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Recent advances in omics technologies have not been accompanied by equally efficient, cost-effective, and accurate phenotyping
methods required to dissect the genetic architecture of complex traits. Even though high-throughput phenotyping platforms
have been developed for controlled environments, field-based aerial and ground technologies have only been designed and
deployed for short-stature crops. Therefore, we developed and tested Phenobot 1.0, an auto-steered and self-propelled field-
based high-throughput phenotyping platform for tall dense canopy crops, such as sorghum (Sorghum bicolor). Phenobot 1.0 was
equipped with laterally positioned and vertically stacked stereo RGB cameras. Images collected from 307 diverse sorghum lines
were reconstructed in 3D for feature extraction. User interfaces were developed, and multiple algorithms were evaluated for
their accuracy in estimating plant height and stem diameter. Tested feature extraction methods included the following: (1) User-
interactive Individual Plant Height Extraction (UsIn-PHe) based on dense stereo three-dimensional reconstruction; (2) Automatic
Hedge-based Plant Height Extraction (Auto-PHe) based on dense stereo 3D reconstruction; (3) User-interactive Dense Stereo
Matching Stem Diameter Extraction; and (4) User-interactive Image Patch Stereo Matching Stem Diameter Extraction (IPaS-Di).
Comparative genome-wide association analysis and ground-truth validation demonstrated that both UsIn-PHe and Auto-PHe
were accurate methods to estimate plant height, while Auto-PHe had the additional advantage of being a completely automated
process. For stem diameter, IPaS-Di generated the most accurate estimates of this biomass-related architectural trait. In summary,
our technology was proven robust to obtain ground-based high-throughput plant architecture parameters of sorghum, a tall and
densely planted crop species.

Phenomics is one of the major remaining bottlenecks
in unraveling the genetic mechanisms that control
complex quantitative traits such as yield and yield
components. High-throughput phenotyping was
acknowledged as a research priority after the ad-
vances in genomics generated massive data sets that
could not be linked to equally accurate, robust, and
detailed phenotypic data sets (Furbank and Tester, 2011;
Araus and Cairns, 2014). Initially, high-throughput sys-
tems were generated to collect phenotypic data from
model organisms in controlled environments such as
growth chambers and greenhouses. These indoor sys-
tems are now broadly used to characterize economically
important crops by employing a variety of sensors in-
cluding digital RGB (Campbell et al., 2015; Fahlgren et al.,
2015;Neilson et al., 2015; Ge et al., 2016), NIR (Chen et al.,
2014; Fahlgren et al., 2015; Neilson et al., 2015), hyper-
spectral (Ge et al., 2016), and thermal (Mangus et al.,
2016) cameras, among others (Furbank and Tester, 2011).

High-throughput phenotyping systems deployed in
greenhouses or growth chambers have the advantage of
characterizing individual plants grown in pots, without
the constraints imposed by overlapping canopies from
neighboring plants or variable climatic conditions that
can preclude data collection or affect sensor accuracy.
Alternative phenomics facilities are available in which
either plants are moved in their pots to the imaging/
sensor station through a conveyor belt system (Berger
et al., 2010; Chen et al., 2014; Yang et al., 2014; Campbell
et al., 2015; Fahlgren et al., 2015; Neilson et al., 2015;
Ge et al., 2016) or structures carrying the sensors move to
the plants (Granier et al., 2006; Jansen et al., 2009). In
sorghum (Sorghum bicolor), high-throughput phenotyp-
ing under controlled conditions was exploited to inves-
tigate responses to drought and fertilizer use by RGB and
NIR imaging (Neilson et al., 2015). Sorghum plant ar-
chitecture parameters related to shoot height and leaf
area were characterized using Microsoft Kinect cameras
and 3D reconstruction of single potted plants. This phe-
notyping method was applied successfully to identify
quantitative trait loci (QTLs) that colocalized with pre-
viously reported genomic regions controlling these
traits (McCormick et al., 2016).

However, because phenotypes from controlled con-
ditions are only poorly correlated with phenotypes in
field environments (Nelissen et al., 2014; Poorter et al.,
2016), there remained a pressing need to develop new
platforms for field phenotyping of crop species. This

1 This material is based upon work that was supported by the
National Institute of Food and Agriculture, U.S. Department of Ag-
riculture (award no. 2012-67009-19713).

2 Address correspondence to mgsalas@iastate.edu.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Maria G. Salas Fernandez (mgsalas@iastate.edu).

[OPEN] Articles can be viewed without a subscription.
www.plantphysiol.org/cgi/doi/10.1104/pp.17.00707

2008 Plant Physiology�, August 2017, Vol. 174, pp. 2008–2022, www.plantphysiol.org � 2017 American Society of Plant Biologists. All Rights Reserved.

http://orcid.org/0000-0001-6653-3385
http://orcid.org/0000-0001-6653-3385
http://orcid.org/0000-0001-6653-3385
http://orcid.org/0000-0001-6653-3385
http://orcid.org/0000-0001-6653-3385
http://orcid.org/0000-0001-6653-3385
http://orcid.org/0000-0001-6653-3385
http://orcid.org/0000-0002-3548-1823
http://orcid.org/0000-0002-3548-1823
http://orcid.org/0000-0002-3548-1823
http://orcid.org/0000-0002-3548-1823
http://orcid.org/0000-0002-3548-1823
http://orcid.org/0000-0002-8719-5378
http://orcid.org/0000-0002-8719-5378
http://orcid.org/0000-0002-8719-5378
http://orcid.org/0000-0002-8719-5378
http://orcid.org/0000-0002-8719-5378
http://orcid.org/0000-0001-9169-5204
http://orcid.org/0000-0001-9169-5204
http://orcid.org/0000-0001-9169-5204
http://orcid.org/0000-0001-6653-3385
http://orcid.org/0000-0002-3548-1823
http://orcid.org/0000-0002-8719-5378
http://orcid.org/0000-0001-9169-5204
http://crossmark.crossref.org/dialog/?doi=10.1104/pp.17.00707&domain=pdf&date_stamp=2017-07-24
mailto:mgsalas@iastate.edu
http://www.plantphysiol.org
mailto:mgsalas@iastate.edu
http://www.plantphysiol.org/cgi/doi/10.1104/pp.17.00707


