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Summary

In humans, a complex interaction between the host immune system and

commensal microbiota is required to maintain gut homeostasis. In this

symbiotic relationship, the microbiota provides carbohydrate fermentation

and digestion, vitamin synthesis and gut-associated lymphoid tissue devel-

opment, as well as preventing colonization by pathobionts, whereas the

host offers a niche and nutrients for the survival of the microbiota. How-

ever, when this mutualistic relationship is compromised and an altered

interaction between immune cells and microorganisms occurs, the gut

microbiota may cause or contribute to the establishment of infectious dis-

eases and trigger autoimmune diseases. Researchers have made efforts to

clarify the role of the microbiota in autoimmune disease development and

find new therapeutic approaches to treat immune-mediated diseases.

However, the exact mechanisms involved in the dysbiosis and breakdown

of the gut epithelial barrier are currently unknown. Here, we provide a

general overview of studies describing gut microbiota perturbations in

animal models of autoimmune diseases, such as type 1 diabetes, multiple

sclerosis, rheumatoid arthritis and systemic lupus erythematosus. More-

over, we include the main studies concerning dysbiosis in humans and a

critical discussion of the existing data on the use of probiotics in these

autoimmune diseases.
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Introduction

The skin surface and mucous membranes in vertebrates are

colonized by a high number of microorganisms, mainly

bacteria, representing commensal microbiota.1–3 In

humans, approximately 30–400 trillion microorganisms

(3 9 1013 to 40 9 1013) colonize the healthy human

intestinal tract, and the vast majority reside in the distal

portion.4–6 The gut bacteria have co-evolved in a symbiotic

relationship with the human host, and their composition

depends on immunogenetic and environmental factors.7,8

From birth, gut microbiota colonization depends on

several factors, including age, mode of delivery (vaginal

or caesarean section), mothers’ microbiota composition,

early use of antibiotics and feeding regimen (breastfeeding

or formula).9,10 The mode of delivery and mode of feed-

ing in the first years of life strongly influence the estab-

lishment of gut microbiota composition and may affect

the development of autoimmune diseases.10 Additionally,

caesarean delivery and formula use have been associated

with higher incidence of infectious diseases and increased

susceptibility to allergic diseases.10,11

In humans, the intestinal microbiota tends to stabilize

and reaches greater diversity at approximately 3 years of

age, and these microorganisms collaborate with many

host physiological processes; in turn, the host contributes

Abbreviations: CIA, collagen-induced arthritic mice; CNS, central nervous system; DAS28, disease activity score calculator for
rheumatoid arthritis; EAE, experimental autoimmune encephalomyelitis; GF, germ-free mice; IFN-c, interferon-c; IL-17, inter-
leukin-17; MS, multiple sclerosis; NOD, non-obese diabetic mice; NZB, New Zealand black mice; RA, rheumatoid arthritis;
RRMS, relapsing–remitting multiple sclerosis; SFB, segmented filamentous bacteria; SLE, systemic lupus erythematosus; T1D,
type 1 diabetes; Th1, T helper type 1; TLR, Toll-like receptors; Treg, regulatory T
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to their growth and survival by offering a niche, sub-

