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Introduction

Simulation-driven engineering has put rockets in space, airplanes in the sky, and self-driving 

cars on the road. Computational approaches have also contributed to advancements in 

clinical medicine and human health1–3. In the arena of cardiac care, the recent emphasis on 

personalized medicine has provided a significant impetus for the development of predictive 

approaches combining imaging and computational modeling that can be applied to the 

diagnosis and treatment of heart rhythm disorders. A major advance in this direction is the 

creation and translation into clinical practice of novel imaging- and simulation-based 

strategies for predicting an individual’s risk of sudden cardiac death (SCD) and for the non-

invasive planning of optimal personalized anti-arrhythmia therapies. Clinical decisions 

regarding the stratification of patients for SCD risk resulting from arrhythmia and for 

determining the optimal targets for anti-arrhythmia ablation therapies could greatly benefit 

from such targeted developments since current approaches, although life-saving, remain sub-
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optimal, often increase the burden on the healthcare system, and could lead to increased 

patient morbidity.

SCD resulting from ventricular arrhythmias is a leading cause of death in the industrialized 

world, particularly among patients with prior myocardial infarction4. For patients at high 

risk of SCD, mortality is reduced by the prophylactic insertion of implantable cardioverter 

defibrillators (ICDs)5. To determine the level of SCD risk, clinical cardiology practice still 

relies on the ‘one-size- fits-all’ metric of left ventricular ejection fraction (LVEF) below 35% 

to identify high-risk patients. Mechanistically, in hearts with structural disease, arrhythmia 

results from the heterogeneously distributed remodeled tissue, which can promote the 

initiation and maintenance of electrical instability. Global LVEF poorly reflects these 

mechanistic factors and, hence, its use to determine the level of SCD risk and stratify 

patients for ICD implantation results in a low rate of appropriate ICD device therapy, only 

5% per year6. Thus, many patients are exposed to ICD risks—infections, device 

malfunctions and inappropriate shocks—without deriving any health benefit7. Further, the 

LVEF metric only targets a relatively small subgroup of individuals at high risk for SCD, 

failing to identify the majority of SCD victims (i.e. the Myerburg conundrum). Personalized 

risk assessment could ensure life-saving timely intervention in patients at high risk, while 

limiting unnecessary ICD implantations in patients with low risk.

In patients with ventricular tachycardia (VT), particularly those with structural disease (e.g. 

myocardial infarction, MI), catheter-based ablation offers the possibility of permanent cure. 

However, it is associated with modest levels of success in eliminating infarct-related VT, 50–

88%8,9, and with complication rates as high as 8% of the treated population10. The 

insufficient efficacy of the procedure stems from limitations in current voltage and pace 

mapping techniques used to identify the target locations for ablation11–15. There is a need 

for new approaches that can result in swift and accurate identification of optimal ablation 

targets and thereby improve the efficacy of and increase the tolerance for the therapy and 

reduce post-procedure complications. Finally, since early use of VT ablation post-infarction 

has been recently shown to result in much improved patient outcomes (SMASH-VT Trial16), 

an accurate and easily executed VT ablation will lead to significant broadening of the 

therapeutic potential of the procedure.

Novel non-invasive imaging- and simulation-based strategies have been recently developed 

to address these clinical needs in patients with structural heart disease. They are based on 

personalized information regarding the distribution of structural remodeling in the patient’s 

ventricles as obtained from clinical imaging scans and on the biology and physics of heart 

cells and the electrical current flow patterns through the cardiac syncytium, resulting in the 

construction of a virtual replica of the patient’s heart – i.e. the patient’s virtual heart. Using a 

virtual heart, the patient’s unique lethal heart rhythm disorder can be studied in silico, and 

personalized treatment devised. Researchers can poke and prod the virtual organ in ways 

that are simply not possible with a flesh-and-blood heart. The hope is that with such models 

at the patient bedside, therapies could be improved, invasiveness of diagnostic procedures 

minimized, and health-care costs reduced.
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The goal of this article is to review recent developments of the personalized virtual-heart 

methodology in determining risk of SCD and predicting the optimal targets for infarct-

related VT ablation in myocardial infarction (MI) patients. We present the methodology 

fundamentals based on cardiac imaging and computational modeling, outlining important 

assumptions, followed by a review of validation studies. We discuss the potential impact this 

approach could have on treatments for arrhythmias and how this can bring personalized 

medicine to the arena of cardiac care.

