted from 

Figure 4 published in Journal of Cardiac Failure, 15, Woo, MA, Kumar R, Macey PM, 

Fonarow GC, Harper RM, Brain injury in autonomic, emotional, and cognitive regulatory 

areas in patients with heart failure, 214–223, 2009). c Increase axial diffusivity of the ventral 

cingulum bundle and hippocampus in HF patients as compared to controls (adapted from 

Figure 2 published in Journal of the Neurological Sciences, 307, Kumar R, Woo MA, Macey 

RM, Fonarow GC, Hamilton MA, Harper RM, Brain axonal and myelin evaluation in heart 

failure, 106–113, 2011). d Gray matter (a) and white matter (b) loss in patients with AD 

relative to controls (adapted from Figure 2 published in Journal of Alzheimer’s Disease, 19, 

Canu E, McLaren DG, Fitzgerald ME et al., Microstructural diffusion changes are 

independent of macrostructural volume loss in moderate to severe Alzheimer’s disease, 963–

976, 2010, with permission from IOS press)
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Fig. 2. 
Comparison of cortical atrophy in patients with HF and AD. a HF patients exhibit greater 

cortical atrophy relative to controls (adapted from Figure 6 published in Journal of Applied 

Physiology, 95, Woo MA, Macey PM, Fonarow GC, Hamilton MA, Harper RM, Regional 

brain gray matter loss in heart failure, 677–684, 2003). b Cortical atrophy in AD (adapted 

from Figure 4 published in Journal of Neuroscience, 23, Thompson PM, Hayashi KM, de 

Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell 

DM, Toga AW, Dynamics of Gray Matter Loss in Alzheimer’s Disease, 994–1005, 2003)
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