strates and nutrients.10–13 The main contributions of the

microbiota to the host include carbohydrate fermentation

and digestion, vitamin synthesis, gut-associated lymphoid

tissue development, the polarization of specific immune

responses, and the prevention of colonization by patho-

bionts.14–18

The two predominant bacterial phyla in the healthy

human gut are Firmicutes and Bacteroidetes. Also present

are Proteobacteria, Actinobacteria, Fusobacteria and Ver-

rucomicrobia phyla but to a lesser extent.19,20 The most

prevalent genera in the adult human gut are represented

by Gram-positive bacteria, such as Clostridium, Bifidobac-

terium, Lactobacillus, Ruminococcus, Streptococcus, and

Gram-negative bacteria, such as Bacteroides and Escheri-

chia.21

A complex interaction between the host immune sys-

tem and the microbiota is required to maintain gut

homeostasis.14–18 However, when this mutualistic rela-

tionship is compromised, with alterations in bacterial

function and diversity, a process called dysbiosis, the gut

microbiota may cause or contribute to the establishment

of infectious diseases and to autoimmune disease devel-

opment.22

For several decades, researchers interested in enteroin-

fections and gut-associated diseases have studied the gut

microbiota. It has been evident that the microbiota plays

an important role in immune homeostasis in the gut

mucosa, and researchers are extensively investigating

microbiota–immune system interactions and their role in

the susceptibility or resistance to gut infections and in the

triggering of autoimmune, allergic and chronic inflamma-

tory diseases.23

Gut microbiota and immune system

Studies in germ-free (GF) mice showed that the gut

microbiota is required for normal immune system matu-

ration, including gut-associated lymphoid tissue develop-

ment, which plays important roles in tolerance induction

to autoantigens in the gut mucosa.24–26 These GF mice

showed decreased numbers of CD4+ T cells, secreting IgA

plasma cells and antimicrobial peptides, a thinner mucus

layer and Peyer’s patches.23 The spleen and lymph nodes

are abnormally developed in GF mice, with decreased

numbers of B and T cells in the germinal centres and

parafollicular region, respectively.27,28

In mice and humans, during equilibrium, intestinal den-

dritic cells and macrophages are hyporesponsive to patho-

gen-associated molecular patterns.1,29 However, when

epithelial barrier breakdown occurs, the pattern recogni-

tion receptors, which are present in innate immune cells,

recognize gut microbiota or pathobionts through toll-like

receptors, NOD-like receptors, soluble retinoic acid-indu-

cible gene I, or melanoma differentiation-associated

protein 5, which triggers an inflammatory cascade, pro-

inflammatory cytokine secretion, and the activation of

adaptive immune responses.29,30

Gut microbiota and T cells

The resident microbiota regulates the development of

specific subsets of lymphocytes in the gut. T helper type

17 (Th17) lymphocytes are essential in defence against

bacterial and fungal infections and play roles in autoim-

mune disease development by producing pro-inflamma-

tory cytokines, such as interleukin-17 (IL-17) and IL-22,

and by the recruitment of neutrophils.31 Th17 cells accu-

mulate in the intestine, suggesting that intrinsic processes

in the gut mucosa could regulate the development of

these cells. Moreover, studies have shown that the num-

ber of Th17 cells are reduced in GF mice or antibiotic-

treated adult mice, and it was observed that some partic-

ular species of Clostridia, called segmented filamentous

bacteria (SFB), promote the generation of Th17 cells in

the gut32–36 (Fig. 1).

Regulatory T (Treg) cells aggregate in the intestine and

help with the maintenance of homeostasis.37,38 Treg cell

depletion induces an abnormal expansion of CD4+ T cells

expressing T-cell receptors against commensal microbiota,

resulting in gut inflammation.1 Studies have shown that

the Treg cell numbers were reduced in the lamina propria

of GF mice and particular species of Clostridium are

involved in the Treg induction in the gut.38,39 In addi-

tion, the polysaccharide A, which is secreted by Bac-

teroides fragilis, can induce CD4+ T cells into Foxp3+

Treg cells, which secretes IL-10, an anti-inflammatory

cytokine, and mediates mucosal tolerance40 (Fig. 1).

Gut microbiota and B cells

An important relationship exists between intestinal micro-

biota and the humoral immune responses. Secreted IgA

protects us against enteroinfections and coats commensal

bacteria by inhibiting their binding to the intestinal epithe-

lium and the lamina propria invasion.41 Secreted IgA has

barrier functions and shapes the microbiota composition

through antibody-mediated immunoselection.27

B cells differentiate into plasma cells by T-helper-

dependent or T-helper-independent mechanisms. In

Peyer’s patches, T-helper-dependent responses occur with

isotype switching, somatic hypermutation and affinity

maturation, which induce the differentiation of IgA-

secreting plasma cells with a high affinity for antigens.41

T-helper-independent responses are mainly mediated by

B1 cells that differentiate into polyclonal IgA-secreting

plasma cells with a low affinity for antigens.27 The T-

helper-dependent and T-helper-independent immune

responses in the gut have been extensively reviewed in the

literature.41–46
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The gut microbiota also induces the expression of fac-