How to Construct a Virtual Heart

For both SCD risk stratification and ablation planning, a three-dimensional (3D) computer 

model of MI patient’s individual heart is constructed from contrast-enhanced clinical cardiac 

magnetic resonance imaging (CMR) data. The heart model incorporates the patient’s 

ventricular geometry and MI structural remodeling (the personalized part of the model) as 

well as electrical functions from the sub-cellular to the organ level (based on the known 

biology of myocytes and the physics of current flow). The model is thus capable of 

representing the interplay between abnormal MI myocardial structure and electrical 

instability in the heart that results in the generation and maintenance of ventricular 

arrhythmias. A virtual multi-site delivery of electrical stimuli from a large number of 

ventricular locations at different distances to remodeled tissue ensures that the ventricular 

substrate’s propensity to develop infarct-related ventricular arrhythmias can be 

comprehensively evaluated.

Personalized Geometrical Model Construction

Patient-specific geometrical models of 3D ventricular structure are reconstructed from the 

late gadolinium enhanced (LGE)- CMR scans (Figure 1). For information regarding CMR 

acquisition, please refer to the methods description in Arevalo et al17 For each patient, the 

myocardial boundaries in the CMR stack are contoured using landmark points and the 

patient-specific 3D ventricular wall geometry is reconstructed18. The myocardial regions are 

then classified as infarcted and non-infarcted by means of signal thresholding. The cut-off 

thresholds were determined on the basis of a percentage of the maximum intensity of the 

scar (such as full-width half-max method)17; alternatively, a methodology based on standard 

deviations above the remote normal tissue could be used. Although the ICD artifact can 

obscure part of the image, the geometry of the ventricles could nonetheless be reconstructed 

from the partially missing data using landmark-based interpolations19. The presence of ICD 

shadow in the scar area, however, could in some cases severely affect the assessment of the 

scar distribution. The application of a wideband LGE-MRI20 has shown promising results in 

suppressing the ICD artifact in the heart, and could be used in future applications of the 

“virtual heart” imaging-simulation methodology.

Previous research21 has indicated that the presence and extent of the infarct border zone 

(termed also gray zone, GZ, because of its intermediate CMR signal intensity) contributes to 

arrhythmia propensity, thus pixels belonging to infarcted tissue are further sub-classified as 

scar or GZ. In creating the patient’s heart model, the 3D geometries of the infarct zones are 

segmented22 and reconstructed23, and then merged with the ventricular geometry. Next, the 
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3D finite element mesh is generated using an approach developed for image-based 

meshes24. Each finite element ventricular mesh has an average resolution of 350μm, as 

needed to adequately resolve wavefront propagation25. Mesh generation is automatic, and 

produces boundary-fitted, locally refined and smooth conformal meshes, preserving the 

boundaries of scar and GZ, as reconstructed from the MRI.

The final step in model construction is determining the fiber orientation in each element of 

the ventricular mesh. Patient myocardial fiber orientations cannot be currently acquired in 
vivo, although a recent study demonstrated significant progress towards in-vivo diffusion-

tensor (DT) MRI26. As an alternative approach, two methodologies have been developed to 

date for assigning fiber orientations on the basis of the individual geometry of the ventricles. 

