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Abstract

The technological ability to make personal measurements of toxicant exposures is growing rapidly. 

While this can decrease measurement error and therefore help reduce attenuation of effect 

estimates, we argue that as measures of exposure or dose become more personal, threats to validity 

of study findings can increase in ways that more proxy measures may avoid. We use Directed 

Acyclic Graphs (DAGs) to describe conditions where confounding is introduced by use of more 

personal measures of exposure and avoided via more proxy measures of personal exposure or 

target tissue dose. As exposure or dose estimates are more removed from the individual, they 

become less susceptible to biases from confounding by personal factors that can often be hard to 

control, such as personal behaviors. Similarly, more proxy exposure estimates are less susceptible 

to reverse causation. We provide examples from the literature where adjustment for personal 

factors in analyses that use more proxy exposure estimates have little effect on study results. In 

conclusion, increased personalized exposure assessment has important advantages for 

measurement accuracy, but it can increase the possibility of biases from personal factors and 

reverse causation compared with more proxy exposure estimates. Understanding the relation 

between more and less proxy exposures, and variables that could introduce confounding are 

critical components to study design.
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The capability of measuring an individual’s toxicant burden is increasing at a rapid pace 

with decreasing cost, e.g.: technologies to measure an individual’s breathing zone air 

pollution,1 semivolatile organic compounds on silicone wrist bands,2,3 and biomarkers of 

exposure in smaller amounts of biosample (e.g. blood, urine).4 This trend will continue to 

lead to an explosion of environmental epidemiology research using these approaches as 

markers of exposure. It is clear why: these measures can provide accurate assessments of an 
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individual’s exposure to a given toxicant. In contrast, more proxy exposure estimates (i.e. 

further removed from the exposure of interest for the question being asked) can have a large 

amount of error in estimating an individual’s actual exposure. The ideal is to measure the 

exposure of interest as precisely as possible, identify variables that can potentially introduce 

bias and measure those as precisely as possible, and then conduct the appropriately adjusted 

analysis. In practice, however, this ideal is often not possible. One issue is the choice of 

exposure metric to use, which can influence effect estimates in the absence of confounding, 

and can also affect what variables can introduce confounding. We argue here that while 

using more proxy exposure estimates has drawbacks, such exposure metrics can potentially 

provide some important advantages for causal inference in epidemiologic studies.

Proxy exposure measures and measurement error

From a toxicologist’s perspective, if there is a question about whether a given toxicant has 

an adverse health effect as a result of an action on a certain tissue type, then he/she designs 

studies to expose that tissue to different concentrations of the toxicant and examines the 

resulting biologic effects. An environmental epidemiologist wanting to know the biologic 

effect of the toxicant on the health outcome in a study of humans may ideally want to know 

the target tissue dose—for example, if the outcome is liver cancer, then the toxicant 

concentration in the liver. (Measuring this during the appropriate time window is also 

critical, but for the purposes of this paper we will ignore this aspect—except as it relates to 

reverse causation as discussed below—since it applies to all exposure estimation 

approaches.) However, in an environmental epidemiology study this is often unknowable. 

Indeed, even external exposure is typically estimated. Thus, any measure the environmental 

epidemiologist uses would be a proxy for the target tissue dose, introducing measurement 

error. Proxy measures are those that estimate toxicant levels at stages more distal to the 

individual—represented by the boxes to the left of the target tissue dose box in figure 1—a 

version of the standard exposure–disease pathway model.