tors involved in the induction of IgA+ B cells, such as B-

cell activating factor and a proliferation-inducing ligand

(known as APRIL) in dendritic cells in the lamina pro-

pria.46 Therefore, the microbiota instructs dendritic cells

and follicular dendritic cells to induce IgA-secreting

plasma cells, and in turn, IgA regulates the composition

and function of the gut microbiota (Fig. 1).46 To confirm

the essential role of this mutualistic relationship, studies

have shown that GF mice and mice deficient in activa-

tion-induced cytidine deaminase have decreased plasma

cells and alterations in the gut microbiota composition,

respectively.42–46

Gut microbiota and autoimmune diseases

Evidence from animal models has implied the direct

involvement of gut microbiota in disease development,

and some intestinal microbiota are associated with

autoimmune diseases.24–26

Intestinal dysbiosis observed in autoimmune diseases is

associated with decreased bacterial function and diversity,

impaired gut barrier function, increased inflammation

and decreased Treg cells in the gut.47,48 Additionally, the

hypotheses proposed to link intestinal dysbiosis with

autoimmune diseases include molecular mimicry, bystan-

der T-cell activation, and the amplification of autoimmu-

nity by pro-inflammatory milieu, which is elicited by

altered gut microbiota.49 Finally, a more recent hypothesis

proposed by Lerner et al. implicated the post-translational

modification of luminal proteins, promoted by enzymes

from dysbiotic microbiota, which modify substrates in a

different way from that performed under eubiotic condi-

tions.49 The defective post-translational modification of

luminal proteins may induce neo-epitope generation that

could become immunogenic and may induce systemic

autoimmunity and trigger autoimmune diseases.49

Here, we describe several reports concerning alterations

in the intestinal microbiota in some autoimmune diseases,

such as type 1 diabetes, multiple sclerosis, rheumatoid

arthritis and systemic lupus erythematosus. Additionally,

we provide a critical discussion concerning the data from

the use of probiotics in autoimmune diseases.

Type 1 diabetes

Type 1 diabetes (T1D) is a chronic autoimmune disease

characterized by the immune destruction of insulin-
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Figure 1. A schematic representation of the interaction between commensal microbiota and the immune system. Under eubiosis, there are

microbiota diversity and immune homeostasis in the gut mucosa. Commensal microorganisms instruct dendritic cells to induce IgA-secreting cell

differentiation, and in turn, IgA regulates the composition of the gut microbiota. During dysbiosis, there are decreased diversity in commensal

microbiota and deregulated interactions between immune cells and these microorganisms. Some specific bacteria, such as Bacteroides fragilis,

induce regulatory T cell differentiation and the secretion of anti-inflammatory cytokines, whereas segmented filamentous bacteria (SFB) promote

T helper type 17 (Th17) cell differentiation and the secretion of pro-inflammatory cytokines, which play roles in several autoimmune diseases.
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secreting pancreatic b-cells, resulting in exogenous insulin

dependence to control blood glucose levels.50 The

aetiopathogenesis may involve the interaction of predis-

posing HLA genes and environmental factors, such as

viral enteroinfections and intestinal dysbiosis.51 According

to the International Diabetes Federation, 79 100 children

under the age of 15 will develop T1D annually world-

wide.52

The role of the gut microbiota in T1D aetiology has

been the subject of research over the last decade to clarify

its role in disease development and determine preventive

approaches, such as diet manipulation and probiotic

administration.51

One of the first studies in non-obese diabetic mice

(NOD) showed that the composition of the intestinal

microbiota modulates innate and adaptive immune func-

tions and enhances the disease in MyD88�/� NOD mice.

However, protection against diabetes in these mice is

abrogated by the administration of antibiotics and GF

conditions, suggesting that commensal bacteria may be

important to reduce disease susceptibility in these mice.53

Additionally, Emani et al. reported that NOD mice trea-

ted with a conventional diet presented impaired tolerance

to gut microbes, an altered barrier permeability, an

increased number of peritoneum macrophages and a

decreased abundance of Firmicutes.54

An imbalance among Th1, Th17 and Treg cell differen-

tiation in the gut was reported in GF NOD mice and is

associated with insulitis and pancreas inflammation.55

Interestingly, the SFB, which are associated with the exac-

erbation of the Th17 responses in other autoimmune dis-

eases, are involved in protection against diabetes in NOD

mice.56

In biobreeding diabetes-prone rats, increased percent-

ages of Bacteroides, Ruminococcus and Eubacterium reads

in stool samples were observed, and there was a higher

abundance of Bifidobacterium and Lactobacillus in stool

samples from biobreeding diabetes-resistant rats.57 The

altered gut microbiota, such as the increased abundance

of Bacteroidetes, could promote increased intestinal per-

meability and precede the clinical onset of T1D in animal

models and pre-diabetic and diabetic patients.58–61 In

fact, the role of the gut microbiota in T1D has been sug-

gested since 1987, and the first study in humans was per-

formed in Finland by using stool samples from four T1D

children and four matched controls.62 They observed that

children with T1D had decreased microbiota diversity

compared with controls and had a reduction in the Fir-

micutes : Bacteroidetes ratio62,63 (Fig. 2). Additionally,

recent studies showed that the composition of the intesti-

nal microbiota is altered in children with pre-diabetes

with genetic susceptibility and autoantibodies against

b-cells.64–66

Studies from the De Goffau group showed that chil-

dren with autoantibodies against b-cells exhibit an

increased number of Bacteroidetes and decreased abun-

dance of lactate and butyrate-producing bacteria in fae-

ces.63,65 In agreement with this study, Brown et al.