new interdisciplinary challenge had to be addressed
considering not only all suitable sensors, field robotic,
and navigation systems but also crop-specific needs for
phenotyping, crop dimensions, production systems, and
phenology. Therefore, different approaches have been
utilized to characterize the morphology and physiolog-
ical response of plants to the natural environment. A
nondestructive high-throughput system was developed
to determine the biomass of maize (Zea mays) seedlings
using spectral reflectance sensors and light curtains
(Montes et al., 2011). For a similarly early growth stage,
a vehicle equipped with multispectral active sensors,
GreenSeeker and CropCircle, was used to differentiate
wheat (Triticum aestivum) genotypes on the basis of their
seedling growth and vigor (Kipp et al., 2014). This study
found that, while a multispectrum-derived index was
successful, a simple estimation of green pixels from
hand-held RGB cameras was equally accurate.
High-clearance platforms have been developed and

utilized to characterize relatively short-stature crops
such as wheat, cotton (Gossypium hirsutum), and soy-
bean (Glycine max). A modified sprayer holding three
types of sensors (infrared thermometers, sonar prox-
imity sensor, and multispectral crop canopy sensor)
was deployed in cotton fields to acquire plant height,
normalized difference vegetation index (NDVI), and
canopy temperature in differently irrigated conditions
(Andrade-Sanchez et al., 2014) and to map QTLs for
those traits (Pauli et al., 2016). A similar high-clearance
vehicle with similar sensors was developed with a novel
modular design, and its functionality was verified in
wheat and soybean fields (Barker et al., 2016). A novel
enclosed structure for controlled wind and lighting
conditionswas created to collect hyperspectral images of
wheat genotypes to characterize and differentiate them
using vegetation coverage and NDVI (Svensgaard et al.,
2014). A manually operated proximal sensing cart was
deployed on soybean and wheat fields carrying five
sensor modules: ultrasonic distance sensors, thermal
infrared radiometers, portable spectrometers, NDVI
sensors, and RGB cameras. These sensor-derived traits
were highly correlated with grain yield, demonstrat-
ing the value of this technology for breeding programs
(Bai et al., 2016).
A few RGB image-based systems also have been pro-

posed and tested under limited scenarios. BreedVision
(Busemeyer et al., 2013)was created for small grain crops
and consists of a tractor-pulled platform equipped with
sensors such as a hyperspectral camera, 3D time-of-flight
cameras, laser distance sensors, and light curtains. Even
though this system included a color camera, data from
RGB images were not presented in the validation study
performed on triticale fields (Busemeyer et al., 2013). In
another study, RGB cameras were mounted on a hori-
zontal beam carried by a tractor and used to estimate the
fraction of green area per unit ground area as a growth
descriptor of wheat plots (Comar et al., 2012). A color
camera also was included on the Phenocart, a low-cost
portable platform mounted on a cart, to evaluate its
potential to estimate green pixels per wheat plot

(Crain et al., 2016). While this study showed prom-
ising results, it was only partially tested over 1 year
and 10 varieties. The use of RGB images to obtain
canopy green pixel fraction is the most common use
of this sensor as a proxy for biomass and growth rates
(Comar et al., 2012; Bai et al., 2016).

Significant advances have been made over the last
few years in ground-based field high-throughput phe-
notyping platforms (White et al., 2012; Araus and
Cairns, 2014), but most of them have been for short
crops, with sensors mounted on driver-operated plat-
forms collecting data from above the canopy. Most of
those sensors, like hyperspectral imaging, 3D time-of-
flight cameras, sonar proximity sensors, and thermal
cameras, could provide valuable phenological and phys-
iological data for short-stature crops viewed from above.
However, collecting architectural parameters andbiomass
yield component traits from tall crops, such as biomass
sorghum, remains a significant challenge. Ground-based
attempts to cover the phenotyping needs for tall crops
could rely on the use of an overhead gantry carrying
multiple sensors that moves along the three main axes
of a research field. The Field Scanalyzer, which was
used successfully to characterize wheat plots, is based
on this approach and could be utilized for tall plant spe-
cies, considering that the platform has sufficient vertical
clearance (6-m height; Virlet et al., 2017). However, this
approach has limitations related to the relatively small
area covered by the platform and the cost associated with
duplicate platforms needed for multisite research. There-
fore, there is a need for an innovativemobile and sensing
platform that can accommodate extreme crop height
while acquiring high-quality plant phenotypes.

The specific objectives of this study were (1) to create
a self-propelled high-throughput phenotyping plat-
form adaptable to tall crops such as biomass sorghum;
(2) to use stereo color cameras to collect plant archi-
tecture parameters from side views; (3) to develop/test
algorithms for data extraction of plant architecture pa-
rameters; (4) to validate algorithm-derived crop archi-
tectural trait data via comparisons with ground-truth
data; and (5) to perform genome-wide association studies
(GWAS) with the image-derived architecture traits
and compare results with those obtained previously
using manually collected phenotypic data in the same
set of sorghum genotypes.

RESULTS

Automated Phenotyping Robot (Phenobot 1.0)

Phenobot 1.0 is a field-based robotic platform equipped
with a navigation and auto-steering system, so that it runs
autonomously, and stereo cameras for image-based high-
throughput phenotyping (Fig. 1A). The minimum re-
quired speed to engage auto-steeringwas;0.3m s21. The
combination of 2.28-m row spacing and 62° view angle
allowed tall plants (up to 3 m) to be visualized with a
maximum of three sets of stereo cameras (Fig. 1B). This
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system was capable of recording a path and repeating
that path over time, with a 2-cm path tracking accur-
acy. Thus, prior to data acquisition, an initial tractor run
was used to map the coordinates of each plot and to
identify awithin-row sample location for each subsequent
image collection run. Meanwhile, the auto-guidance sys-
tem recorded the travel paths thatwere used subsequently
with the sample map to collect weekly images during the
entire growing season. Mapping the field for the first time
took approximately 5 h, but once completed, imaging the
entire field (;1.5 ha) required only 3 h. Only images col-
lected at the end of the season were analyzed and pre-
sented here. Because some sorghumgenotypeswere quite
tall (more than 2 m), an extension rig was used with the
maximum number of stereo cameras (three sets) to accu-
rately capture the top section of the canopy (Fig. 1B). This

flexible and extensible rig design allowed us to adjust
camera-plant distance, which is particularly important as
plants grow, and to maximize data acquisition through-
put by collecting stereo images of the rows to the right
and left of the Phenobot simultaneously (Supplemental
Fig. S1).