The first is an atlas-based approach using ex vivo MRI and DT-MR images of a human heart 

(the atlas)27. Using image transformation algorithms, the atlas ventricular geometry is 

deformed to match that of the patient. The same deformation field is then applied to the atlas 

fiber orientations to obtain an estimate of patient fiber orientations. Computational 

simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and VT in 

animal hearts27 closely matched those using DT-acquired fiber orientations, validating the 

approach. The approach has been used to assign fiber orientations in a study of two patient-

specific ventricular models28. The downside of the methodology is its computational 

expense, limiting the approach in cases where time is crucial, as in ablation targets 

prediction where the time period between CMR scan and procedure is 24 hours or less. A 

much faster rule-based fiber orientation estimation has been developed29, also assigning 

fiber orientations based on the individual ventricular geometry; it interpolates fiber 

orientations based on rules derived from fiber orientation histological and DT-MRI data. 

Bayer et al29 compared simulations of ventricular activation in a model with rule-based 

fibers to those in the same geometrical model but with DTI-derived fiber orientation. The 

results demonstrated that activation patterns were nearly indistinguishable, with relative 

differences <6% and positive correlations >0.99, indicating a robust algorithm.

After fiber orientations were assigned, the corresponding GZ and scar ‘masks’ are 

superimposed. The scar is considered non-conductive, thus no electrophysiological 

parameters, including anisotropy arising from fiber orientation, is of any consideration there. 

Fiber orientation in GZ, as estimated by the methodology described above, was the subject 

of concern, as there could be some level of fiber rearrangement not captured by those 

methodologies. The high-resolution imaging study by by Pashakhanloo et al30 who used 

sub-millimeter-resolution DT and LGE-MRI on a clinical scanner to examine the detailed 

organization of the infarct structure in the ventricles. The study demonstrated that the epi-to-

endo progression of the diffusion tensor primary eigenvector is preserved in infarcted parts 

of the wall in human (Figure 2) and in porcine hearts, justifying the adoption of a rule-based 

approach to fiber orientation estimation in the zone of infarct.

Non-personalized Electrophysiological Model Parametrization

Once the ventricular mesh is generated, average human cell and tissue electrophysiological 

properties are assigned to scar, GZ and non-infarcted tissue. Scar region is considered 

electrically non-conductive, while finite elements that belonged to non-infarcted tissue and 
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GZ are assigned regionally-uniform human ventricular cell action potential dynamics. 

Remodeled GZ ionic properties are represented by modifying the human action potential 

model with data from experimental recordings; detail can be found in recent 

publications17,31–33, showing GZ action potentials characterized by longer durations, 

decreased upstroke velocity and decreased peak amplitude. Tissue properties representing 

human ventricular cell-to-cell electrical communication are also assigned to the non-

infarcted and GZ regions, with values of conductivities as described previously17. GZ region 

is characterized with a decrease in transverse conductivity to reflect connexin-43 remodeling 

in the infarct border zone.

The propagation of electrical activity in a virtual heart is simulated by solving, using the 

finite element method, a reaction-diffusion equation representing the spread of current in the 

ventricular myocardium, together with the ordinary differential and algebraic equations 

representing myocyte membrane dynamics at each node in the mesh34. This approach has 

been experimentally validated35–37 and used in a number of mechanistic arrhythmia 

studies38–40.

The approach to personalize virtual hearts with respect to only heart geometry and regional 

distribution of structural remodeling, and not with respect to the values of 

electrophysiological properties, as reviewed here, stands apart from previous attempts at 

image-based modeling of ventricular function. In such studies personalization of 

electrophysiological properties was also carried out, either in porcine models41 or in small 

studies of 1 to 7 patients42,43, based on voltage measurements, demonstrating good 

correspondence between simulation results and VT circuit measurements. Instead, the 

approach reviewed here enables the construction of a virtual heart model based on non-

invasive information only. It is suitable for the non-invasive assessment of the ventricular 

substrate arrhythmogenic propensity in patients with structural heart disease, where 

structural remodeling plays a major role in arrhythmogenicity. In its current form, the virtual 

heart approach lends itself to applications such as the prediction of the infarct-related VT 

ablation targets and post-MI risk stratification for arrhythmia. As the approach evolves, the 

expectations are that tests will be performed to determine whether additional personalization 

(presence of antiarrhythmic drugs; genetic information, etc.) can further improve its 

predictive capability and broaden its applicability to arrhythmias resulting from different 

heart diseases.