showed a decreased number of mucin-degrading and

butyrate-producing bacteria in T1D patients compared

with healthy controls.67 Butyrate has anti-inflammatory

activity, induces Treg cell differentiation in the gut and

enhances the gut barrier via tight junctions.64

Endesfelder et al. did not observe significant differences

in gut microbiota diversity in 22 children with positive-

islet autoantibodies compared with 22 children with nega-

tive ones.68 Additionally, children with T1D have

decreased numbers of lactate-producing bacteria, such as

Bifidobacterium longum, subspecies infantis. Bifidobacteria

members promote carbohydrate fermentation, generate

acetate and lactate, release polyphenols and linoleic acids,

and have antioxidant activities.68 They also play a role in

gut-associated lymphoid tissue development maturation

during early life and guarantee protection against patho-

bionts by bacteriocin release, causing decreases in the

luminal pH and the inhibition of adhesion to epithelial

cells.69 In addition, Bifidobacteria species synthesize B-

group vitamins, which can induce Treg cells in the gut

mucosa70,71 (Fig. 2).

Murri et al. evaluated the gut microbiota in a cohort of

16 children with T1D and 16 controls and showed an

increased abundance of Clostridium, Bacteroides and Veil-

lonella in patients compared with controls. Furthermore,

the Firmicutes : Bacteroidetes ratio and levels of Lacto-

bacillus, Bifidobacterium and Prevotella were decreased in

these patients.72

Davis-Richardson et al. evaluated stool samples isolated

from 29 patients with seroconverted T1D disease and 47

healthy controls and observed a high abundance of Bac-

teroides dorei and Bacteroides vulgatus in seroconverted

patients with T1D 8 months before b-cell autoimmunity.

These data suggest that early dysbiosis may be relevant to

predict T1D in genetically predisposed individuals.73

Kostic et al. evaluated stool samples from 33 children

genetically predisposed to T1D and reported alterations

in microbiota a-diversity between and within the children

over time. They also observed a decrease in the number

of Gram-negative members and an inverse correlation

between Lachnospiraceae and Ruminococcaceae with

Enterobacteriaceae, a Gram-negative aerobe. In addition,

they reported that early commensals are aerobic, whereas

later microbes appear to be anaerobic.74

A more complex study with 35 patients newly diag-

nosed with T1D, 21 first-degree relatives with b-cell
autoimmunity, 32 relatives with negative autoantibodies,

and 23 controls showed that the numbers of Lactobacillus

and Staphylococcus reads were decreased in patients and

in first-degree relatives when compared with controls.

Furthermore, the gut microbiota from subjects with nega-

tive and positive autoantibodies grouped together but in
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a different cluster from newly diagnosed patients.75 This

