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A B S T R A C T

The estrogen receptor (ER) is a ligand inducible transcription factor that regulates a large

number of target genes. These targets are particularly relevant in breast cancer, where

the sensitivity of the tumor to estrogens determines whether the patients can be treated

with endocrine therapy such as tamoxifen. Identifying genomic ER targets is a daunting

task. Quantifying expression levels of suspected target genes after estradiol stimulation

or, more recently, using expression microarrays to this effect will reveal which genes are

regulated by estradiol, however, without discriminating between direct and indirect tar-

gets. The identification of the palindromic sequence that defines the estrogen responsive

element (ERE) allows for the in silico discovery of putative ER targets in the genome. How-

ever the ER can also bind imperfect EREs and half sites, and can bind indirectly via other

factors. Chromatin immunoprecipitation (ChIP) can yield all ER genomic target sites. Cou-

pling of ChIP with genome-wide tiling arrays allows for the genome-wide unbiased identi-

fication of direct ER target sequences.

ª 2007 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.
1. Introduction

In 1896 Beatson observed that removing the ovaries could lead

to remission of breast cancer (Beatson, 1896). Although at that

time hormones were not yet discovered, his experiments were

the first to connect estrogens with breast cancer. More than

60 years later it was demonstrated that estrogens were

retained in target tissues (Jensen and Jacobson, 1962), laying

the foundation for the subsequent identification of steroid

receptors. Indeed, in 1968 O’Malley described that changes

in gene expression occurred after estrogen stimulation, indi-

cating estrogen receptor (ER) functions as a transcription fac-

tor (O’Malley et al., 1968). Soon after, a protein that specifically
bound estrogens was found in breast tumors, and its quantity

could predict the response of these tumors to endocrine dis-

ruption (Jensen et al., 1971; McGuire, 1973). With the cloning

of the ER in 1986 (Green et al., 1986; Greene et al., 1986) and

subsequent identification of its functional domains the role

for the ER as a ligand dependent transcription factor became

apparent (Green et al., 1986; Greene et al., 1986; Kumar et al.,

1987).

The ER is a member of the superfamily of nuclear recep-

tors, which are structurally related ligand-inducible transcrip-

tion factors, including steroid receptors (SRs), thyroid/

retinoids receptors (TR, RARs and RXRs), vitamin D receptors

(VDR), LXR, PPARs, and orphan receptors for which no ligand
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has been yet identified. After binding of estrogen to the

estrogen-binding site on the ER, the receptor dimerizes, trans-

locates to the nucleus of the target cell, and binds to specific

regions on chromatin, the so-called estrogen response

elements (EREs). In addition, the ER can interact with other

transcription factors, SP-1, AP-1 and NF-kB bound to their

regulatory regions. These interactions, and the specific genes

that are regulated by the interaction of the ER with chromatin

regions have been subject to research over the years. This re-

view will focus on the methods and research done to identify

ER targets genes.

2. Expression

Elucidating ER target genes has for long been done on a

gene-by-gene basis, measuring the effect of estrogen stimula-

tion on the expression of a single gene. By differentially

screening cDNA libraries of induced and non-induced cells

several target genes have been discovered, e.g. pS2/TFF1

(Brown et al., 1984; Jakowlew et al., 1984). Recently, investiga-

tion of global expression changes upon estradiol induction by

SAGE or microarray has identified many ER target genes

(Charpentier et al., 2000; Cunliffe et al., 2003; Frasor et al.,

2003; Inoue et al., 2002; Seth et al., 2002). Interestingly, these

global expression experiments indicated that around half of

ER target genes are down regulated upon induction with estro-

gen. Many of the down-regulated genes are known to inhibit

the cell cycle, are pro-apoptotic or are cytokines and growth

factors that inhibit proliferation. This is in agreement with

the view that estrogen promotes cell survival by down regulat-

ing pro-apoptotic genes. Although global expression profiling

provides a wealth of information on estrogen induced gene

expression, it cannot distinguish between direct and indirect

ER targets, i.e. genes that are regulated by other genes that

are directly regulated by the ER. For this, protein synthesis

inhibitors cycloheximide or puromycin can be used, although

unspecific effects of these drugs cannot be excluded. All tar-

gets that are regulated by estrogens in the presence of protein

synthesis inhibitors should be bona fide direct ER targets. Sou-

lez and Parker used this to confirm that the P450-IIB enzyme

was a direct target for the ER in ZR75-1 cells (Soulez and

Parker, 2001), and Wang et al. (2004) found EEIG1 to be a direct

ER target in MCF7 cells. To the best of our knowledge, no ge-

nome-wide expression profile has been performed in breast

cancer cells in the presence of protein synthesis inhibitors.