Data Acquisition

During data acquisition, the main program thread
constantly interpreted the current location from the
Global Positioning System/Transit data (GPRMC
string) and searched for the next nearest sample location
on the map. Once the tractor reached the next nearest
sample location, the corresponding set of stereo cameras
was immediately triggered, and the proper file name

Figure 1. Phenotyping robot (Phenobot) without (A) and with extension rig (B) holding sets of stereo cameras.

Figure 2. Data acquisition program
workflow. The main thread tracks the
robot location with RTK-Global Posi-
tioning System and broadcasts trigger
commands to the stereo camera heads
of the left/right side as soon as the robot
reaches the next imaging location on the
map. Meanwhile, it inserts a new file
name in the left/right file name list. Two
worker threads constantly fetch images
from the stereo cameras and use the next
file name to save the stereo images in
the solid-state drive (SSD). Thread 1 and
thread 2 handle the left and right side,
respectively. Robot speed is set by the
user and handled by the main thread.
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was constructed and saved. Two additional worker
threads constantly read the buffers of the cameras that
were recording the rows to the left and right of the
Phenobot, respectively, which permitted the images to
be savedwithout stopping the tractor. If a buffer was not
empty, the correspondingworker threadwould fetch the
images and save them with proper file names in two
separate solid-state drives (SSDs). A summary of the
data acquisition program is presented in Figure 2. The
maximum data acquisition speed that was possible

without overwriting any camera buffer was 0.67 m s21.
This limitation was the consequence of saving images to
SSDs, in spite of the implemented multithreading tech-
nique using two separate SSDs.Given thefield design and
the maximum travel speed, our data acquisition system
achieved an average data throughput of 5 MB s21.

Our operation time was from 10 AM to 4 PM to avoid
low solar elevation angles that would cause direct
sunlight to shine into the camera lens, particularly if the
planting directionwas north to south. The accuracy and

Figure 3. Ground-truth validation of plant height data. A subset of 20 genotypes was measured manually, and the cor-
responding data were correlated with height estimated using Phenobot-collected images processed with either the UsIn-
PHe or the Auto-PHe. The same subset of 20 genotypes was evaluated at two different time points: 63 to 75 d after planting
(DAP) and 83 to 87 DAP.
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efficiency of image-processing algorithms were not af-
fected by other variations in sunlight illumination be-
cause stereo reconstruction relies on the texture of the
image. This texture (local intensity variation) was pre-
served as long as the amount of light received by the
imaging sensor was within its dynamic range. To ensure
image quality, a polarizing filter was added to each lens
to reduce glare from the plant canopy that occurs under

strong sunlight, and supplemental lighting on the robot
(tractor headlight) was turned on to compensate for the
increased image noise under extreme low-light condi-
tions outside our normal operation time. Camera shutter
speed was typically set to 1/1,000 of a second to prevent
motion blur.During that exposure time, our robotwould
mostly move less than 0.67 mm, which was not a suffi-
cient movement to cause motion blur issues.

Figure 4. Ground-truth validation of stem diameter data. A subset of 20 genotypes was measured manually, and the
corresponding data were correlated with diameter estimated using Phenobot-collected images processed with either
DenS-Di or IPaS-Di. The same subset of 20 genotypes was evaluated at two different time points: 63 to 75 d after planting
(DAP) and 83 to 87 DAP.
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Extraction of Image-Derived Phenotypic Traits

This study focused on two plant architecture traits:
plant height and stem diameter. After feature extraction
with two alternative methods/algorithms for each phe-
notype, data sets were analyzed, validated with ground-
truth data, and subsequently used for a comparative
GWAS. The plant height data sets were as follows: (1)
Phenobot acquired with User-interactive Individual
Plant Height Extraction (UsIn-PHe) based on dense
stereo 3D reconstruction; (2) Phenobot acquired with
Automatic Hedge-based Plant Height Extraction (Auto-
PHe) based on dense stereo 3D reconstruction; and (3)
plant heights manually acquired in 2010 and published
previously (Zhao et al., 2016). The data sets for stem
diameter were as follows: (1) Phenobot acquired with
User-interactive Dense Stereo Matching Stem Diame-
ter Extraction (DenS-Di); (2) Phenobot acquired with
User-interactive Image Patch Stereo Matching Stem
Diameter Extraction (IPaS-Di); and (3) stem circum-
ferences manually acquired in 2010 and published
previously (Zhao et al., 2016).

Validation of Image-Based Algorithm-Derived Data

In addition, plant height and stem diameter data were
manually acquired for a subset of the rows grown in
2014 that had been subjected to automated image-based
data collection. A comparison was conducted between
these data and the image-based trait data from the same
rows with two objectives: (1) to determine the accuracy
of the two alternative extraction methods utilized for
each trait; and (2) to evaluate the repeatability of data
obtained with semiautomated approaches in which hu-
man intervention could introduce variability in the pre-
diction. This analysis demonstrated that the correlation
between manually collected and image-derived plant
height data was higher when using UsIn-PHe (r = 0.995)
as opposed to Auto-PHe (r = 0.824; Fig. 3). However, the
apparent superiority of UsIn-PHe should be interpreted
with caution, because there is an important imple-
mentation difference between the two methods used
for plant height. While UsIn-PHe was performed on

an individual plant basis (the same tagged plant
within a row was evaluated both manually and in
the image), Auto-PHe extracts the average plant height
of a particular row. Even though the sorghum accessions
used in this study are inbred lines and, thus, genetic
segregation within a row is not expected, there could be
variability among plants of the same genotype due to
differences in microenvironments, variation in planting
depth, and uneven plant density within a row. Thus, the
height of an individual plant (obtained manually and
with UsIn-PHe) could be slightly different from the
average row height (obtained with Auto-PHe). Addi-
tionally, Auto-PHe has an important advantage over
UsIn-PHe. Extracting the plant height of a row using
Auto-PHe on a single core of an Intel Xeon 3.5-GHz
processor requires, on average, only 6 s, whereas the
time required using the UsIn-PHe method depends
mostly on the operator’s decision-making speed.

