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Abstract: Background: Omega-3 polyunsaturated fatty acids (n-3 PUFA) are structural components 
of the brain and are indispensable for neuronal membrane synthesis. Along with decline in cognition, 
decreased synaptic density and neuronal loss, normal aging is accompanied by a reduction in n-3 
PUFA concentration in the brain in both humans and rodents. Recently, many clinical and experimental 
studies have demonstrated the importance of n-3 PUFA in counteracting neurodegeneration and age-
related dysfunctions. 

Methods: This review will focus on the neuroprotective effects of n-3 PUFA on cognitive 
impairment, neuroinflammation and neurodegeneration during normal aging. Multiple pathways of  
n-3 PUFA preventive action will be examined. 

Results: Namely, n-3 PUFA have been shown to increase the levels of several signaling factors 
involved in synaptic plasticity, thus leading to the increase of dendritic spines and synapses as well as 
the enhancement of hippocampal neurogenesis even at old age. In elderly subjects n-3 PUFA exert 
anti-inflammatory effects associated with improved cognitive functions. Interestingly, growing evidence 
highlights n-3 PUFA efficacy in preventing the loss of both gray and white matter volume and integrity. 

Conclusion: This review shows that n-3 PUFA are essential for a successful aging and appear as 
ideal cognitive enhancers to be implemented in nutritional interventions for the promotion of healthy 
aging. 
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1. INTRODUCTION 

 The brain is able to plastically change in response to 
environmental stimulations [1]. In particular, among the 
highly environment-responsive structures of the brain is the 
hippocampus, a region involved in modulating learning, 
memory and mood [2-4]. The process of long-term 
potentiation (LTP) is the principal mechanism underlying 
learning and memory processes in the mammalian brain [5, 
6]. The hippocampus, especially in the dentate gyrus (DG), 
has also the capability of generating newborn neurons in 
adult individuals due to the process of adult hippocampal 
neurogenesis [4]. This process is essential for cognitive and 
emotional processes and its disruption may lead to learning 
deficits and symptoms of anxiety and depression [7-9]. The 
generation, migration, and integration of newborn 
hippocampal neurons into preexisting circuits depend on 
complex signaling within the neurogenic niche [10]. Neural 
stem cells in the DG are close to blood vessels and this 
proximity facilitates the delivery of biochemical stimuli 
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(such as food-derived components or age-related inflammatory 
markers) from the systemic milieu to the DG [11, 12]. 

 Environmental factors have been shown to alter also 
other markers of brain plasticity, such as synaptogenesis, 
dendritic arborization, and spinogenesis [13-16], which in 
turn provide the biological substrate for adaptation to 
different environmental stimulations, such as stress or 
physical exercise [17-19]. 

 Diet is one of the principal environmental factors 
impacting brain plasticity [20]. Although there is much to be 
clarified about the specific molecular mechanisms through 
which dietary components, such as omega-3 polyunsaturated 
fatty acids (n-3 PUFA), influence brain plasticity, a growing 
literature supports the idea that diet modulates brain structure 
and function, exerting its influence throughout the entire 
lifespan. Recently, the constant growth of the elderly 
population worldwide has amplified the interest in the 
prevention and improvement of age-related cognitive 
decline. In fact, cognitive decline is an hallmark not only of 
pathological aging, as occurring in Alzheimer’s disease (AD) 
and vascular dementia, but also of non-pathological aging 
processes [21, 22]. Age-related cognitive decline is due to a 
progressive impairment of the underlying brain cell 
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processes, as neural membrane fluidity reduction, 
neuroinflammation, oxidative stress, reduced synaptic 
plasticity and neurogenesis. As a whole these alterations may 
lead to a consequent and irreversible neuronal loss of gray 
matter (GM) and white matter (WM) volume [23-25]. 
Therefore, the identification of modifiable environmental 
factors that could slow down cognitive decline preceding 
dementia or AD, such as nutritional factors, is a research 
priority [26-29]. In particular, nutritional research indicates 
that Western diets do not provide the aged brain with an 
optimal supply of n-3 PUFA [30]. Furthermore, aging is 
associated to decreased cerebral n-3 PUFA levels due to 
reduced absorption, n-3 PUFA capacity to cross the blood-
brain barrier, and capacity to convert shorter chained fatty 
acids into longer fatty acids [31]. 