Environmental health scientists often try to examine the entire chain of causation illustrated 

in Figure 1 as improved understanding of that chain can assist the design of both 

epidemiologic studies and public health actions. But it is important to note that determining 

whether a specific intervention causally affects a disease may not depend on the target tissue 

dose, although the latter can help in understanding the results. For example, suppose the 

question of interest is whether reducing average ambient air concentrations of a toxicant has 

an effect on a health outcome of individuals. As an extreme example, suppose this was 

studied in a population where everyone stayed indoors and buildings possessed filters that 

prevented personal exposure to the ambient toxicant. The valid answer to this question is 

that reducing ambient concentration has no effect here (even if in unprotected populations 

the answer were different). Measurement of personal exposure (or, if possible, target tissue 

dose) would help in understanding this result. This is similar to the toxicologic issue of 

understanding differences between the results of whole animal and in vitro studies. A 

compound that is neurotoxic in an in vitro study may show no effect in an in vivo study 

because the compound is not absorbed or is eliminated by a first pass effect in the liver 

(when administered orally) or cannot cross the blood–brain barrier. Nevertheless, both 

causal questions are valid.
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Alternatively, suppose that the question is defined as whether personal exposure to air 

pollution affects the health of an individual. In this case, the error in using ambient monitor-

based exposure assessment as a proxy to estimate individual exposures is a concern. Our 

intent in this paper is to focus on situations where personal exposure or target tissue dose are 

of interest. Causal questions about target tissue dose also raise issues about what constitutes 

“well-defined interventions,”5,6 which we do not have space here to discuss in detail. 

However, while directly changing the concentrations of a toxicant at a target tissue may be 

difficult outside of a laboratory, it can be conceptualized as an epidemiologic intervention. In 

addition, the arguments we put forward here also apply if we only consider exposure 

measures starting at the level of external personal exposure.

A measure of absorbed dose—e.g. a biomarker like toxicant concentration in blood—is 

often as close as an epidemiologist can get to the target tissue dose and can be a good proxy 

for it. In general we expect that proxy measures more removed from the target tissue dose 

will have more measurement error relative to the target tissue dose. For example, 

polybrominated diphenyl ethers (PBDEs) are flame-retardants commonly found in indoor 

dust. We could measure PBDE concentrations in a study participant’s serum (absorbed 

dose). Or we could measure PBDEs more distally, such as amounts in handwipes collected 

from participant’s hands (personal exposure) or amounts in dust samples from the 

participant’s living room (microenvironment). As an estimate of PBDE concentration at a 

target tissue, these latter options are further removed than serum concentration and thus have 

more measurement error relative to the target tissue dose because of differences between 

people in how house dust comes into contact with the participant, and in how what reaches 

the participant gets into the blood. Similarly, a personal air monitor on a study participant 

(personal exposure) will be a more accurate exposure estimate for that person’s air pollutant 

exposures than will air sampling from their bedroom (microenvironment) or predictions of 

ambient concentrations at the person’s residence based on concentrations at the nearest 

ambient monitor to their residence or a spatiotemporal model (media). We know people 

don’t spend all their time at home: the more time spent away from home, the less well the 

residential ambient pollution prediction will reflect the individual’s true personal exposure. 

The amount of time any individual spends indoors vs. outdoors at home may vary and 

outdoor air pollutant concentrations don’t perfectly predict indoor concentrations.

The effects of exposure measurement error on effect estimates differ depending on the 

specific error structure, and understanding error structures is an important research question. 

For non-differential measurement error the main types of structure are Berksonian and 

classical, or slight variations/mixtures of those. Berksonian error will decrease the precision 

of an estimate, but will not (on its own) bias the effect estimate. Classical error, in contrast, 

is expected to bias the effect estimate towards the null, which is a primary concern about 

measurement error—one that pervades environmental epidemiology. (There are notable 

exceptions of other error structures for which non-differential measurement error can bias 

away from the null, e.g.7–10). In fact, because of this, it has been noted in the occupational 

literature that there are times when group measures may have advantages over individual 

measures because the error structure tends more towards Berksonian than classical.11,12 A 

similar phenomenon may occur when using more smoothed area air pollution measures. 

While there are methods to mitigate bias towards the null,13 under ideal circumstances, a 
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more personal exposure measurement would be preferred because a more accurate target 

tissue dose representation implies a stronger and more accurate effect estimate.14–17 The 

problem lies in the fact that circumstances are often far from ideal.