3. ERE

Klein-Hitpass et al. (1986) identified an estrogen response

element in the Xenopus vittelogenin A2 gene in 1986. They

showed that this element functions in humans and defined

a palindromic sequence (50-GGTCACAGTGACC-30) as the core

ERE (Klein-Hitpass et al., 1986). With the sequencing of the

human genome it became possible to search in silico for the

presence of EREs. These computational approaches have

been used to identify ER target genes with limited success.

From an extensive study where 71,119 EREs were identified,

only 3 were perfect ERE palindromes (Bourdeau et al., 2004).
By narrowing down to promoter regions still 12,515 EREs were

identified and by including conservation with mouse, 660

EREs remained of which several could be validated. Other au-

thors have used similar approaches (Kamalakaran et al.,

2005). As the ER can bind imperfect EREs and half sites, it is

computationally very difficult to distinguish between real

binding sites and noise. In addition, ER can bind indirectly via

other factors, which cannot be assessed using this approach.

4. ChIP

Chromatin immunoprecipitation (ChIP) is a new and very

powerful technique by which transcription factor/co-factor

occupancy of a given locus can be determined in its chromatin

context in vivo. In brief, protein and DNA are cross-linked in

the living cell using formaldehyde, chromatin is fragmented,

and the transcription (co)factor of interest is immunoprecipi-

tated with specific antibodies. The relative amount of a partic-

ular DNA fragment cross-linked to the transcription factor

(and therefore present in the precipitate) can be determined

by real-time quantitative PCR, and is a measure of the occu-

pancy of the factor at that particular position in the genome

(Figure 1). Such ChIP approaches provide valuable information

about the involvement and temporal order of transcription

factor and co-factor recruitment during activation or repres-

sion of a gene or locus. Furthermore, ChIP provides a means

to accurately determine the epigenetic status of the locus.

First ChIP experiments directed at the ER focused on a lim-

ited number of known binding sites and investigated binding

of ER and cofactors. For example, Shang et al. (2000) found that

the ER and a number of coactivators rapidly associate with

chromatin at the c-Myc, pS2 and CATD estrogen responsive

promoters following estrogen treatment in a cyclic fashion.

More recently, a high throughput ChIP approach, ChIP cloning,

was described by Laganiere et al. (2005a). Here, the co-precip-

itated DNA fragments were cloned and subsequently se-

quenced. This enabled the identification of unknown ER

binding sites without any bias towards annotated genes and

promoter regions. A disadvantage of this method is that large

scale sequencing facility is needed and that it is difficult to

discriminate between true binding sites and background

DNA resulting in the necessity to do many work intensive

validations.

Recently, ChIP has been coupled to microarray experi-

ments, enabling the unbiased identification of ER binding sites

on a genome wide scale (Figure 1). Initially, promoter arrays

were used, specifically containing upstream regions from

known genes as the size of the genome made it impossible

to completely cover it sequence. These arrays are obviously

biased and will miss a large number of binding sites as recent

data shows that many transcription factors also bind in inter-

genic regions, introns and downstream of known genes. De-

spite this, this approach has been used with some success.

Laganiere et al. identified 153 promoters bound by ER in the

presence of estradiol (Laganiere et al., 2005b). Cheng used

a promoter/CpG island array to identify ER binding, H3K9 acet-

ylation and H3K9 dimethylation at different time points.

Ninety-two ER responsive promoters were identified, and

a coregulatory role for c-myc at a subset of promoters was
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demonstrated. In addition, the physical interaction between

ER and c-myc via the bridging factor TRRAP was shown (Cheng

et al., 2006). Recently, a study using a ChIP-promoter array

variant, i.e. ChIP coupled to a DNA selection and ligation

Figure 1 – Overview of ChIP-chip. (A) Using formaldehyde protein–

protein and protein–DNA are cross-linked in vivo. The cross-linked

chromatin is subsequently isolated. (B) The isolated chromatin is

sheared in smaller fragments by sonication yielding fragments of 500–

1000 bp. The protein or histone modification of interest is

precipitated using an antibody. The cross-linked DNA is co-

precipitated. (C) The unbound chromatin is washed away. (D) The

cross-linking is reversed and the DNA is isolated. The DNA is

amplified by either LM-PCR or T7 linear amplification of DNA. (E)

Total genomic DNA and ChIP DNA are differently labeled with Cy3

and Cy5. (F) Labeled DNA is hybridized on promoter arrays or arrays

spanning the total non-repetitive genome.
(DSL) strategy full genome promoter array, found 578 high

confidence promoter ER gene targets in MCF-7 cells (Kwon

et al., 2007). In unsupervised clustering analyses, they found

that the 54 genes that were regulated by estradiol and that

were directly regulated by the estrogen receptor as discovered

by ChIP-DSL promoter array could identify a subset of patients

with ER negative tumors, of higher grade and with a much

poorer prognosis then the other patients.