 n-3 PUFA are classified as essential since their levels 
depend on dietary intake. Although fish is the major source 
of n-3 PUFA, these nutrients are also contained in other 
foods, such as shellfish, seafood, seaweed, flax, soy, 
rapeseeds, nuts and certain animal products (such as meat 
and eggs) dependent on the animal’s diet [32, 138]. As 
neuronal membrane major components, they exhibit a wide 
range of regulatory functions [32]. Up-to-date, although 
somewhat conflicting, a growing number of animal and 
human studies has indicated that n-3 PUFA may exert 
beneficial effects on the aging brain [32-37]. Namely, in 
rodents n-3 PUFA deficiency have been associated with 
memory deficits and hippocampal plasticity reduction, while 
n-3 PUFA supplementation may improve learning and memory 
abilities, and neurogenic and synaptogenic functions [27, 32, 
33, 36, 38]. As for human studies, several longitudinal studies 
based on the assessment of regular consumption of fish [39] 
or on blood biomarkers of n-3 PUFA have suggested the 
potential preventive role of n-3 PUFA against age-related 
cognitive decline [40-45]. Recently in human studies using 
morphological MRI-based techniques a putative neuro- 
protective effect of n-3 PUFA in aging is emerging, with 
positive associations between peripheral n-3 PUFA levels 
and more favorable GM and WM volumetric measures [46-
53]. However, interventional studies of supplementary n-3 
PUFA showed contradictory results on the relationship between 
n-3 PUFA administration and cognitive performances in 
older adults [54-59]. 

 This review will primarily examine neuroprotection 
exerted by n-3 PUFA on cognitive impairment and markers 
of reduced brain plasticity and neurodegeneration during non 
pathological aging. Multiple pathways of n-3 PUFA 
preventive action will be taken into account. In particular, n-
3 PUFA have been shown to increase the levels of several 
signaling factors involved in synaptic function, thus leading 
to the increase of dendritic spines and synapses as well as to 
the enhancement of hippocampal neurogenesis even at old 
age. Attention will be also paid to the n-3 PUFA anti-
inflammatory effects exerted by reducing neuroinflammation 
and oxidative stress markers in elderly subjects. Finally, 
growing evidence highlights n-3 PUFA efficacy in 
preventing age-related loss of GM and WM volume and 
integrity in both animal and human studies. 

2. OMEGA-3 FATTY ACIDS AND SYNAPTIC 
PLASTICITY DURING AGING 

 n-3 PUFA have been observed to reverse age-related 
synaptic plasticity changes [20, 32, 60, 61]. For instance, n-3 
PUFA supplementation for 12 weeks in aged rats (24 months 
old) reverses age-related decrease in levels of docosahexaenoic 
acid (DHA), the most abundant n-3 PUFA in the brain, and 
of the GluR2 and NR2B subunits of respectively N-methyl-
D-aspartate (NMDA) receptors and the a-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid (AMPA) receptors in 
the hippocampus [62]. Signaling through these receptors 
plays an important role in synaptic plasticity underlying 
learning and memory, such as LTP. On the contrary, n-3 
PUFA deficiency worsens the age-induced degradation of 
glutamatergic transmission in the CA1 of the hippocampus 
[63]. 

 Interestingly, dietary enrichment of aged rodents with n-3 
PUFA has been shown to have positive effects on aged-
related impairments in LTP. For example, n-3 PUFA 
supplementation for 8 weeks reverses age-related disruption 
of depolarization-induced glutamate release and LTP in  
aged rats (22 months old) supplemented with DHA or 
eicosapentaenoic acid (EPA) [64, 65]. Moreover, EPA and its 
metabolite docosapentaenoic acid (DPA) have been 
demonstrated to be equally able to reverse age-related 
impairment in spatial learning and LTP [66]. 