study and the work performed by Mei�ıa-Le�on et al. sup-

port the hypothesis that there is an intestinal microbiota

signature associated with T1D development in seroposi-

tive children.76

Even though studies have shown that intestinal dysbio-

sis can affect gut permeability via their metabolites and

play a role in T1D development, there is no evidence for

the real role of intestinal microbiota in the development

of autoimmunity to b-cells and in tissue damage in

humans. Additional studies are needed to find the specific

microbial ligands that signal through immune cells in the

gut and might be involved in the autoreactivity to b-
cells.77

Multiple sclerosis

Multiple sclerosis (MS) is a chronic and inflammatory

disease that affects the central nervous system (CNS) and

is characterized by autoimmune reactions against myelin

proteins. Susceptible HLA alleles and environmental fac-

tors, such as virus infection, a hypercaloric diet, vitamin

D deficiency and dysbiosis, have been implicated in trig-

gering MS.78 MS promotes disability in young adults and

affects twice as many women as men. According to the

Multiple Sclerosis International Federation and World

Health Organization (WHO), the prevalence of MS

increased from 2�1 million in 2008 to 2�3 million in

2013.79

Studies have shown that gut microbiota can affect the

development of MS, and these works implicated intestinal

dysbiosis as one of the possible causes of extraintestinal

disease development.80 The colonization of GF mice with

SFB promotes an increase in the number of Th17 cells in

the lamina propria and CNS, worsening disease severity

in experimental autoimmune encephalomyelitis (EAE), an

MS animal model.81 Likewise, the colonization of the

same mice with Bacteroides fragilis and polysaccharide A,

which induces Foxp3+ Treg cell differentiation, decreases

symptoms in EAE mice.82

The immune response in EAE is mediated mainly by

Th1 and Th17 cells. The gut SFB induces Th17 cells in

EAE mice. To validate the influence of the intestinal

microbiota in the development of EAE, mice were treated
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Figure 2. A schematic representation of the intestinal dysbiosis in organ-specific autoimmune diseases in humans.
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with antibiotics, and they exhibited a reduction in clinical

score, suggesting the role of the microbiota in the induc-

tion of inflammatory cells in these models. The attenua-

tion of the clinical score was accompanied by decreased

interferon-c (IFN-c), macrophage inflammatory protein

1a, monocyte chemoattractant protein 1, IL-17 and IL-6

and increased IL-10 and IL-13 secretion.83

The colonization of EAE mice with Bacteroides fragilis

and polysaccharide S resulted in decreased clinical scores

and the protection of mice from disease.84 This effect was

achieved because of the induction of Treg cells, increased

IL-10 and reduced IL-17, suggesting the use of these

microorganisms as probiotics in humans.85 Some of the

tested probiotics seemed to have an effect on the autoim-

munity of EAE mice. Oral administration of Lactobacillus

spp. and Bifidobacterium bifidum showed a significant

decrease in the clinical score and increase in the Treg cell

number in treated mice.86

Recently, it was also demonstrated that the gut micro-

biota could affect the permeability of the blood–brain
barrier.86 The defective tight-junctions at the blood–brain
barrier of GF mice are restored after they are colonized

with conventional microbiota.86 The use of GF mice also

demonstrated the importance of intestinal microbiota in

the development of EAE. The induction of EAE in GF

mice resulted in the reduction of IFN-c and IL-17A in

the CNS, accompanied by an increase in the number of

Treg cells in the gut.81

In patients, recent studies have evaluated seven individ-

uals with relapsing–remitting MS (RRMS) and found a

reduction in Firmicutes, Bacteroidetes and Proteobacteria

members.87,88 Jhangi et al. evaluated 22 untreated MS

patients and observed an increase in Methanobrevibacter

smithii and reduction in Firmicutes, as well as Butyrici-

monas, which are butyrate-producing members of the

microbiota.88 A Japanese study found altered intestinal

microbiota in RRMS patients, with decreased Clostridia

XIVa and IV groups and Bacteroidetes members.89

Another study, including 15 RRMS patients with an

Expanded Disability Status Score ≤ 3�0 showed a

decreased amount of Faecalibacterium and increased

amounts of Akkermansia, Coprococcus and Faecalibac-

terium after vitamin D supplementation90 (Fig. 2).

A recent study investigated 60 RRMS patients, 28

untreated patients, and 43 healthy controls and showed

increased amounts of Methanobrevibacter and Akkerman-

sia and decreased amounts of Butyricimonas in untreated

patients.90 Methanobrevibacter is involved in inflammatory

conditions by recruiting macrophages and activating den-

dritic cells.91 Akkermansia species have immunoregulatory

effects by converting mucin into short-chain fatty acids;

however, they could play a role in degrading the mucus

layer and promoting inflammation.92,93 Butyricimonas

species are butyrate-producing bacteria and have

immunomodulatory properties by inducing Treg cells in

the gut.71 In treated patients (IFN-b and glatiramer acet-

ate), there was an increased number of Prevotella com-

pared with untreated patients.94 This genus is associated

with high-fibre ingestion and has regulatory roles via

butyrate generation95 (Fig. 2).

Chen et al. also reported dysbiosis in RRMS patients

after comparing stool samples from 31 patients and 36

controls. They observed an increased abundance of the

Pseudomonas, Mycoplasma, Haemophilus, Blautia and

Dorei genera in patients compared with healthy counter-

parts, which showed a prevalence of Prevotella and

Parabacteroides.96

Available findings on dysbiosis in animal models and

patients with MS point to the gut–brain axis connection.