For stem diameter, the correlation between manually
collected and image-based data was higher for IPaS-Di
(r = 0.929) than for DenS-Di (r = 0.749; Fig. 4). The four
replications per genotype used in the comparative
analysis were purposely performed by selecting dif-
ferent points on the stem. The within-genotype varia-
bility was lower when IPaS-Di was used (average stem
diameter per genotype = 0.76 mm) than when DenS-Di
wasused (average stemdiameter per genotype= 2.87mm).
The lower repeatability observed for DenS-Di is likely
the consequence of inherent methodological limitations to
reconstructing thin and relatively textureless structures.

Comparison of Feature Extraction Methods by GWAS

Plant Height

There was no statistically significant difference (P =
0.38) between the plant height values obtained using
UsIn-PHe andAuto-PHe (Tables I and II) for the total of
307 sorghum lines used in the comparative extraction
method analysis. However, data repeatability was su-
perior when Auto-PHewas implemented, as evidenced
by the smaller stem diameter and coefficient of varia-
tion obtained with this approach (Table I).

Table I. Descriptive statistics and coefficients of variation for plant height and stem diameter estimated
using the entire Sorghum Association Panel (SAP) and the two alternative algorithms for each trait

Location Parameter
Plant Height Stem Diameter

UsIn-PHe Auto-PHe DenS-Di IPaS-Di

Boone Mean (mm) 1,419.2 1,493.6 19.1 21.0
SD (mm) 478.5 439.1 3.8 3.6
Minimum (mm) 455.0 726.6 9.4 10.4
Maximum (mm) 2,942.2 2,848.6 40.0 32.3
Coefficient of variation 33.7 29.4 20.1 17.2

Ames Mean (mm) 1,299.4 1,395.2 22.3 22.8
SD (mm) 471.0 430.4 4.2 3.9
Minimum (mm) 533.7 637.4 9.4 10.5
Maximum (mm) 2,886.7 2,858.6 40.6 36.8
Coefficient of variation 36.2 30.8 19.1 17.4
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A comparison also was performed between GWAS
conducted using trait data obtained from the two al-
ternative plant height extraction methods and the pre-
viously published association results obtained with
manually collected data in 2010 (Zhao et al., 2016).
These analyses yielded marker-trait associations within
the same regions on chromosomes 9 and 6, with the
same markers within these regions consistently asso-
ciated with variation in plant height (Table III; Fig. 5).
Marker S9_57236791 was the most significant SNP
identified using data extracted fromboth UsIn-PHe and
Auto-PHe and the secondmost significant marker, after
S9_57236778, when the manually collected plant height
data were analyzed. Even though the associated region
on chromosome 6 was large, a consistent ranking of
markers also was observed. Marker S6_42736415 was
the most significant polymorphism identified using
UsIn-PHe, and this SNP ranked fourth when the Auto-
PHemethodwas used and second on the GWAS results
using manually collected data. Similarly, S6_44959724,
the most significant SNP in Auto-PHe-based analysis,
was the ninth and eighth most significant marker when
UsIn-PHe and manually collected data sets were used,
respectively (Table III).

The predicted effects of significant markers also were
similar for both extractions methods and generally

large (R2 range of 0.15–0.29), in agreement with previ-
ous knowledge about the genetic control of plant height
(Table III). Additionally, the relative effects of chro-
mosomes 9 and 6 were consistent, in that markers on
chromosome 9 always explained a larger proportion
of the phenotypic variance than those on chromo-
some 6 (Table III). Finally, heritability (h2) values were
very similar for the three data sets, with values of 0.97
and 0.98 for UsIn-PHe and Auto-PHe, respectively,
while the previously reported h2 for 2010 manual data
was 0.99.

Stem Diameter

A statistically significant difference was attributed to
the methodological effect used to extract stem diameter
values from Phenobot-collected images (P = 0.0264;
Table II). These results confirmed that the DenS-Di and
IPaS-Di methods generated significantly different phe-
notypic values, IPaS-Di being the best method based on
its lower stem diameter and coefficient of variation, as
demonstrated in the ground-truth validation study
described above (Table I and II).

The comparative GWAS analysis for stem diameter
was more challenging than that performed for plant
height, because this trait’s genetic architecture is more
complex with a lower heritability. Additionally, there
were methodological differences between the image-
derived data and the manually collected phenotype.
The 2010 data set was collected after completely strip-
ping all leaves off the stem, which means that the
measurement was based exclusively on stem thick-
ness without any variation attributed to the number
or thickness of leaves covering the stem. Finally, the
circumference was determined instead of the diameter,
and even though a round stem is expected, the presence
of leaf sheaths around the stem could alter the perceived
geometry of the stem characterized in images. In spite
of these methodological differences, the comparison
was deemed important because a major effect quan-
titative trait nucleotide controlling stem thickness
should still be identified with our image-derived
technology.

The same q value threshold (q, 0.27) was applied to
both the IPaS-Di andDenS-Di methods for comparative

Table II. ANOVA for plant height and stem diameter image-based
algorithm-derived data

All effects were considered random except extraction method,
which was treated as a fixed effect. Extraction methods were UsIn-
PHe, Auto-PHe, DenS-Di, and IPaS-Di.

Effects
Variance Explained

Plant Height Stem Diameter

Genotype 90.47% 26.36%
Rep (Loc) 0.034% 1.51%
Location 2.86% 20.26%
Genotype 3

location
1.48% 23.84%

P

UsIn-PHe versus

Auto-PHe

DenS-Di versus

IPaS-Di

Extraction method 0.384 0.0264

Table III. Comparative GWAS results for plant height estimated using different extraction algorithms

Only the most significant single-nucleotide polymorphisms (SNPs) on chromosomes 6 and 9 are
presented for each GWAS.