 Age-related learning and memory impairments have been 
related to the strong decrease in the production of new neurons 
due to stem-cell-intrinsic factors that change within the aging 
stem-cell pool and systemic and microenvironmental factors 
modulating the neurogenic niche [67, 68]. Notably, n-3 
PUFA supplementation has a beneficial effect on adult 
neurogenesis [69]. Age-related decreases in neurogenesis as 
well as in transcription factors involved in learning and 
memory, such as retinoic acid receptors, retinoid X receptors, 
and peroxisome proliferator-activated receptors, are even 
reversed by EPA/DHA-enriched diets for 12 weeks in 25-26 
months old rats [70]. n-3 PUFA neurogenic and synaptogenic 
properties are reported also by Robson et al. [71] which 
demonstrate that EPA and DHA exert a neurite-enhancing 
action on rat dorsal root ganglion cells even at old stage (18-
20 months). More recently, it has been demonstrated that 
DHA may increase newborn neurons production and/or 
survival in rats fed a DHA supplemented diet from 2 to 18 
months [72]. In aged mice (19 months old) a 2-month 
EPA+DHA+DPA supplementation ameliorated hippocampal-
dependent mnesic functions in the context of an enhanced 
hippocampal cellular plasticity (increased neurogenesis and 
dendritic arborization of newborn neurons, neuronal density) 
and reduced neurodegeneration (decreased apoptosis and 
lipofuscin accumulation) [73]. This n-3 PUFA neuro- 
protective action exerted on hippocampal neuroplasticity was 
further associated to the increase of metabolic correlates, 
such as brain DHA and EPA levels, and blood Acetyl-L-
Carnitine (ALC) concentrations [73]. Notably, additive 
effects of ALC and PUFA supplementation in reducing age-
related retinal degeneration [74] and brain damages caused 
by oxidative stress [75] have been reported. Furthermore,  
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n-3 PUFA may increase the signaling factors involved in 
neurogenesis, such as BDNF, CREB, or CaMKII [27, 76, 
77], and exert their bioactivity even through syntaxin 3 that 
mediates membrane expansion at the growth cone giving rise 
to neurite outgrowth [78]. 

 Furthermore, age-related decline in learning and memory 
is accompanied by a decrease in c-Fos expression reflecting 
a decreased neuronal response to extracellular signals 
triggered during action potentials [79]. DHA and EPA 
enriched diet for 2 months has been shown to restore age-
related spatial memory deficits and increase hippocampal  
c-Fos expression in 22-month-old mice [80]. 

 The decrease in hippocampal spine density seen either in 
aged rats and humans is another morphological mechanism 
underlying memory impairments that characterizes normal 
aging [81-83]. It has been demonstrated that in adult gerbils 
DHA oral supplementation for 4 weeks results in an increase 
(>30%) in the number of hippocampal dendritic spines 
accompanied by a parallel increase in membrane 
phosphatides and in pre- and post-synaptic proteins [84]. 
Unfortunately, no studies have yet addressed the role of n-3 
PUFA on spine density during aging. 

 Overall the discussed studies indicate potential mechanisms 
through which n-3 PUFA help in the maintenance of 
learning and memory performances by preventing age-
related synaptic plasticity changes. However, there is still 
little direct evidence of how n-3 PUFA affects synaptic 
structure in aged individuals. 

3. OMEGA-3 FATTY ACIDS AND NEURO- 
INFLAMMATION DURING AGING 

 The aging brain is particularly apt to inflammatory and 
oxidative alterations, which may underlie decreased learning 
and memory as well as increased risk of developing 
neuropsychatric disorders in elderly subjects [60, 85]. This 
process of gradual deterioration of the immune system 
brought on by natural age advancement is referred to as 
immunosenescence and is accompanied by an increase in 
proinflammatory cytokines production [86, 87]. 