It is important to note that in what follows we are not discussing purely ecologic studies 

where all variables—outcome, exposure, confounders, effect measure modifiers—are 

measured at the group level. Rather we mean individual-level studies that use exposure 

measures that are more (or less) removed from the individual target tissue dose.

Confounding bias

Exposure measurement error in environmental epidemiology studies, and attendant bias to 

the null, is an important concern, but it is not the only one. At least as important, and in 

some cases more so, is the concern of confounding bias. The starkest description of ideal 

circumstances with respect to this is one in which individual exposure is randomized, as in 

clinical drug trials. In environmental health this is rarely, if ever, possible. Therefore, one has 

to consider, for example in the case of absorbed dose, how the toxicant came to be at the 

concentration measured in the blood. This is dependent on individual characteristics such as 

toxicant pharmacokinetics and, of course, the level of the individual’s exposure to the 

toxicant in the environment, but that may depend on behaviors of the individual. These 

factors (covariates) then can introduce confounding if they are related to the health outcome 

(other than through the exposure of interest) as illustrated in the directed acyclic graph 

(DAG)5,18,19 of Figure 2. Although one can try to control for such confounding, this can be 

a difficult task and in any epidemiology study the specter of residual or unmeasured 

confounding is very hard to avoid. We argue that while estimating the target tissue dose with 

measures that are more removed from the individual increases the error in estimating that 

target tissue dose, it may have the important advantage of decreasing sources of potential 

confounding bias that otherwise may be difficult to control. This potential tradeoff needs to 

be carefully considered.

Potential epidemiologic advantages of proxy measures

To illustrate the potential advantages of more proxy exposure estimates consider the case of 

ambient air pollution. A large literature on the relation between aspects of ambient air 

pollution and different health outcomes exists that relies on estimates of exposure derived 

from area air monitors or satellite imaging.20–23 For example, investigators use 

concentrations at the closest monitor (or some weighted average) to an individual’s 

residence, or spatiotemporal models that incorporate monitor data and spatially and 

temporally varying factors—e.g. traffic patterns, meteorological factors, land use 

characteristics—to predict outdoor ambient pollutant concentrations at the individual’s 

residence in a given time window. These methods have been used to examine the effects of 

air pollution on many different health outcomes including cardiovascular,24 respiratory,25–27 

and neurological effects,28,29 as well as overall mortality.30–32

The DAG of Figure 3A depicts a structure that assumes that the effect of exposure to 

ambient air pollution goes through personal exposure. In this way the ambient air pollution 
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prediction is a proxy measure for personal air pollution exposure and target tissue dose. Note 

that personal behavior differences affect personal exposure assessments directly, but they do 
not affect the ambient concentration prediction. In the DAG of figure 3A, personal behavior 

differences (one could add personal biological characteristics like genetics here as well—

either pointing into personal exposure or target tissue dose) introduce confounding to the 

association between personal exposure and the outcome (note that the direct arrow from 

personal behavior to outcome could be replaced with other statistical paths connecting the 

two), but not to the association between the ambient concentration prediction and the health 

outcome.5 In fact, in the DAG of figure 3A as drawn, the ambient concentration prediction is 

an instrumental variable (IV) for personal pollutant exposure, because it fulfills the three 

conditions for an IV33,34: i) ambient concentration prediction is associated with personal air 

pollutant exposure, ii) ambient concentration prediction does not cause the outcome except 

through personal air pollutant exposure, and iii) ambient concentration prediction does not 

share any causes with the outcome. As such, the ambient concentration prediction avoids 

confounding by measured or unmeasured (even unknown) variables like the personal 

behaviors indicated in the figure that confound the personal exposure–health outcome 

association.33,34

The DAG of Figure 3A, however, is clearly over-simplified. It is possible that there could be 

confounding of the association between the ambient concentration prediction and the 

outcome by other variables (L) (Figure 3B), violating the third requirement of an IV (note 

that if all possible L could be fully controlled, then the ambient concentration prediction 

could still be an IV conditional on controlling those L variables). These L variables should 

be predictors of ambient air pollution like socioeconomic status (SES) (potentially both 

individual and area), urbanicity, population density, and meteorological variables.35–39 SES 

factors can affect where a person lives, which can be related to many health outcomes; 

urbanicity and population density could be related to case ascertainment issues; and 

meteorological factors at least in some cases could be related to health outcomes.40,41 