Protocol for evaluating the arrhythmogenic propensity of the ventricular substrate

To evaluate the arrhythmogenic propensity of the structurally-remodeled substrate, each 

post-MI virtual heart is subjected to pacing from multiple locations to elicit reentrant 

arrhythmias; information about the specific pacing protocol can be found in Arevalo et al17. 

In this way the potential of the disease-remodeled ventricles to cause degeneration of 

propagation into arrhythmia following premature beats that originate at different locations in 

the heart can be fully assessed. Since all pacing sites are assigned automatically, typically 

using AHA nomenclature for segment locations, the number of pacing sites uniformly 

distributed throughout the left and right ventricles (LV and RV) can be chosen. In recent 

publications17,33, each virtual heart was paced from at least 19 different locations. The 
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distribution of pacing sites throughout the ventricles, and particularly the LV, ensures that 

the protocol covers a large range of possibilities for potential sites at which ectopic foci 

could emerge and captures all the possible arrhythmias that could arise from the given 

structural remodeling distribution.

Validation of Post-MI Arrhythmia Modeling

Do arrhythmias calculated by a virtual heart, as described above, mimic the actual 

arrhythmias in the patient? This question is very difficult to address in the clinical setting, as 

specific pacing locations (typically in the RV) during an electrophysiological study are 

difficult to be exactly reproduced in the model. Given a distributed morphology of GZ and 

scar and the propensity for arrhythmogenesis, often even small differences in pacing 

locations between a clinical study and model could result in a different morphology of the 

elicited arrhythmia, making such comparisons difficult. To do so, a prospective validation 

study needs to be carefully designed to ensure the pacing sites could be matched. Initial 

attempts in this direction have already been made44, but a larger patient cohort is needed to 

confirm model predictions in the clinical setting.

Validation of the virtual heart approach has been instead carried out in a swine model. Deng 

et al32 used sock epicardial data for infarct-related VT, obtained from four swine hearts, and 

demonstrated that models reconstructed from clinical-resolution MRI data of the 

corresponding hearts were able to predict fairly accurately the morphology of each VT 

circuit and its organizing center (for example, isthmus). Figure 3 shows VT results from two 

of the swine models and the corresponding experimentally-recorded epicardial map. The 

simulations also reveal the nature of the transmural ventricular activity that manifests itself 

into epicardial activity mimicking the experimental findings. Furthermore, the study also 

compared models reconstructed from high-resolution (Hi-res) ex-vivo MRI of the same 

swine hearts with those of clinical resolution (Lo-res). The organizing centers of the 

reentrant circuits induced in the Lo-res models closely matched those in the Hi-res models 

(difference of 11.3 ± 4.1 mm). Since a given location is targeted by several ablations, the 

predicted organizing centers for the VT circuits in the Low-res models were, for all practical 

purposes, co-localized to the “true” VT circuit location predicted in the Hi-res models. Since 

clinical ablation usually involve the delivery of multiple lesions in one area, the study 

concluded that MRI-based computer models of MI hearts could indeed provide a unique 

opportunity to predict and analyze VTs resulting from specific infarct architectures.

Deng et al32 demonstrated that the geometrical morphologies of scar and GZ, as well as the 

representation of differences in electrophysiological properties in non-infarcted tissue and 

GZ have a primary role in determining VT inducibility and the location(s) of its organizing 

center. This is consistent with the findings by Arevalo et al31 where a parameter sensitivity 

analysis of the GZ model representation was conducted. The research found, using post-MI 

canine ventricles models, that inclusion of small scar heterogeneities in a physiological 

density did not alter inducibility of infarct-related VT or its morphology. In the study, first 

micro-regions of scar were randomly distributed throughout the GZ at varying densities. 