The relationship between immunity in the gastrointestinal

mucosa and commensal bacteria seems to promote

important physiological homeostasis for the host.97 How-

ever, future studies are required to determine the real role

of the gut microbiota in CNS demyelinating diseases.

Rheumatoid arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune dis-

order characterized by chronic inflammation of multiple

joints, bone erosion and cartilage destruction. Moreover,

RA can affect internal organs such as the lungs, heart and

kidneys. Anti-cyclic citrullinated peptide and/or rheuma-

toid factor are the most important autoantibodies in RA

and can be found before disease onset.98 The disease is

three times more common in women, and according to

WHO, the worldwide prevalence, which is between 0�3
and 1%, ranks the disease among the most common

autoimmune disorders. The triggering of RA involves the

interaction of HLA genes and environmental factors, such

as smoking and infections.99 Among environmental fac-

tors, dysbiosis has been identified as a possible trigger fac-

tor for autoimmunity and RA development.100

Experiments in animal models suggest that the gut

microbiota influences local and systemic immunity and

might trigger joint inflammation.100,101 Studies in mice

with collagen-induced arthritis (CIA) showed that the

administration of antibiotics exacerbates the disease and

increases the level of IL-6, IFN-c and IL-17 pro-inflam-

matory cytokines.102 Further study showed differences in

the gut microbiota composition between CIA-susceptible

and CIA-resistant mice, with a prevalence of Desulfovib-

rio, Prevotella, Parabacteroides, Odoribacter, Acetatifactor,

Blautia, Coprococcus and Ruminococcus genera in arthritic

mice, in addition to increased levels of serum IL-17 and

CD4 Th17 cells in the spleen.102

Mice deficient in IL-1RA signalling spontaneously

develop arthritis; however, under GF conditions, RA is

attenuated because of decreases in IL-17 and IL-1b secre-

tion and decreased Toll-like receptor 2 and Toll-like

receptor 4 stimulation.103–105 On the other hand, when
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these IL-RA�/� GF mice were colonized with Bifidobac-

terium bifidum, there was an increase in clinical scores

compared with mice that were conventionally housed.104

Recent studies have investigated the gut microbiota of

the genetically arthritis-susceptible transgenic mice *0401
and in the genetically resistant transgenic mice *0402.
Clostridia were prevalent in susceptible mice, whereas the

Porphyromonadaceae and Bifidobacteriaceae families were

dominant in resistant mice. Moreover, the authors

observed increased intestinal permeability and a Th17

profile in susceptible mice, suggesting that genetic back-

ground influences the individual’s microbiota profile.106

Similar to that observed in EAE mice, Th17 cells

induced by SFB in the lamina propria induced autoanti-

bodies involved in RA development in animal models.107

The correlation between intestinal dysbiosis and RA aeti-

ology is not a new concept. The ‘toxaemic factor’ hypoth-

esis was proposed in the twentieth century when it was

suggested that the increase in the level of Gram-negative

bacteria in the intestinal lumen could induce an increase

in toxic molecules/metabolites that enter the bloodstream,

promoting systemic inflammation.100 Recent studies have

shown that the intestinal microbiota of newly diagnosed

RA patients was dominated by Gram-negative Prevotella

members, especially Prevotella copri, compared with

healthy individuals.108,109 In the work of Maeda et al., the

gut microbiota transplant from RA patients to GF arthri-

tis-prone SKG mice induced an increase in the number of

Th17 cells in the gut and severe arthritis. Additionally,

the co-culture of SKG dendritic cells with Prevotella copri

increased IL-17 secretion in response to RA autoantigens,

suggesting that RA gut microbiota may induce autoreac-

tive cells in the gut and promote joint inflammation109

(Fig. 3).

Another study, which was performed by Liu et al.,

investigated the Lactobacillus community by quantitative

real-time PCR in faecal samples from 15 patients with RA

and 15 healthy controls and reported increased absolute

copy numbers of Lactobacillus salivarius, Lactobacillus

iners and Lactobacillus ruminis in untreated RA patients

that were recently diagnosed.110

Chen et al. identified the gut microbiota profile in

patients with RA and found decreased species richness

(a-diversity) that positively correlated with increased

rheumatoid factor levels and disease progression.111 The

authors evaluated 40 patients with RA and 32 healthy

controls and found increased Eggerthella, Actinomyces,

Turibacter, Streptococcus and Collinsela reads in the gut

microbiota of people with RA, with positive correlations

with the pro-inflammatory cytokine IL-17. The rheuma-

toid factor, C-reactive protein, disease progression and

methotrexate treatment correlated with b-diversity found

in the gut microbiota of patients with RA, suggesting that

these clinical data might a play role in gut microbiota

modulation111 (Fig. 3).