However, these L variables also introduce confounding to the personal exposure-outcome 

association (Figure 3B). Thus, the set of possible confounding variables for the ambient 

concentration estimation cannot be larger than that for personal exposure. The magnitude of, 

and ability to control confounding by L of the ambient estimate vs. confounding of the 

personal exposure estimate by personal behavior and L is hard to gauge and needs to be 

evaluated in any study setting. However, in the case of ambient air pollution, and perhaps in 

other exposure model settings, we hypothesize that the predictors of the proxy exposure 

estimate may be better understood and controlled than individual behavioral predictors of 

personal exposure. (However, one potential problem is that group-level exposure variables 

have the potential to introduce aspects of ecologic bias, even in otherwise individual-level 

studies7,42,43).

Similarly, physiologic factors may sometimes confound associations between biomarkers of 

exposure and health outcomes. For example, it has been suggested that much of the 

association between maternal or cord plasma perfluoroalkyl substances (PFAS) and 

birthweight can be explained by confounding by glomerular filtration rate (GFR)44—that is, 

that differences in GFR and the size of the developing fetus (and eventually birthweight) are 

both related to some maternal factors. Thus, because differences in GFR affect the 
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concentration of plasma PFAS, the PFAS-birthweight association is confounded as 

illustrated in figure 4. In some settings it is possible to develop models of external exposures 

to PFAS, for example using data on contamination of drinking water sources in the mid-

Ohio valley region.45 Using such a model of external PFAS exposures as a proxy for plasma 

PFAS would avoid the confounding from maternal factors that affect GFR (as well as 

confounding by personal behavior differences as described above) (Figure 4). While one 

could avoid this by using pre-pregnancy samples or controlling GFR, these data can be hard 

to get and in some studies, e.g. of insidious onset diseases, one may not know when “before” 

the disease is.

This general concept of the use of more proxy exposure estimates to avoid confounding in 

analyses of less proxy measures is precisely why one does intention-to-treat analyses in 

randomized control trials.5 Assignment to a drug treatment arm is a more proxy exposure 

estimate than is actual medications taken or internal dose of the medication because not all 

people assigned to the drug take it as the investigators intend (and possibly those in the 

control arm could get access to the drug by other means). While using the actual 

medications taken or a measure of internal dose would provide a more accurate indication of 

the exposure to the drug, analyses with those exposures would be subject to confounding by 

all the factors that predict whether the drug is taken and how it is absorbed. A similar 

concept of using more proxy exposure measures as IVs for personal exposure has been 

discussed in the occupational literature. For example, it has been pointed out that if 

individual personal exposure measurements are made among workers in a particular group 

(e.g. those in a particular job), then the average of the individual measures, under some 

conditions, can act like an IV for individual-level exposure.46 The reason this approach only 

works under some conditions is that the group average exposure violates one of the three 

requirements for an IV. If the more proxy exposure estimate is based on averages of 

individual exposure measures, then the variables that cause confounding of the individual 

exposure measure-outcome association can also introduce confounding of the group 

average-outcome association, violating the third condition for an IV listed above. In this case 

the advantage of using the more proxy exposure estimate is diminished, as it would also 

require control of the variables that could confound the more personal exposure measure, 

although the degree to which the IV condition is violated diminishes with larger group 

sizes.46 This is not a problem if individual characteristics do not influence the more proxy 

estimate, as in our example of ambient air pollution predictions. A slightly different issue, 

but one that shares some similarities, is how under some conditions gene-only models often 

more reliably indicate the presence—if not precise magnitude—of a gene–environment 

interaction than a model with an environmental exposure and gene-by-environment 

interaction term, in part because only including the gene term avoids potential confounding 

bias from variables that confound the environmental exposure–outcome association.47,48