Following pacing from a number of sites, the locations of the resulting organized centers of 

reentrant activity (filaments) were compared to those in the corresponding homogeneous GZ 
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model. Incorporation of micro-regions of scar in the GZ (Figure 4A shows the 60% case) 

resulted in some conduction slowing within the GZ (Figure 4B). For the typical 

heterogeneous cases where GZ was composed of up to 40% scar, all induced VT 

morphologies were fully identical to the control, and the filaments remained in the same 

spatial position. The study next incorporated random micro-regions at increasing density in 

the GZ, but this time these were composed of normal myocardium. The simulations revealed 

that models with unchanged GZ conductivities but GZ composition incorporating up to 80% 

normal tissue exhibited the same VT morphology as in control; VT cycle lengths also did 

not differ significantly from the control. This study provided the justification for the use of 

uniform GZ properties in the virtual heart models, and established that even fairly 

substantial changes in model parameters had minimal effects on model predictions.

Feasibility of Using Virtual Hearts to Estimate Ablation Targets

Figure 5 presents the concept of using patient-derived virtual hearts to predict optimal 

ablation targets. It substitutes the invasive mapping to determine the arrhythmia critical 

pathways with evaluation of model VT circuits. From the simulated VTs, ablation targets 

can be determined, and then implemented in the virtual heart as non-conductive lesions to 

simulate ablation and determine whether the lesions result in VT non-inducibility from any 

pacing site. It is possible that following ablation new VT circuits could be formed in the 

virtual heart. They will then be evaluated and the appropriate ablation targets determined. 

The process can be repeated until complete non-inducibility is achieved. The resulting set of 

ablation targets could then be loaded into the 3D electro-anatomical mapping system, so that 

the ablation catheter is navigated during the procedure to the model-predicted targets. VT 

ablation would then be swift and precise, eliminating VT circuits with minimum lesions and 

maximum chance of VT non-inducibility.

While such an approach has not yet been prospectively implemented clinically, initial steps 

towards it have already been made. Ashikaga et al45 conducted a retrospective study in 13 

patients who had pre-ablation MRI for infarct-related VT ablation. Simulations with patient-

specific models induced VTs and estimated targets according to the simulated circuits. 

Comparisons between simulation results and clinical recordings were made in 11 patients. In 

5 patients, VT circuits were of the figure-of-eight reentry pattern (Figure 6, A and B). The 

central common pathway was located over the GZ or the superficial layer of the viable 

myocardium over the scar. In this type of circuit in the virtual hearts, the target region was 

estimated to be an area bordered by two facing lines of conduction block that compose the 

isthmus (Figure 6, A and B, green area in right-most column). An ablation line between the 

two facing conduction block lines was expected to prevent VT recurrence, and the minimum 

length of this hypothetical ablation line (i.e. narrowest isthmus width) was quantified. In 7 

patients, virtual heart VT circuits were of unidirectional reentry pattern (Figure 6C), and the 

target region was estimated to be a triangular area that connects the closer end of the 

conduction block line to an adjacent anatomical barrier (e.g. mitral annulus); the minimum 

length of this hypothetical ablation line was also quantified.

The comparison between the estimated ablations in simulations and in the standard clinical 

approach showed that these are highly consistent (82%); in 9 of 11 cases, ablation within the 
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estimated target region was associated with acute success (n = 8) and ablation outside the 

estimated target region was associated with failure (n = 1). The results of this study indicated 

that virtual-heart simulations could be used to estimate ablation targets. The simulation 

results also determined that the narrowest width of the target region that an ablation line 

should span to prevent VT recurrence was relatively small (5.0 ± 3.4 mm). This indicated 

that the pre-procedural estimation of the location and the size of the target region by 

simulation would likely help reduce procedure time.

While the study45 did not perform model ablation and post-ablation tests of VT non-

inducibility, it demonstrated that this approach could have value in the clinic. To fully 

ascertain the potential of the virtual heart approach in predicting the optimal ablation targets, 

research needs to demonstrate its ability to determine, using a verified operator-independent 

algorithm, the optimal ablation targets that terminate all VTs, rather than applying the 

currently clinical decision making process to the VT circuits in the virtual heart. Such an 

approach was recently undertaken in predicting the ablation targets for macro-reentrant atrial 

tachycardia46, and could also be applied to infarct-related VT ablation. Non-inducibility 

studies following the in silico ablation will need to also be conducted to verify that no new 

VTs arise post-ablation, and if they do, to determine the additional ablation targets. 