 It has been demonstrated that dietary intake of n-3 PUFA 
is strictly linked to inflammation [88]. In fact, excessive 
levels of omega-6 (n-6) PUFA relative to n-3 PUFA is 
correlated with inflammation, arthritis, and cancer [88-91]. 
Modern Western diets typically have an excessive n-6:n-3 
PUFA ratio of 10/1 to 20-25/1 with a consequent over- 
production of arachidonic acid (AA) derivatives favoring the 
emergence of a pro-inflammatory status in the aging brain 
[33, 92]. Epidemiological, observational and preclinical 
studies have demonstrated that both higher plasma levels of 
n-3 PUFA and lower plasma n-6:n-3 PUFA ratio are associated 
with a reduced proiflammatory cytokine production [93-96]. 
Interestingly, also telomere length, which is regulated by 
exposure to proinflammatory cytokines and oxidative stress, 
increases with decreasing n-6:n-3 ratio and increasing n-3 
PUFA blood levels during aging [97-99]. 

 Many studies have shown that the positive effects of n-3 
PUFA upon age-related cognitive decline are linked to their 
anti-inflammatory properties [20, 100]. For example, age-

related increase of neuroinflammation markers, such as 
interferon-γ and interleukin-1β, is overcome by EPA 
supplementation and associated to restored LTP in aged rats 
(22 months old) [101]. Additionally, a 2-month EPA/DHA 
treatment increases n-3 PUFA levels in the brain, prevents 
cytokines expression and astrocytes morphology changes in 
the hippocampus, and restored spatial memory deficits in 
aged mice (22 months old) [80]. Similarly, EPA enriched 
diet prevents the age-related increase in cortical and 
hippocampal IL-1β and IL-4 in aged rats (22 months old) 
[102, 103]. 

 Astrogliosis is considered a hallmark of brain aging 
found in the brain of aged rodents [104-106], primates [107] 
and humans [108]. The astrogliosis is associated with microglial 
activation and a low-grade inflammatory state occurring in 
the aging brain [33]. Many studies have reported a decrease 
in high affinity glutamate transport and in the expression of 
glial glutamate transporters in the brain of aged rodents [63, 
109]. Astrocytes are a target cell for the effects of n-3 PUFA 
in the brain given the high concentration of DHA in their 
membrane phospholipids. Notably, n-3 PUFA deficiency 
worsens age-related hippocampal astrocytosis and promotes 
neuroinflammation [63, 110]. On the contrary, the diffuse 
astrocytosis as well as microglial activation occurring with 
age is markedly reduced in n-3 PUFA supplemented aged 
rodents [73, 101, 111]. DPA and EPA are reported to reduce 
age-related spatial memory decline as well as microglial 
activation [66]. It has been advanced that the production of 
protective docosanoids (DHA derivatives) may regulate 
microglial activation, thus facilitating glial reparative 
activation in response to the disruption of synaptic glutamate 
homeostasis [110, 112]. Furthermore, a recently identified 
DHA-derived messenger, neuroprotectin D1 (NPD1), has 
been demonstrated to be involved in regulating brain cell 
survival and repair through neurotrophic, anti-apoptotic and 
anti-inflammatory signaling [113]. NPD1 also prevents β-
amyloid formation, protects synapses and reduces the 
number of activated microglial cells [114]. 

 A progressive accumulation of oxidative damage to 
cellular molecules is a primary mechanism involved in  
most senescence-associated modifications [115]. Oxidative 
damage occurs when free radicals produced within an 
organism are not completely destroyed by the appropriate 
endogenous defense systems. Because lipids are a major 
component of neuronal membranes [116], lipid peroxidation 
might play an important role in initiating and/or mediating 
some aspects of the brain aging process. It has been widely 
demonstrated that there is an age-associated increase in the 
steady-state concentrations of lipid peroxidation products 
[117-119]. However, dietary n-3 PUFA may counteract aging 
brain modifications by promoting membrane homeostasis 
and this effect is associated with a reduced cognitive decline 
[120]. In fact, DHA administration for 10 weeks in 
previously n-3 PUFA deficient aged rats (25 months old) 
enhances mnesic performances along with a reduction in 
hippocampal lipid peroxidation [121]. Similarly, DPA and 
EPA ameliorate spatial memory performances and reduce 
oxidative stress [66]. Moreover, n-3 PUFA effectively 
improve the reference memory-related learning ability 
associated with increased brain DHA-derived docosanoids  
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in aged rats [122]. As for human studies it has been 
demonstrated that erythrocyte membranes derived from 
nonagenarian offspring display a reduced lipid peroxidation 
and increased membrane integrity compared to that of the 
general population [123]. Inverse correlations have been 
found between DHA and EPA intake and plasma lipid 
hydroperoxide levels among mild cognitive impairment 
(MCI) patients [124]. Furthermore, EPA and DHA reduce 
oxidative stress in patients affected by hypertension,  
type 2 diabetes and/or hypertriglyceridemia, pathological 
conditions linked with aging [125, 126]. Finally, in middle-
aged subjects both n-3 and n-6 PUFA are inversely 
associated with concentrations of plasma C-reactive protein, 
an index of oxidative stress [127]. 