SNP
Auto-PHe UsIn-PHe Manuala

2log10 (P) R2 Rankb 2log10 (P) R2 Rankb 2log10 (P) R2 Rankb

S9_57236791 18.673 0.301 1 18.072 0.290 1 17.903 0.292 2
S9_57236778 17.634 0.283 2 17.257 0.276 2 18.421 0.290 1
S6_42736415 9.795 0.153 4 10.189 0.162 1 10.742 0.180 2
S6_44959724 10.427 0.155 1 9.701 0.145 9 10.102 0.159 8
S6_39106643 8.308 0.135 27 8.467 0.136 28 11.112 0.202 1

aData collected manually in 2010 and published by Zhao et al. (2016). bThe marker ranking is
established based on P values for the corresponding chromosome.
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purposes, and based on that, there were 115 signifi-
cant SNPs in the IPaS-Di-derived GWAS while only
41 DenS-Di-derived associations were detected (Fig.
6; Supplemental Table S1). The triple comparison of
association results (IPaS-Di versus DenS-Di, IPaS-Di
versus manual, and DenS-Di versus manual) revealed

that the IPaS-Di extraction method was the most effi-
cient in detecting associations consistently identified
in the other two methods (Table IV). Additionally, the
strength of the IPaS-Di method is demonstrated by the
fact that five significant markers were in commonwith
the GWAS results derived from manually collected

Figure 5. Comparative GWAS results for plant
height collected using 307 diverse sorghum ac-
cessions. Height data were collected manually
in 2010 (A; Zhao et al., 2016), estimated from
Phenobot-collected images using UsIn-PHe (B),
and estimated from Phenobot-collected images
using Auto-PHe (C). The horizontal red line in-
dicates the significance threshold.
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data, while no consistent association was identified
between the DenS-Di and manual methods.

As expected, the predicted effects of significant
markers were much smaller than those identified for
plant height. IPaS-Di-derived associations, in gen-
eral, had slightly lower estimations of marker ef-
fects, with R2 ranges of 0.047 to 0.085 for the 10 SNPs
identified with more than one method (Table IV).

Heritability values for DenS-Di data sets confirmed
the lower effectiveness of this method to consistently
quantify stem diameter (h2 = 0.66) when compared
with the IPaS-Di algorithm (h2 = 0.73). While both
heritabilities were slightly lower than the one reported
in 2010 (h2 = 0.88), this analysis provided additional
evidence to support the conclusion that the IPaS-Di
algorithm was the most efficient and robust method to

Figure 6. Comparative GWAS results for stem
diameter collected using 307 diverse sorghum
accessions. Data were collected manually in
2010 as stem circumference (A; Zhao et al.,
2016), and stem diameter was estimated from
Phenobot-collected images using DenS-Di (B)
and estimated from Phenobot-collected im-
ages using IPaS-Di (C). The horizontal red line
indicates the significance threshold.
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estimate stem diameter from images collected using a
high-throughput phenotyping technology.

DISCUSSION

The proposed high-throughput phenotyping plat-
form was conceived and created with the final goal of
obtaining plant growth and architecture measurements
throughout the growing season of a large set of diverse
sorghum accessions to facilitate the discovery of genes/
genomic regions via GWAS. This report presents the
technical details of the self-propelled platform, the
mounted sensors (stereo cameras), and a comparative
analysis of two alternative algorithms for each of
two traits: plant height and stem diameter. These two
phenotypes were selected because they have very
different genetic architecture complexities, and pre-
vious GWAS reports performed on the same set of
lines using traditional low-throughput manual mea-
surements were available for these traits, which made
it possible to conduct comparative analyses. The data
set used for GWAS corresponds to images collected
at the end of the season. Additionally, manual data
were collected on a small subset of lines over a period
of 25 d to estimate the accuracy of image-derived
extraction methods.
As expected, plant height was very amenable to

image-derived estimation. Both algorithms (UsIn-PHe
and Auto-PHe) generated plant height values that were
highly correlatedwith ground-truth data (0.99 and 0.82,
respectively), with high heritability values (0.97 and
0.98, respectively), andwith almost identicalGWAS results
(Fig. 5). These associations also were the same as those
reported previously by Zhao et al. (2016) from manually
collected data and confirmed the current knowledge on
genes/genomic regions that control this trait in sorghum.
Four Dwarf genes (Dw1, Dw2, Dw3, and Dw4) have long
been known to determine plant height (Quinby and
Karper, 1954). Dw1, localized on chromosome 9, is the
major locus (Brown et al., 2008) and was cloned re-
cently (Hilley et al., 2016; Yamaguchi et al., 2016).Dw2

has been mapped to chromosome 6 (Feltus et al., 2006;
Zou et al., 2012; Nagaraja Reddy et al., 2013), and its
effect on plant height is frequently detected in GWAS
as a large genomic region encompassing almost the en-
tire chromosome 6. This particular result is the conse-
quence of the genetically converted sorghum accessions
included in diversity panels such as the one investigated
here (Klein et al., 2008; Morris et al., 2013; Zhang et al.,
2015). Several linkage disequilibrium and linkage map-
ping studies also confirmed the location, importance,
and effects of these two regions on chromosomes 6 and 9
on plant height (Upadhyaya et al., 2012; Zou et al., 2012;
Morris et al., 2013, Nagaraja Reddy et al., 2013; Zhang
et al., 2015; Zhao et al., 2016). In spite of the similar
performance and efficiency of both algorithms to esti-
mate the actual morphological trait, Auto-PHe has the
advantage of being an automatic processing pipeline
with reduced run time and concomitant cost. Therefore,
Auto-PHe should become the preferred plant height
reconstruction and extraction method for image-derived
data in sorghum.