Increasing evidence suggests an association between

intestinal dysbiosis and rheumatic diseases and their role

in disease progression and the inflammatory microenvi-

ronment. Future studies should demonstrate the role of

gut inflammation as a trigger for the development of

autoimmunity and RA. The determination of an intestinal

dysbiotic signature will provide us with the means to

develop therapeutic tools for the adjuvant treatment of

immune-mediated diseases.112,113

Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is an autoimmune

and heterogeneous disease characterized by damage to the

skin, kidneys, lungs, joints, heart and brain.114 The dis-

ease affects mainly females, and its worldwide prevalence

varies from 30 to 60 per 100 000 in the UK and the

USA.115 The pathogenesis of SLE may involve genetic and

environmental factors, such as viral infections, defective

apoptosis and solar exposure to ultraviolet-B waves.

Regarding immune response, it is known that autoanti-

bodies bind mainly with nuclear and cytoplasmic anti-

gens.116 Moreover, increased evidence has emerged that

suggests the role of intestinal dysbiosis in SLE develop-

ment.117

In female lupus-prone mice, Zhang et al. reported a

decrease in the relative abundance of Lactobacillus spp.

and an increase in Lachnospiraceae members when com-

pared with controls. Early disease onset and severe symp-

toms correlated with increased Lachnospiraceae reads in

female lupus-prone mice. Additionally, the number of

Clostridiaceae and Lachnospiraceae reads increased at

specific time-points during disease progression.118

Another study reported that dietary intervention, such as

caloric restriction, in NZB/W F1 mice promoted changes

in the gut microbiota and avoided disease progression in

this animal model.119

Similarly, Johnson et al. reported that (SWR 9 NZB)

F1 mice given drinking water with a low pH have altered

gut microbiota and decreased antinuclear antibodies, and

develop nephritis more slowly, suggesting that gut micro-

biota modulation might influence disease progression.120

In addition, when examining GF lymphotoxin-deficient

mice, Van Praet et al. reported that the intestinal micro-

biota could play a role in antinuclear antibody induction

and could be associated with SFB colonization and IL-17

receptor signalling.121

Hevia et al. analysed human stool samples from 20

patients with SLE and 20 healthy controls, and the results

showed decreased Firmicutes : Bacteroidetes ratios in the

patients with SLE. Additionally, in silico analysis suggested

that the intestinal dysbiosis observed in patients with SLE

could be linked to an increase in oxidative phosphoryla-

tion and the glycan metabolism pathways induced by

patients’ intestinal microbiota.122 In this manner, another
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study evaluated stool samples from 45 patients with SLE

and 48 control subjects and reported a decreased amount

of Firmicutes members, an increased level of Bacteroide-

tes members, and a prevalence of Rhodococcus, Eggerthella,

Klebsiella, Prevotella, Eubacterium, Flavonifractor and

Incertae sedis genera in patients with SLE, suggesting a

gut microbiota profile for patients with SLE123 (Fig. 3).

Based on these reports showing intestinal dysbiosis in

patients with SLE, L�opez et al. evaluated the role of

microbes derived from stool samples from patients with

SLE and controls in the in vitro differentiation of Treg,

Th1 and Th17 cells. The authors showed that patients’

samples induced Th17 differentiation and supplementa-

tion with Treg-inducing bacteria significantly decreased

the Th17/Th1 balance, supporting the use of these strains

as therapeutic probiotics for autoimmune diseases.124

Probiotic applications in autoimmune diseases

According to the WHO, a probiotic is ‘a live organism,

which provides a benefit to the host when provided in

adequate quantities’.125 Studies suggest that probiotics

influence systemic immune responses, ensure the home-

ostasis of the healthy microbiota in the intestinal mucosa

and could, therefore, be used as adjuvant therapy to treat

immune-mediated diseases.125 The mechanisms proposed

to achieve this include mucus secretion, antimicrobial

peptide production, the maintenance of the function of

the gastrointestinal–epithelial barrier, ensuring adequate

interactions between the gut microbiota and the mucosal

immune cells, and finally, helping the activation of the

host immune system in response to pathobionts.126 Here,

we reported the results of the main clinical trials concern-

ing the applicability of probiotics in autoimmune

diseases.