Examples

If more proxy exposure estimates avoid confounding from personal factors that affect 

personal exposure (or target tissue dose) measures, then effect estimates for those more 

proxy measures should not be affected by adjustment for the personal factors, although even 

in the complete absence of confounding some small change will likely be present just from 
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statistical fluctuation. The examples in Table 1 are consistent with our argument that more 

proxy measures are less susceptible to confounding by personal factors, but they cannot 

prove that. If the personal factor does not confound the association with the personal 

exposure (or target tissue dose) measure (perhaps because it is not related to the personal 

exposure or because adjustment for other factors sufficiently adjusts for the personal factor 

in question), then showing that it does not confound a more proxy measure does not inform 

our argument. In the traffic pollution study in table 149 we assume, for example, that playing 

sports could affect personal traffic pollution exposure (perhaps related to location) as well as 

atrial fibrillation (through exercise), and thus confound the association with personal 

exposure. If so, the lack of change in the effect estimate for the model-based traffic pollution 

estimate argues for our point, but not if the confounding at the personal level is minimal 

(maybe because there wasn’t an association between playing sports and traffic pollution 

exposure). To empirically address our hypothesis, what is needed are studies that estimate 

exposure with both a more proxy and a personal exposure measure and collect data on a 

personal variable that introduces confounding of the personal exposure measure-outcome 

association.

Reverse causation

An additional benefit of less-individual based exposure estimates is that they can avoid 

biases from reverse causation. In many cases use of a biosample to assess personal exposure 

to a contaminant can be compromised by unrecognized effects of the outcome (or 

antecedents of the outcome) on the measurement of the toxicant in the biosample. An 

interesting potential case of reverse causation is PBDEs and hyperthyroidism in cats. 

Prevalence of feline hyperthyroidism has increased over the last several decades, making it a 

common disease of older cats.50 Risk factors include certain kinds of diet and living indoors; 

endocrine disruption by environmental chemicals, such as PBDEs, has also been 

hypothesized. Cats have higher levels of PBDEs than humans, potentially due to grooming 

behavior (e.g.,51) since PBDEs are found in house dust. PBDEs have been associated with 

altered thyroid hormone levels in both laboratory animals and humans (e.g.,52,53). Of six 

small cross-sectional studies of PBDEs and feline hyperthyroidism, two reported 

associations between PBDE concentrations in blood (on a lipid weight basis) and 

hyperthyroidism.51,54–58 However, feline hyperthyroidism causes substantial weight loss. As 

PBDEs are lipophilic, weight loss will tend to increase concentrations of such compounds in 

body lipids, including blood lipid. Indeed, a few studies report elevated concentrations of 

other lipophilic compounds. Thus the reported associations may be at least partly due to 

reverse causation (Figure 5).54 Use of dust as a proxy exposure measure has the potential of 

mitigating the reverse causation because if reverse causation accounts for the association 

between blood PBDE and feline hyperthyroidism, then no association between dust 

concentrations and hyperthyroidism would be seen (Figure 5).

Conclusions

In summary, there may often be a tradeoff between exposure measurement error and 

potential confounding as exposure estimates are more removed from the individual. Personal 

behaviors and individual physiologic factors can confound associations between biosample 

Weisskopf and Webster Page 7

Epidemiology. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measures and health outcomes; an individual’s metabolism shouldn’t confound 

microenvironment measurement–outcome associations, but individual behaviors could 