By combining ChIP with genome wide tiling arrays (ChIP-

chip), ER binding can be investigated in a truly unbiased

fashion. Tackling mammalian genomes is exceedingly more

difficult and challenging due to its shear size, the presence

of over 30,000 protein-coding genes sprinkled into a bed of

highly repetitive sequences. In mammals, the identification

of transcription factor binding sites using bioinformatic tools

is complicated because regulatory regions are much wider

spread than in yeast and can be located as far as hundreds

of kb upstream or downstream or within the transcribed re-

gion. Indeed, by using Affymetrix tiling arrays spanning chro-

mosome 21 and 22, 57 ER binding sites were identified of

which the majority was located distal from genes and not in

promoter regions (Carroll et al., 2005). Comparing these data

with a polymerase (pol) II ChIP-chip showed the presence of

pol II at the ER binding sites. Sequence analysis of the ER bind-

ing sites showed that these were enriched with a Forkhead

motif. FoxA1/HNF3alpha expression correlates with the pres-

ence of ER in breast tumors and cell lines (van ’t Veer et al.,

2002; Lacroix and Leclercq, 2004). By ChIP-qPCR Carroll

showed that in the absence of estradiol FoxA1 was present

for most targets and dissociated upon ligand induction

(Carroll et al., 2005). They postulate a role for FoxA1 as a pio-

neering factor whereby FoxA1 is present on the chromatin

and facilitates the interaction of the ER with its binding site.

Recently, Carroll published a genome wide ChIP-chip for

the estrogen receptor and RNA pol II, identifying 3665 high

confidence ER binding sites and 3629 RNA pol II binding sites

(Carroll et al., 2006). As described earlier for chromosome 21

and 22, mapping the location of the binding sites to nearby

genes shows that only 4% is located within 1 kb upstream of

a gene. Analysis of ER binding sites for enriched DNA

sequences identified ERE, Forkhead, AP-1, Oct and C/EBP

motifs. Pair wise analysis showed that the ERE and AP-1 motif

occur exclusively. The Oct, Forkhead, and C/EBP motifs have

a positive correlation. Further investigation showed a role

for the coregulator NRIP in ER induced repression of target

genes. NRIP is a target of the ER and can interact with ER

AP-1 complexes to repress expression of target genes.

5. Amplification methods

For hybridizing ChIPed DNA micrograms of DNA are needed,

while ChIP experiment yields are in the nanogram range. An

amplification step is needed to obtain sufficient material.

The majority of studies so far used LM-PCR as their amplifica-

tion method. Here, oligos are ligated to the ChIPed DNA, which

are used as primer sites for a subsequent PCR reaction. This

yields enough material for ChIP-chip. The efficiency of LM am-

plification is unfortunately biased towards GC regions. This

bias is partially compensated for by the fact that it is present
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both in the input as well as in the ChIP sample, so the ratio will

be constant. Nevertheless this bias can cause false positives. A

linear method of amplifying DNA is TLAD (T7 linear amplifica-

tion of DNA) (Liu et al., 2003). In short, a T7 promoter is incor-

porated at the end of the ChIPed DNA fragments. For this the

ChIPed DNA is tailed using a terminal transferase tailing step.

A T7 promoter is then annealed to the DNA after which a sec-

ond strand is synthesized to fill the DNA fragments. This is

used as a template for an in vitro transcription reaction. The

RNA produced is subsequently reverse transcribed to DNA.

This linear amplification method has no bias towards CG con-

tent and preserves sample complexity.

6. Identifying ChIP sequences

There are several methods to determine the amount and se-

quence of ChIPed DNA fragments and their ChIP/input ratio.

The most sensitive way is by qPCR, although this can only

be used for a relative small number of sites and sequence

information is necessary to develop primers, so no new sites

can be identified. For qPCR, one needs to know the targets,

only a few targets can be measured at the same time, but on

the other hand, qPCR exhibits high sensitivity, there is no

preamplification step required, and it is still the gold standard.

By cloning the ChIP fragments (ChIP cloning) and sequencing

all clones (Laganiere et al., 2005a), all information is unbiased,

many targets are assessed at a time, the technique has a high

sensitivity, but distinguishing real targets from background

can be problematic. To identify a large number of binding sites

microarrays (ChIP-chip) can be used. These can contain up to

4.6 million probes and this number is increasing as technology

develops further. Several types of arrays exist; promoter ar-

rays contain promoter regions of known genes. All promoter

regions can be spotted on one array, making it very affordable.