Importantly, the utility of the approach can only be verified in a prospective study, requiring 

the overcoming of technical barriers associated with merging the predicted targets with the 

3D electroanatomical navigation system. Finally, research will need to validate that the 

lesions specified by the in silico studies can actually be generated in a patient. Imaging 

methods can validate this directly. It has been shown that the extent of ablation lesions can 

be determined with late gadolinium enhanced MRI, as well as with non-contrast methods, 

during or just after an actual ablation procedure47. Prospective studies are needed, therefore, 

to compare directly the results from in silico predictions, with those of actual ablation, 

where lesion extent is quantified with MRI.

Using Virtual Hearts to Stratify Arrhythmia Risk in Post-MI Patients

In this application of the virtual heart approach to post-MI patients, the multi-site delivery of 

ventricular stimuli was used to determine the patient’s heart propensity to develop infarct-

related ventricular arrhythmias. Arevalo et al17 termed this non-invasive SCD risk 

assessment approach VARP, Virtual-heart Arrhythmia Risk Predictor. Since the goal of 

electrically “stressing out” the ventricular substrate is to only determine presence of 

reentrant arrhythmia (or the lack thereof) as the result of pacing from at least one site, this 

application is conceptually simpler and less computationally demanding than the ablation 

guidance described above, allowing for evaluation of the predictive capability of the 

approach in a larger patient cohort, and for comparison with other clinical metrics.

The retrospective proof-of-concept study by Arevalo et al17 used data from 41 patients with 

prior MI and LVEF<35%, chosen randomly from those enrolled in the CMR-Prospective 

Observational Study of Implantable Cardioverter Defibrillators (CMR-PROSE-ICD)48. 

Patients were followed for the primary end point of appropriate ICD firing due to ventricular 

arrhythmia or cardiac death. Follow-up time averaged 4.8 ± 2.9 years. VARP predictive 

capabilities were compared to LVEF as well as to other clinical metrics that have been used 
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to predict arrhythmic risk, such as GZ volume49, scar volume50 and LV mass51. 

Furthermore, 32 of the 41 patients in the cohort underwent, at the time of ICD implantation, 

clinical electrophysiological testing; for these 32 patients, VARP assessment was also 

compared with the outcome of the clinical testing. Figure 7 presents 7 reconstructed patient 

heart models; induced arrhythmia is shown in 2 models (transmembrane potential and 

activation maps), with reentrant waves often propagating through isthmuses in the scar. In 

the five models shown at Figure 7, bottom, no arrhythmia was induced from any pacing site, 

despite the presence of infarcted tissue.

Statistical analysis17 demonstrated that a positive VARP test was significantly associated 

with the primary end point, with a four-fold higher arrhythmia risk than patients with 

negative VARP test. The comparison of VARP with LVEF, as well as with GZ volume, scar 

volume and LV mass, revealed that only VARP outcome was significantly associated with 

arrhythmic risk in this small cohort. When only appropriate ICD shock was used as a 

secondary end point, the hazard ratio for VARP increased from 4.05 to 5.0. Among the 32 

patients who had both VARP and invasive testing, the hazard ratio for VARP was 10.4 versus 

1.7 for clinical electrophysiological testing. For the appropriate shock end point, the hazard 

ratio for VARP remained significant at 8.60, versus 2.60 for clinical testing. It is important to 

note that the non-invasive nature of VARP offers an additional advantage over clinical 

testing, which entails risks of vascular access, sedation and induction of ventricular 

arrhythmias requiring defibrillation in already tenuous cardiomyopathy patients.