(although likely less than with a biomarker); neither should confound associations with 

estimates based on sources and emissions or larger scale media. We hypothesize that the 

factors introducing confounding to an association with a more proxy exposure estimate are 

often fewer and more easily identifiable than those that could do so for an association with a 

personal exposure measurement. When using a more proxy exposure estimate, personal 

behaviors or pre-clinical aspects of the outcome under study are not a concern because 

actual personal exposure is a collider between the more proxy estimate and factors that cause 

confounding or reverse causation of personal exposure-outcome associations. Factors that 

can confound a personal exposure–outcome association can often be extremely hard to 

completely identify, let alone condition out analytically. Furthermore, while some variables 

could still introduce confounding to an association with a more proxy exposure estimate, for 

example SES factors, these variables would still be of concern in an analysis with a personal 

exposure measure. It is also important to note that for relatively time-invariant covariates 

like SES factors, if specific time windows of exposure for associations with an outcome are 

found, this can rule out confounding by time-invariant variables based on negative control 

exposures principles.29,59–61 Although there are methods that have been proposed to account 

for unmeasured confounding,62–64 they necessarily make assumptions about the structure of 

the unmeasured (possibly unknown) confounding. Thus, the possibility of simply 

eliminating some possible confounding may sometimes be preferable.

The critical aspect of a more proxy exposure estimate that allows its use to avoid much 

confounding and reverse causation that can affect more personal exposure measurements is 

that the factors used in creating the exposure estimate, and the distribution of the exposure in 

the environment, are unrelated to individual behaviors or characteristics of those in the study 

population. It is, however, critical that the exposure estimate be reasonably good or bias to 

the null from exposure misclassification could be so pronounced as to obscure true 

associations. An association with a more proxy measure is likely to be biased to the null 

compared with the true personal exposure–outcome association. So while the proxy may 

effectively indicate the presence of a personal exposure–outcome association, it likely does 

not accurately reflect its magnitude. Thus, studies to understand how well a proxy exposure 

estimate predicts actual personal exposures are critical. With such data one can use 

established methods to correct for bias to the null from measurement error.12,13,65,66 The 

fact that this can be done is another argument for using more proxy exposure estimates: the 

drawback of bias to the null from exposure measurement error may be more easily addressed 

than the drawback with more personal exposure measures of needing to control for 

additional confounding or reverse causation biases that may not even be recognized. 

Furthermore, with the more proxy exposure estimate there is the possibility of using the 

correlation with more personal exposure in IV analyses.29,30 In addition, in many settings it 

is not feasible to make individual measurements on everyone.

We believe that more research is needed into the degree of bias to the null with measurement 

error in different settings and on the degree of confounding introduced by personal exposure 

measures. Comparisons of the magnitude of these two effects would be a useful line of 

research. However, the potential value of more proxy exposure estimates to avoid important 
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sources of confounding—even some of which we are unaware—should not be overlooked 

when deciding how to handle exposure assessment for a study.
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Figure 1. 
Conceptual Model for Exposure-related Disease. External and internal refer to the human 

body. (Adapted from Fig 2.12 of Maxwell, 201471)
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Figure 2. 
Causal diagram showing confounding of a toxicant (either measured in blood or in the target 

tissue)-outcome association by other covariates, drawn under the null assumption of no 

association between the target tissue dose and the outcome.
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Figure 3. 
A) Causal diagram showing a personal air pollutant exposure measure acting as a collider 

between an ambient concentration prediction and an outcome, drawn under the null 

assumption of no association between personal air pollutant exposure (presumably acting via 

effects on a target tissue) and the outcome. Under this causal diagram, the personal behavior 

variables do not introduce confounding of the ambient concentration-outcome association. 

B) The same as in A with the addition of an illustration of the structure needed for variables 

(L) to introduce confounding of the ambient air pollutant prediction-outcome association.
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Figure 4. 
A) Causal diagram showing an example of a structure of confounding of the plasma 

perfluoroalkyl substances (PFAS)-outcome association by physiological factors under the 

null assumption of no PFAS-outcome association. Here effects of maternal physiological 

factors on glomerular filtration rate (GFR), which affects the measured concentration of 