 Taken together the discussed studies indicate that n-3 
PUFA may help in the maintenance of learning and memory 
performance by reversing age-related inflammation and 
oxidative stress changes, further reinforcing the idea that 
increased n-3 PUFA intake may provide protection to the 
brain of aged subjects. 

4. OMEGA-3 FATTY ACIDS AND BRAIN VOLUME 
INTEGRITY DURING AGING 

 Reduced brain volume is an essential element of MCI 
and AD pathology, and brain atrophy is frequently observed 
during aging before symptomatic impairment [128]. Being 
one of the main component of synaptic membranes, n-3 
PUFA have an important role in maintaining brain structure 
and function during aging. Many studies highlighted n-3 
PUFA efficacy in preventing hippocampal neuronal loss in 
AD-like neurodegenerative models [32, 33, 36, 61]. In 
addition, the few human studies addressing the relations 
between n-3 PUFA intake and brain volumes converge on 
detrimental effects of n-3 PUFA deficiency and beneficial 
effects of their presence. Namely, in mood disorders the n-3 
PUFA deficiency is associated with reduction of the GM 
volume in the prefrontal cortex inducing in turn alterations in 
cortico-limbic projections [129]. Conversely, in healthy 
subjects positive associations between n-3 PUFA intake and 
GM volumes in hippocampus, amygdala and anterior 
cingulate cortex were reported [130]. 

 As for human aging studies, many correlational studies 
have shown positive associations between n-3 PUFA and 
GM and WM volumes in elderly subjects [46-53]. To the 
best of our knowledge only one interventional study by 
Witte et al. [58] reported n-3 PUFA beneficial effects on 
WM microstructural integrity and GM volume in frontal, 
temporal, parietal, and limbic areas associated with 
improvements in executive functions. The lack of 
improvements in memory performances following n-3 PUFA 
administration in this study [58] is at odds with previous 
studies in elderly [34, 59], even if other studies fail to reveal 
any effect of n-3 PUFA supplementation both on mnesic and 
executive functions [54-57]. Human interventional studies 
addressing n-3 PUFA effects on cognitive decline and brain 
volumes have even not provided conclusive information 
about emotional correlates, as depression levels. In this 
regard recent interventional studies in mice demonstrated 
that n-3 PUFA supplementation at old age is able to 
counteract atrophy in specific brain regions linked either to 

age-dependent cognitive decline and mood disturbances 
(such as hippocampus, medial prefrontal, orbitofrontal and 
restrosplenial cortices) [73, 131]. Interestingly, the ameliorated 
brain volume patterns observed in n-3 PUFA supplemented 
aged mice were associated not only to better mnesic and 
cognitive performances, but also to beneficial effects on 
emotional behaviors with increase in active coping responses 
[131]. These neuroimaging findings are in line with human 
and animal studies demonstrating that increased dietary 
intake of n-3 PUFA is able to ameliorate depression symptoms 
[50, 132-134]. 