The superiority of the VARP approach, as demonstrated by Arevalo et al17, stems from its 

ability to comprehensively evaluate the arrhythmogenic propensity of the MI substrate as 

probed by triggers acting at locations of different geometrical position with respect to 

remodeled tissue. Should the predictive capability of the approach be demonstrated in larger 

studies, VARP has the potential to radically change the process of SCD risk assessment and 

patient selection for prophylactic ICD implantation, potentially eliminating many 

unnecessary ICD implantations and their associated complications (infections, device 

malfunctions and inappropriate shocks).

Importantly, as acknowledged by Arevalo et al17, VARP could be applied to patients with 

prior MI but preserved LVEF>30–35%, who could also be at significant risk for arrhythmia 

because of their remodeled myocardium, but are generally not targeted for therapy under 

current clinical recommendations52. Because current guidelines for ICD placement target 

low LVEF patients who constitute only one-third of SCD victims53, VARP has the potential 

to identify increased SCD risk in a much larger number of at-risk patients. The first step in 

this direction was recently made by Deng et al33, who applied VARP in the analysis of data 

from 4 patients with MI and average LVEF of 44.0 ± 2.6%. VARP correctly predicted the 

occurrence of VT in one patient and the lack thereof in the remaining three, as shown in 

Figure 8.

Concluding Remarks and Outlook

The immense potential of simulation-driven applications in cardiac patient care has been 

recognized in a number of recent reviews54,55, arguing that clinical translation of 
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physiological models will transform medical practice. However, getting to the point of 

translation is a long road, and success has been variable depending on the specific 

applications. In this review, we examined recent advances in using physics-based 

physiological models in the diagnosis and treatment of cardiac arrhythmias. Initial 

applications have focused on structural heart disease, necessitating the development of 

geometric models from clinical images so that structural remodeling of the ventricular 

substrate could be adequately represented. It is important to note that these models do not 

and cannot fully reflect the biology of remodeling. The goal is to create a clinically useful 

tool, which, while having mechanistic underpinnings, can also be successfully used in the 

clinic to improve diagnostics (SCD risk) or non-invasively guide therapies (VT ablation). 

This requires a balance between model execution time and the level of model detail. As 

further progress is made, such balance will need to be disease-specific, and decisions 

regarding model complexity will need to be made within the constraints of the given clinical 

application.

While initial successes of the virtual heart approach provide a glimpse into the potential of 

the technology, its development to full potential and utilization in the clinic are dependent on 

a number of current limiting factors; overcoming these will ensure easy and straightforward 

implementation in the clinic. Some of these include:

• Contrast-enhanced image quality and standardization. The quality and resolution 

of clinical images is paramount to image-based model construction. 

Improvements in the quality of cardiac MR and standardization of image 

acquisition across clinical centers will ensure consistently high quality of the 

patient-specific virtual hearts. Alternatively, CT scans could be used, should 

there be a possibility for acquiring contrast-enhanced images of remodeled heart 

structure at high signal-to-noise ratio.

• Accelerated image processing with minimum manual input. Image processing of 

clinical-quality cardiac scans is a dynamic field, with major advancements made 

particularly in reconstructing ventricular shape over just minutes. Reconstruction 

of enhanced regions of remodeling has seen less advancement, but remains 

crucial to model construction, and in need of new algorithms that will decrease 

time and manual input.

• Algorithmic developments to decrease model execution times. The need to 

execute calculations of VT circuits and ablation targets in a limited interval of 

time consistent with procedure and patient care timelines imposes major 

constraints on the simulation process, as the electrophysiological simulation code 

is computationally demanding. Additional speed up and development of 

lightweight application-adjusted electrophysiological simulators would relieve 

this burden.

Further developments of the virtual heart approach are expected to extend to diagnosis and 

arrhythmia risk stratification in other disease conditions, such as Tetralogy of Fallot and 

non-ischemic and hypertrophic cardiomyopathies, as recent preliminary data 

demonstrate56,57. Importantly, the approach is also extendable to predicting ablation targets 

for atrial arrhythmias. A retrospective study46 using the virtual heart approach to predict 
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targets for atypical atrial flutter ablation in 10 patients with atrial fibrotic remodeling 

demonstrated excellent correspondence to clinical targets. Finally, while the approach has 

not yet been utilized to find ablation targets for persistent atrial fibrillation (AF), a recent 

study by Zahid et al58 demonstrated the ability to create atrial patient-specific models from 

CMR-LGE scans that predicted AF reentrant drivers consistent with clinical recordings. 