PFAS in maternal blood during pregnancy, results in confounding of the PFAS-birthweight 

association. A modeled estimate of external PFAS exposure avoids confounding by the 

physiological factors because the plasma PFAS concentration acts as a collider between the 

modeled exposure and the physiological factors.
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Figure 5. 
Causal diagram illustrating how feline hyperthyroidism (FHT) may be associated with 

serum polybrominated diphenylethers (PBDEs) via reverse causation. FHT causes weight 

loss that increases concentrations of PBDEs in body fat and blood lipid. House dust (and 

diet, not shown) are the source of PBDE exposure and not related to FHT under the null 

assumption of no causal association between the two because blood PBDE concentration is a 

collider between them.
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Table 1

Examples of more proxy exposure measure effect estimates before and after additional adjustment for personal 

factors.

Effect estimate
(95% confidence interval)

Reference Details Before After

Ritz et al., 200767 Exposure: Ambient CO (nearest monitor approach)
Outcome: Pre-term birth
Contrast: 1st trimester top quartile vs bottom quartile
Base adjustment: Birth season, parity, mother’s age, race, and education
Additional personal factor adjustments: active and passive smoking, marital status, and 
alcohol use during pregnancy

OR: 1.21
(0.89–1.65)

OR: 1.21
(0.88–1.65)

Ritz et al., 200767 Exposure: Ambient PM2.5 (nearest monitor approach)
Outcome: Pre-term birth
Contrast: 1st trimester top tertile vs bottom tertile
Base adjustment: Birth season, parity, mother’s age, race, and education
Additional personal factor adjustments: active and passive smoking, marital status, and 
alcohol use during pregnancy

OR: 1.27
(0.99–1.64)

OR: 1.29
(1.00–1.67)

Monrad et al. 
201649

Exposure: Traffic-related pollution (dispersion model)
Outcome: Atrial fibrillation
Contrast: per 10μg/m3 10-year mean NO2

Base adjustment: Age
Additional personal factor adjustments: Sex, body mass index, waist circumference, 
smoking status, smoking duration, smoking intensity, intake of alcohol, sport during 
leisure time, length of school attendance, area level socioeconomic position and calendar 
year

IRR: 1.08
(1.02–1.15)

IRR: 1.08
(1.01–1.14)

Monrad et al. 
201649

Exposure: Traffic-related pollution (dispersion model)
Outcome: Atrial fibrillation
Contrast: per 10μg/m3 10-year mean NOX

Base adjustment: Age
Additional personal factor adjustments: Sex, body mass index, waist circumference, 
smoking status, smoking duration, smoking intensity, intake of alcohol, sport during 
leisure time, length of school attendance, area level socioeconomic position and calendar 
year

IRR: 1.17
(1.03–1.32)

IRR: 1.16
(1.02–1.32)

Aschengrau et al., 
200968

Exposure: PCE; modeled from piping in water distribution system
Outcome: Congenital anomalies
Contrast: In utero exposure >1980 action level of 40μg/L vs. below
Base adjustment: None

Additional personal factor adjustments: Parental agesa

OR: 1.4
(0.9–2.2)

OR: 1.4
(0.9–2.2)

Hart et al., 

201516b
Exposure: PM2.5; spatiotemporal model
Outcome: Mortality
Contrast: per 10μg/m3

Base adjustment: age, race, region, year, season, census tract median family income and 
median house value, education level, parents’ occupation, marital status, and husband’s 
education
Additional personal factor adjustments: smoking (both never, past, current and packyears)

HR: 1.17
(1.09–1.27)

HR: 1.19
(1.10–1.29)

Abbreviations: CO: Carbon monoxide; OR: Odds ratio; PM2.5: Particulate matter <2.5 micrometers in diameter; NO2: Nitrogen dioxide; IRR: 

Incidence rate ratio; PCE: Tetrachloroethylene; HR: Hazard Ratio.

a
Similar lack of change of effect estimates seen after adjustment for many other personal factors was also reported, but data not shown; this has 

also been noted by this group in other studies of theirs as well.69,70

b
Results are from models with slightly different variable sets than in the original paper and were provided by Dr. Jaime Hart.
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