Stem diameter is a difficult phenotype to characterize
either manually or by high-throughput methods be-
cause (1) its heritability is lower than plant height; (2) it
varies along the stem; (3) it is altered by the number and
thickness of leaves covering the stalk; (4) estimation
accuracy and repeatability are compromised by the pres-
ence of tillers; (5) it has a complex genetic architecture; and
(6) its genotype-specific values could be altered by density
variability within the row. In spite of these biological
challenges, our results demonstrate that IPaS-Di is an
efficient algorithmwithwhich to estimate stem diameter
from image data because it generated values that are
highly correlated with ground-truth data (r = 0.92), with
higher heritability (h2 = 0.73) thanDenS-Di-derived data,
and with GWAS results more similar to those reported
previously. The accuracy of the IPaS-Di method to esti-
mate stem diameter was not only demonstrated by the
five significant SNPs consistently identified in this study
and by Zhao et al. (2016) but also by the identification
of markers that colocalize with a previously reported
QTL on chromosome 7 (Zou et al., 2012; Fig. 6). This QTL

Table IV. Comparative GWAS results for stem diameter indicating those significant SNPs consistently
identified by more than one methodology

SNP
IPaS-Di DenS-Di Manuala

2log10 (P) q R2 2log10 (P) q R2 2log10 (P) q R2

S1_69372 4.495 0.216 0.085 4.384 0.262 0.090
S1_4119171 4.240 0.221 0.055 5.143 0.104 0.077
S1_4119134 3.887 0.250 0.049 4.491 0.104 0.065
S1_72411757 3.665 0.258 0.051 4.209 0.262 0.063
S4_4624396 3.778 0.250 0.063 5.481 0.262 0.101
S5_62102924 3.725 0.250 0.058 4.655 0.262 0.076
S7_59261924 3.591 0.268 0.047 4.391 0.104 0.067
S7_59261932 3.591 0.268 0.047 4.391 0.104 0.067
S7_59261938 3.591 0.268 0.047 4.391 0.104 0.067
S8_46997924 3.595 0.268 0.050 4.378 0.262 0.067

aData collected manually in 2010 and published by Zhao et al. (2016).
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located on bin 2461 was identified using a biparental
population of 244 recombinant inbred lines in which
stem diameter was determined manually in multiple
environments. In our study, S7_59503360, physically
located on bin 2461, was significantly associated with
stem diameter when IPaS-Di was implemented to esti-
mate the trait. This important coincident result for such a
complex trait provides further evidence of the robust-
ness of our methodology and extraction algorithm.

Describing the phenome of a plant has become the re-
maining bottleneck in plant biology, and its importance to

advance the scientific discipline of plant genetics is
evident. Phenotypes can be described at the physical,
chemical, or biological level, and all these approaches
have significant technical challenges to overcome.
High-throughput phenotyping to obtain morphological
descriptors of plant architecture andgrowth is particularly
complex for crops such as sorghum that have tall dense
canopies. Plant density is another important management
condition that impacts the phenotyping technology
of choice and the accuracy of estimated parameters.
Sorghum is commercially planted at high density,

Figure 7. Hedge-based plant height estimation as the height of the AABB. A, Reference images of the three stereo camera heads.
B, The reconstructed 3D point cloud and its axis-aligned bounding box. Red, orange, and yellow points belong to the bottom,
middle, and top stereo cameras respectively.
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and this condition also is applied in field research ex-
periments to ensure relevance and impact. Our field
image-based high-throughput phenotyping platform
was used successfully to describe sorghum plant ar-
chitecture and dissect it into two of the most important
parameters, height and stem diameter. Even though
the wider row spacing required by our system could
be perceived as a disadvantage, this limitation in field
design was not necessarily imposed by the selection of
the mobile platform alone but more so by the neces-
sary distance required between the canopy and cam-
eras, to avoid the inevitable occlusion generated by the
dense and large canopy of crops such as sorghum.
Although the wider row spacing required by this de-
sign did increase the field size of the experiment, it
only had aminor impact on the length of time required
to complete the image acquisition process, because imag-
ing time is mostly spent traversing crop rows. The
overall image acquisition speed of our Phenobot was
about 0.5 ha h21. Finally, the wider row spacing could
raise concerns about the validity of GWAS or QTL
discoveries obtained with a field design that differed
from the commercially used row spacing. However,
our comparative GWAS demonstrated that, at least for
plant height and stem diameter estimations at the end
of the season, the genomic regions controlling these
traits were coincident with those identified previously
in studies that utilized the commercially used narrow
row spacing. Our approach is an important techno-
logical breakthrough in high-throughput phenotyping
because (1) Phenobot is auto-steered while other reported
ground-based high-throughput phenotyping plat-
forms must be operated by a driver (Montes et al., 2011;
Comar et al., 2012; Barker et al., 2016); (2) our sensors
(RGB stereo cameras) are inexpensive and readily
available to researchers, although to date not frequently
used in high-throughput phenotyping projects (Comar
et al., 2012; Busemeyer et al., 2013; Crain et al., 2016); (3)
stereo cameras were particularly selected to enable 3D
plant reconstructions; (4) our lateral camera view facili-
tates the characterization of yield component traits such
as stem diameter that cannot be estimated by aerial or
top-view cameras; (5) our advances in feature extraction
and algorithm development could be leveraged in other
image-based phenotyping systems that employ alterna-
tive mobile platforms; and finally, (6) our platform that
runs parallel to crop rows can be deployed to tall dense
canopy crops such as sorghum, where high-clearance
platforms (Andrade-Sanchez et al., 2014; Barker et al.,
2016) could not be used.

CONCLUSION

We have developed a novel ground-based platform
to collect high-throughput images from a side-view an-
gle and tested algorithms for the 3D reconstruction and
estimation of plant height and stem diameter. Our data
were validated using both ground-truth measurements
from the same subset of lines and large public data sets

for the same set of sorghum accessions. These studies
demonstrate that our approach can be used to charac-
terize architectural parameters of a tall crop planted at
high density. We also demonstrated that plant height
can be extracted accurately and automatically from im-
age data and that stem diameter can be estimated suc-
cessfully using a hybridmethod that involves user input.
While only images collected at the end of the season
were analyzed in this study, equivalent sets of images
exist for weekly data that will be processed and eval-
uated to determine growth parameters for future quan-
titative genetic studies. Additionally, our processing
methods will be modified and further developed to
obtain additional plant and canopy descriptors. These
descriptors will be evaluated as surrogate traits for bio-
mass yield that ultimately could be applied for predic-
tive plant phenomics.

MATERIALS AND METHODS

Plant Materials and Field Design

The image-based high-throughput phenotyping platform was deployed to
the field to collect data from a SAP of 307 accessions that include converted
tropical sorghum (Sorghum bicolor) and elite materials of historical importance
(Casa et al., 2008). Maximum geographic and genotypic diversity as well as all
sorghum types and races are represented in this panel, which has been used
successfully in several association studies (Sukumaran et al., 2012; Morris et al.,
2013; Mantilla Perez et al., 2014; Zhao et al., 2016).