Advancements in the virtual heart methodology and its applications could thus help usher a 

number of personalized medicine approaches in cardiac patient care.
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Figure 1. 
Pipeline for construction of patient’s heart model.
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Figure 2. 
Fiber visualization in a human LV with MI, obtained from ex vivo sub-millimeter DT MRI. 

A, short-axis and B, long axis view of the non-diffusion-weighted image (left), primary 

eigenvector visualizations color-coded with inclination angle (middle), and absolute value of 

inclination angle (right). The infarcted wall is identifiable by the wall thinning at the LV 

anterioapical region as observed in the non-diffusion-weighted images. C Transmural angle 

profiles measured in two segments from non-infarcted and infarcted regions (a and b in 

panel A left). Modified from Pashakhanloo et al30 under the Creative Commons license.
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Figure 3. 
Comparison of simulation and experimental results in two infarcted pig hearts. A, 
Reconstructed models with the epicardium rendered semi-transparent. Scar and GZ appear 

in red and purple, respectively. B, Activation maps of simulated VTs with breakthrough 

patterns on the epicardium. C, Endocardial views showing reentrant source. D, 
Experimentally recorded epicardial activation map. Pink arrows denote propagation 

direction. Modified from Deng et al32 under the Creative Commons license.
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Figure 4. 
Sensitivity of electrical activity in the canine ventricular model to GZ electrophysiological 

properties. A, Model with 60% scar in GZ (white speckles). Myocardium is colored in red, 

scar and GZ are yellow and green, respectively. B, Time needed to fully activate GZ by 

propagation as a function of scar density in GZ. Reused from Arevalo et al31 under the 

Creative Commons license.
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Figure 5. 
VT ablation workflows for (top) standard approach and (bottom) image-based simulation 

approach.
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Figure 6. 
MRI-based simulation approach for estimating infarct-related VT ablation targets. Each row 

represents a different patient (A–C). The Simulation column shows calculated isochrone 

maps of VT. Green arrows indicate direction of propagation. Lines of conduction block are 

in blue. MRI-based model column presents models constructed from pre-ablation MRIs 

(scar: orange; GZ: yellow; non-infarcted myocardium: gray). The lines of conduction block 

(blue lines) from the simulations and the ablation sites (red circles) from the clinical 

approach are co-registered on the model geometry. The Estimated target region column 

shows a potential target region (green area) estimated from the simulations. The shortest 

possible line of ablation that spans the target region (i.e., narrowest width of the isthmus) is 

shown in cyan color. Clinical ablation sites that fell within the green area are indicated by 

yellow circles. The first 2 simulation results in this figure (patients A and B) show a figure-

of-eight pattern, and the last simulation result (patient C) show a unidirectional reentry. 

Modified with permission from Ashikaga et al45.
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Figure 7. 
Illustrative examples of VARP results for 7 of the 41 personalized heart models. Induced 

arrhythmia in two hearts are shown (top), for which geometrical models are presented 

together with transmembrane voltage and electrical activation isochronal maps, obtained 

following pacing from the site indicated. White arrows represent direction of propagation of 

the reentrant arrhythmias. The geometrical models of the five hearts, in which no arrhythmia 

was induced from any pacing site, are shown at the bottom. Modified from Arevalo et al17 

under the Creative Commons license.
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Figure 8. 
Ventricular models for 4 patients with MI and preserved LVEF. Virtual heart from patient 1 

(top row; model shown on left and in semi-transparent view in middle) had inducible VT 

(isochronal map top right; purple arrows show direction of propagation of reentrant 

arrhythmia). Models from patients 2–4 (bottom row) demonstrated no inducible arrhythmia. 

Modified with permission from Deng et al33.
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