In a recent study in NOD mice, the oral administration

of a Lactobacillaceae-enriched probiotic protects mice

from T1D by suppressing IL-1b expression and the

release of immunomodulatory indoleamine 2,3-dioxygen-

ase and by promoting the differentiation of CD103+

tolerogenic dendritic cells in the gut.127

In humans, a TEDDY study group evaluated probiotic

supplementation for children with genetic risk for T1D

during their first year of life. This multicentre prospective
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Figure 3. A schematic representation of intestinal dysbiosis in rheumatic autoimmune diseases in humans.
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cohort study (USA, Finland, Germany and Sweden)

investigated 7473 children ranging from 4 to 10 years in

age. Early probiotic administration was correlated with a

decreased risk of islet autoimmunity when compared with

the group that received probiotics after 27 days of life or

no supplementation.128

Several studies in EAE mice demonstrated the

immunoregulatory functions of probiotic administration.

Treatment with Lactobacillus spp., Pediococcus acidolactici,

Bifidobacterium bifidum, Bifidobacterium animalis and

Bacteroides fragilis improved CNS inflammation through

the induction of Treg cells in the gut mucosa by promot-

ing the secretion of IL-10 and transforming growth fac-

tor-b,and inducing decreased Th1/Th17 inflammatory

subsets.86,129–133

In humans, Kouchaki et al. reported improved

Expanded Disability Status Score, insulin resistance and a

decrease in inflammatory markers in MS patients treated

with probiotic supplementation containing Lactobacillus

acidophilus, Lactobacillus casei, Lactobacillus fermentum

and Bifidobacterium bifidum. This randomized double-

blind placebo-controlled clinical trial analysed probiotic

intake for 12 weeks in 60 MS patients.134

In a recent study, the oral administration of Bacillus

coagulans, which has an anti-inflammatory effect, pro-

moted a decrease in the level of serum amyloid A protein

and decreased tumour necrosis factor serum levels in rat

models of RA.134

Some performed studies evaluating the effect of probi-

otics as an adjuvant therapy for RA treatment have shown

no significant results.135 Some of these conducted studies

have smaller numbers of patients and a short period of

treatment.136 In a double-blind, placebo-controlled trial,

the oral administration of Lactobacillus rhamnosus and

Lactobacillus reuteri for 3 months to 29 RA patients did

not improve the disease, measured by the American Col-

lege of Rheumatology criteria (ACR20). However, the

authors reported functional improvement within the pro-

biotic supplementation group compared with the placebo

group.136

Vaghef-Mehrabany et al. investigated the role of Lacto-

bacillus casei intake in 46 RA patients for 8 weeks. This

randomized, double-blind placebo-controlled trial showed

improvement in disease activity score, increased levels of

serum IL-10, and decreased levels of tumour necrosis fac-

tor, IL-6 and IL-12 in treated patients.137 Another clinical

trial with the same study design evaluated the administra-

tion of Lactobacillus acidophilus, Lactobacillus casei and

Bifidobacterium bifidum for 8 weeks in 60 RA patients.

Probiotic intake improved DAS28, decreased the level of

serum C-reactive protein, and promoted a decrease in the

insulin levels.138

In a lupus-like animal model, the administration of

retinoic acid restored Lactobacillus spp. and improved

lupus symptoms, suggesting the use of these species as a

probiotic to diminish inflammation in patients with

SLE.118 Some Lactobacillus species have been demon-

strated to have immunomodulatory properties in the host

gut mucosa, such as inhibiting neutrophil extracellular

trap formation, improving antioxidant status and increas-

ing the expression of adhesion molecules in the gut.139,140

However, currently, there are no clinical trials reported at

clinicaltrials.gov investigating the role of probiotics as an

adjuvant therapy in the treatment of patients with SLE.

Future studies with higher numbers of patients and

longer evaluation times are necessary to corroborate these

results. Such confirmation may lead to the routine use of

probiotics as an adjunctive therapy in the treatment of

immune-mediated diseases. However, these studies should

take into consideration the patient’s immunological status

before probiotic introduction.

Conclusions

Emerging findings associate intestinal dysbiosis with

autoimmune disease pathogenesis. Mucosal surfaces with

impaired microbiota function and diversity, such as in

the gut, could represent a trigger site of autoimmunity by

neo-antigen generation under dysbiotic conditions. If this

hypothesis is validated, all the generated data could col-

laborate in the discovery of new probiotics, predictive

biomarkers and therapeutic approaches for use in clinical

settings for the adjuvant treatment of autoimmune

diseases.
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