In 2014, the SAP was planted in two locations using a randomized complete
block design with two replications per genotype per location. Each accession
was planted in a two-row plot with 2.2 m spacing between plots and 1.5 m
spacing between rows of a particular plot. Considering that this SAP includes
grain and forage accessions, blocks were split by type to minimize the unfair
competition that could be generated by drastically different plant heights. The
experiment, performed at the Iowa State University Agricultural Engineering
and Agronomy Research Farm (AEARF) in Boone, Iowa, was planted on May
30, while the second location, at Curtiss Farm in Ames, Iowa, was planted on
June 12, an intentional delay to generate more contrasting environmental
conditions between the two locations.

Phenobot Development and Construction

Our field-based robotic system consists of fourmajor subsystems: themobile
platform, the navigation system, the instrumentation, and the datamanagement
(Fig. 1A). The mobile platform is a John Deere 1026R subcompact utility tractor
equipped with a Topcon 350 Auto-Guidance system (TOPCON). The auto-
guidance system has an AGI-4 receiver/steering controller (TOPCON) that
integrates antenna, receiver, and steering controller together. The steering
wheel was replaced by the AES-25 electric steering wheel (TOPCON), and an
X30 console (TOPCON) was included as the user interface. A linear actuator,
connected to the forward speed pedal, was used to control the tractor speed by
sending commands via RS-232 to set the cylinder position of the linear actuator.
AGI-4 outputs Global Positioning System National Marine Electronics Asso-
ciation strings at 10 Hz, in which the recommended minimum specific Global
Positioning System/transit data (GPRMC string) was used to map imagining
locations and localize the robot.

The instrumentation includes multiple sets of stereo cameras on a vertical
sensor rig looking at sorghum plants with a side view. Multiple cameras at
different height levels substantially alleviated occlusion causedby long canopies
growing toward thecamerasandreduced theminimumcamera-to-cropdistance
required to capture the entire plant, in comparison with a single camera with a
super-wide field of view. Grasshopper GRAS-20S4C-C color cameras (Point
Gray)were selected and built into a stereo camera system (Supplemental Fig. S1)
in which multiple sets can be connected to an IEEE-1394b bus and synchro-
nously triggered using its FlyCapture Software Development Kit. This feature
ensured that all stereo images of a given plant were taken simultaneously. The
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imaging sensor has a resolution of 1,624 3 1,224; thus, the image file is ap-
proximately 2 MB when saved in eight-bit RAW format. Additionally, the
camera has a 32-MB onboard buffer to temporarily store images that are not
saved on an external storage device in time. Compatible lenses of 6 mm focal
length were used to obtain a view angle of 62.1°. A linear polarizing filter was
placed in front of each camera lens to suppress glare on sunny days. A rotatable
rig supporting stereo cameras was attached in front of the tractor, and an ex-
tension rig was added when plants grew taller than the field of view of the two
lower camera sets (Fig. 1B).

Phenobot Data Acquisition

Phenobot 1.0 navigated between the two-row plots and collected both left and
right images.Therefore, twoimageswereobtainedperplot thatcorrespondedtoone
side view of each of the two rows. Using Phenobot 1.0, data were acquired weekly
duringtheentiregrowingseason.However, for thisanalysis,wefocusexclusivelyon
images collected at the end of the season to compare this new technology with
previously available data collected by hand for the same SAP (Zhao et al., 2016).
Therefore, the data presented herein for the entire diversity panel correspond to
images collected on August 25 for the AEARF and on September 3 for the Curtiss
Farm. A subset of earlier images was analyzed for ground-truth validation as
explained below.Our data acquisition software,written inC#using the FlyCapture
Software Development Kit from the camera vendor, was run on a Getac B300
rugged laptop with an Intel Core i7-3520M processor running at 2.9 GHz.

Algorithms for Feature Extraction

UsIn-PHe Based on Dense Stereo 3D Reconstruction

A graphical user interface was developed to facilitate the extraction of plant
height data from individual plants. A user would first visualize the reference
image (from the bottom stereo camera head) anddrawa baseline l2D on the image
to represent the ground plane. Because Semi-Global Matching (Hirschmüller,
2008) has proven an accurate and efficient stereo matching method in practice,
we implemented the Semi-Global BlockMatching in OpenCV library to produce
the disparity map of each reference image. Each stereo camera head was cali-
brated to obtain a reprojection matrix Q. With the disparity value and Q, the 3D
coordinates of every pixel in the reference image can be obtained. Themiddle and
top stereo camera heads alsowere calibratedwith respect to the bottomone, such
that the reprojected 3D point clouds were transformed back in the coordinate
system of the bottom one. The 3D coordinates of each pixel on the baseline l2D
were sampled and used to fit a 3D baseline l3D using random sample consensus
(Fischler and Bolles, 1981), which is robust against outliers. Subsequently, the
three reference images of the three stereo camera heads on the same side were
shown for the user to zoom in and click the top point ptop of the plant of interest
(Supplemental Fig. S2). Let Ptop be the corresponding 3D point of ptop. Plant
height is estimated by the distance between point Ptop and line l3D.

Auto-PHe Based on Dense Stereo 3D Reconstruction

As a consequence of severe image occlusion, identifying specific character-
istics of a single plant can be a difficult task for crops with dense canopies.
Therefore, we also developed an automatic hedge-based plant height extraction
pipeline. First, the stereo images were used to reconstruct the 3D point cloud of
each imaging location that was first sampled to speed up computation time.
Point Cloud Library (Rusu and Cousins, 2011) was adopted to develop our
processing pipeline.