 The converging evidence on n-3 PUFA anti-depressant 
action at old age is important since mood disorders, such as 
depression, can be linked to aging, metabolic disorders and 
dementia [132], and are often associated with age-related 
atrophy in the hippocampus and the prefrontal cortex [127, 
135, 136]. Despite the mechanisms of n-3 PUFA anti-
depressant action are not yet clarified, it has been reported 
that DHA deficiency is associated with dysfunctions of 
neuronal membrane stability and serotonin, norepinephrine 
and dopamine neurotransmission [137]. In addition, EPA is 
important in balancing the immune function and physical 
health by reducing membrane AA and prostaglandin E 2 
synthesis [137]. These dietary n-3 PUFA deficiencies may 
be linked to the aetiology of mood disorders. 

 Although dietary factors are important modifiers of brain 
plasticity and can have an impact on central nervous system 
pathophysiology, a growing body of evidence indicates that 
nutrients can complement the beneficial effects of exercise 
on neural damage [138]. A recent pilot study provides 
preliminary evidence that n-3 PUFA intake combined with 
aerobic exercise and cognitive stimulation is able to prevent 
atrophy in AD-related brain regions in MCI patients, 
promising findings that deserve validation in future 
interventional trials [139]. 

 Overall, the discussed studies account for a protective 
function of dietary n-3 PUFA on brain atrophy during aging, 
thus corroborating not only the emerging view of n-3 PUFA 
as pro-cognitive nutritional agents, but also underlining their 
efficacy against age-related mood disorders vulnerability. 

5. DISCUSSION 

 The aging brain is characterized by functional and 
metabolic changes associated with cognitive decline, impaired 
brain plasticity and severe neuronal loss [20]. Beneficial 
effects on brain health and function have been reported as an 
outcome of increased n-3 PUFA dietary intake across the 
lifespan [32]. In fact, n-3 PUFA are important structural 
component of neural cell membranes, essential to appropriate 
neuronal functioning, membrane fluidity, and modulation of 
signal transduction processes, strictly linked to optimal 
cognitive functioning [61, 140]. Thus, given the pressing 
question of how the elderly can maintain their cognitive 
functions as their life expectancy increasingly raises, n-3 
PUFA has been tested in human and animal studies as 
cognition-enhancing nutraceuticals. 

 Namely, n-3 PUFA have been implicated in enhancing 
brain plasticity and cognitive function in aged rodents [20, 
32, 60, 61]. The positive effects of n-3 PUFA upon age-
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related cognitive decline are likely promoted by antioxidant 
and anti-inflammatory mechanisms, as demonstrated by 
several studies in animals [20, 66, 80, 100, 111] and few 
studies in humans [124, 127]. Furthermore, n-3 PUFA intake 
has been positively associated with both cognitive performance 
and GM and WM structural integrity [46-53, 58, 131]. 

 However, not all studies have reported positive 
relationships between n-3 PUFA consumption and cognitive 
performance in elderly subjects [37, 54-57] and in patients 
with AD [141]. It is possible that a beneficial effect of n-3 
PUFA intake on cognitive decline may be apparent only with 
marked cognitive decline, as age advances, or with trials of 
longer duration. Furthermore, uncontrolled confounding 
factors (such as socio-economic status, genetic background 
as well as healthy habits and lifestyle), the enormous 
variation in n-3 PUFA supplement kind and dosage, and a 
general failure in controlling the n-6 PUFA dietary intake 
may also account for the inconsistent results in clinical and 
interventional studies [33, 49]. As a result, the impact of n-3 
PUFA supplementation on cognitive functions in the aging 
human brain is still a matter of debate, and underlying 
mechanisms on the systemic and neuronal level remain 
unclear. In this framework, animal studies under controlled 
environmental and genetic conditions can help to identify the 
cellular and molecular mechanisms through which n-3 
PUFA counteract brain aging, thus laying the groundwork 
for future studies in humans. 

CONCLUSION 

 The rise of life expectancy has amplified the interest in 
the prevention and improvement of age-related brain 
dysfunctions. This review shows that n-3 PUFA are essential 
for a successful aging and appear as ideal candidates  
for cognition-enhancing nutritional and anti-depressant 
interventions aimed to promote healthy aging. However, 
whilst growing evidence accounts for the crucial role played 
by these dietary factors in promoting brain plasticity, much 
remains to be elucidated at the mechanistic level in both 
animals and humans. 
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