Promoter arrays cover only a small portion of the whole

genome, and recent studies show that the majority of ERs

(Carroll et al., 2005, 2006) bind to non-promoter regions. Pro-

moter arrays hence show a limited view of transcription factor

binding and will miss a large part of enhancers and non-

annotated transcripts. With the ChIP-DSL (DNA selection

and ligation) technique a promoter array is also used (Kwon

et al., 2007). Each promoter is covered by one 40 bp probe

and for each probe there is a matching primer set of two

20 bp primers. The ChIPed fragments are biotinylated and

attached to a carrier. Unbound fragment are washed away

and the primer pairs that contain the promoter specific

sequence and a T7 or T3 sequence are hybridized to the frag-

ments. Two matching primer pairs are then ligated allowing

the amplification of the product by using T7 and T3 primers.

With this method only fragments that are present on the array

are amplified. The authors claim increased sensitivity and are

able to use a small number of cells (Kwon et al., 2007). ChIP-

DSL has the same drawbacks as other promoter arrays,

namely a very biased selection of binding sites. In addition,

each promoter is covered with only one probe. The specific

amplification of only fragments that are present on the array

and the fact that the method can tolerate incomplete cross-

linking makes this a sensitive method. Using chromosome

wide arrays, all binding site regions can be identified
throughout a complete chromosome. An extension of chro-

mosome wide array is the genome wide array set (currently

38 slides for Nimblegen or 14 slides for Affymetrix), which

covers the whole genome at high resolution. Array synthesis

and scanning is still developing fast, enabling more and

more probes per array. Because of this development genome

wide arrays will become cheaper and the use of promoter

and chromosome wide arrays will decline.

7. Enhancer/promoter interactions

Recent data showed that ER binding sites could be located far

from any gene (Carroll et al., 2005, 2006). They tested the

hypothesis that these distal sites play a role during transcrip-

tion of distal genes. To test this enhancer/promoter interac-

tion chromosome conformation capture (3C) is used (Dekker

et al., 2002; Horike et al., 2005). In short, proteins and DNA

are cross-linked using formaldehyde, sheared in small frag-

ments and a chromatin immunoprecipitation is carried out

using a specific antibody. The fragments are subsequently

digested with a restriction enzyme and ligated. If two DNA

fragments are in close vicinity because of promoter enhancer

interaction they will be ligated to each other. By quantitative

PCR using primers that span this ligation the enhancer pro-

moter interaction can be determined. Recently this technique

has been adapted for high throughput using microarrays,

enabling the screening of promoter enhancer interactions on

a large scale (Zhao et al., 2006). Identification of promoter

enchancer interactions is an important step to obtain more

biological information from ChIP-chip data. The vast amount

of data obtained by genome wide ChIP-chip needs to be dis-

tilled into meaningful biological data. This is the next step

and bottleneck of genome wide transcription factor profiling.

8. Clinical significance and future directions

What can we learn from knowledge of the profile of direct

estrogen receptor gene targets? On a fundamental level, these

experiments help expanding our understanding of how gene

transcriptomes interact. Clinically, understanding of the func-

tioning of the ER is still important in breast cancer, more than

110 years after Beatson (1896). So far all prognostic expression

array studies in breast cancer have found the ER status to be

the most pronounced independent factor that dichotomizes

patients after unsupervised clustering of expression profiles

of their primary tumors (van ’t Veer et al., 2002; Sorlie et al.,

2001). Amplification of the ER gene has recently been de-

scribed as a common early event in a large subset of breast

cancers (Holst et al., 2007). ER status dependent expression

profiles are being identified (Abba et al., 2005), and ER regu-

lated gene expression profiles are used to predict survival in

breast cancer patients (Oh et al., 2006). Thus, for the clinical

evaluation of breast tumors, the ER is still crucial. The ER pos-

itive patients can be subdivided into so-called luminal A and

luminal B type tumors based on their gene expression profile

(Sorlie et al., 2001), with the latter group having a relatively

poor prognosis. Differences in functioning of the ER in these

two patient subgroups will help elucidating the mechanisms
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involved in determining the prognosis of breast cancer pa-

tients. Furthermore, interest is now changing from defining

patients with a poor prognosis (i.e. disease outcome irrespec-

tive of or in the absence of treatment) to identifying predictive

gene profiles for, e.g. tamoxifen resistance (Jansen et al., 2005).

Tamoxifen has been the gold standard for the endocrine treat-

ment of patients with ER positive breast cancers for over

25 years (Jordan, 2003). Differences in direct gene targets of

the ER in the presence of agonists (estradiol) or antagonists

(tamoxifen) might be relevant for identifying mechanisms

involved in (in)sensitivity to tamoxifen or other ER antagonists

(Jordan, 2004). With knowledge of the genome-wide DNA

binding sites of ER alpha, the effects of coregulators, ER beta

or growth factors (Shou et al., 2004; Chang et al., 2006; Girault

et al., 2006) on ER alpha interaction profiles can now be

studied, which have relevance for revealing the mechanisms

involved in tamoxifen resistance.
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