We defined the plant growth plane as a vertical plane that minimizes the
distancesbetweenstemsanditself.Our stereo cameraswerenot installedparallel
to the plant growthplane, since the plant baseline does not form ahorizontal line
in the image, as shown in Supplemental Figure S2. Therefore, it was first nec-
essary to align the plant growth direction with the x axis and the row direction
with the y axis using a predefined rotation matrix. Background plants were
removed based on depth from the bottom stereo camera. Since the stereo
camera position and orientation are relatively fixed to the crop row, the baseline
l2D described in the previous section (Supplemental Fig. S2) often does not
change its position in the image. Any pixels below the baseline were discarded,
and so were their 3D points. Pixels on the baseline were sampled and their 3D
points used to fit a 3D line by random sample consensus. If the direction of l3D
deviated from the y axis by more than a threshold angle or it was outside the
possible range, the last valid l3D was used instead. Since all plots within a row
were processed consecutively, the position of l3D relative to the bottom stereo

camera was expected to be similar. The 3D point cloud was further refined by
removing small clusters via Euclidean cluster extraction (Rusu, 2010), a par-
ticularly important step if any weeds appear above the baseline in the bottom
image. After this final step, the 3D point cloud was assumed to contain only the
plants of interest. Note that the baseline can be redrawn for each genetic line if
the user notices that the previously established l2D does not align with the
current base of plants in the image. Themisalignment happens when the tractor
travels on uneven ground in the field and the stereo camera pose relative to the
plants undergoes a large change. However, we found that such adjustment was
rarely needed for our image data set.

Subsequently, an axis-aligned bounding box (AABB) was extracted inwhich
each edge was aligned with one of the axes of the coordinate system
(Supplemental Fig. S3). Two vertices define an AABB, Pmin (xmin, ymin, zmin) and
Pmax (xmax, ymax, zmax), whose coordinates are minimum and maximum, respec-
tively. ymin, zmin, ymax, and zmax were extracted from the 3D point cloud. xmin and
xmax are related to the hedge-based plant height, but if extracted directly from
data points, they would define the maximum height observed in a particular
plot. Even though all sorghum accessions evaluated in this experiment are inbred
lines and, thus, minimum variability was expected within a plot, in some cases,
within-row plant height variation was present. Therefore, data points above the
centroidwere equally divided intoN subAABBs along the y axis to determine the
average height of all plants in the point cloud. The weighted median xtop was
computed across the maximum x coordinate inside each subAABB, where the
weight equals the number of points in the subAABB. The weighted median
would provide amore robust estimate of average plot height even in situations in
which there was a large gap between two adjacent plants or when a few plants
were significantly taller thanmost plants in a particular plot. The xtop computed as
described abovewould become xmax of theAABB. xmin, which corresponds to the x
coordinate of the center point on the 3D baseline, was used as the plant base. Any
points outside the AABB were discarded, and the hedge-based plant height was
finally estimated as the absolute difference between xmin and xmax. Figure 7 illus-
trates the extractedAABB for a sample point cloud, where the height of the AABB
is used as the plant height estimate of the corresponding plot.

DenS-Di

A graphical user interface also was developed for researchers to identify a
representative stemwithin a row to estimate stem diameter. Given the reference
images, such as those in Supplemental Figure S2, the user would zoom in on a
stem segment and proceed to estimate stem diameter using one of the following
methods.

The user would select two points on the stem edges, one on the left (pl) and the
other on the right (pr), as shown in Supplemental Figure S4A. The line connecting pl
and pr should be perpendicular to the stem edges. Pl and Pr, the corresponding 3D
points of pl and pr, were available after the dense stereo matching and back pro-
jection. Stem diameter was then estimated as the distance between Pl and Pr.

IPaS-Di

After the user selected four points on the stem edges, as shown in
Supplemental Figure S4B, the diameter was first estimated in the image coor-
dinate system. The line equations of the two edges were computed, and for each
point, its distance to the other side was determined. Finally, all four distances
were averaged to obtain the final stem diameter Dimage in pixels.

The image patch formed by the four pointswas assumed to be fronto-parallel
to the image plane for depth reconstruction. Therefore, we used the image patch
in the reference stereo image to match its correspondence in the second stereo
image and obtained a shared disparity dshared in pixels for the four reference
points. The reason for the fronto-parallel assumption was that our camera-to-
plant distance was large and there was not enough spatial resolution to re-
construct the curved surfaces on the stem. Normalized cross-correlation
was adopted to evaluate the matching cost because it is well known for its
robustness against radiometric differences in real images (Hirschmüller and
Scharstein, 2007). Stem diameter in a metric unit is given by

D ¼ bDimage
�
dshared

where b is stereo camera baseline in the same metric unit of D.

Statistical Analysis

Phenotypic data obtained using Phenobot 1.0, as described above, included
(1) at least three independent manually collected plant height values per plot
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obtained using UsIn-PHe; (2) two plant height values per plot obtained using
Auto-PHe, which correspond to each of the two rows per plot; (3) at least three
independent manually collected stem diameter values per plot obtained using
DenS-Di; and (4) at least three independent manually collected stem diameter
measurements extracted with IPaS-Di.

These data sets were analyzed first by trait using PROC MIXED in SAS
version 9.4 (SAS Institute) with the following model:

Yijkl ¼ mþMi þ Lj þ RðjÞk þGl þ LGjl þ «ijkl

where Yijkl is the response variable, m is the overall mean, Mi is the extraction
method, Lj is the location effect, R(j)k is the replication nested within the location
effect, Gl is the genotype (accession) effect, LGjl is the genotype-by-location
interaction, and «ijkl is the residual. All effects were considered random ex-
cept method, which was treated as a fixed effect.

The followingmodel, in which data sets were analyzed by trait andmethod,
wasused to calculate the Best LinearUnbiasedPredictor for each accession, to be
used as its observed phenotypic value for GWAS:

Yijk ¼ mþ Li þ RðiÞj þGk þ LGik þ «ijk

where Yijk is the response variable, m is the overall mean, Li is the location effect,
R(i)j is the replication nested within the location effect, Gk is the genotype
(accession) effect, LGik is the genotype-by-location interaction, and «ijk is the
residual. All effects were considered random.

For manually collected data in 2010, statistical analysis was performed as
described by Zhao et al. (2016) and Best Linear Unbiased Predictors used for
GWAS.

Heritability values were calculated for each trait as

h2 ¼ s2
G
���

s2
E þ lrs2

Gþr s2
GL

��
lr
�

where l corresponds to thenumberof locations, r is thenumberof replicationsper
location, s2

G is the genotypic variance, s2
E is the residual variance, and s2

GL is
the variance due to the genotype-by-location interaction. Heritability, as esti-
mated herein, provides a measurement of repeatability.

GWAS

The association between phenotypic data and genotypic variants was de-
termined using a mixed linear model as implemented in TASSEL software
version 5.2.12 (Bradbury et al., 2007), in which corrections for population
structure (Q) and kinship (K) are implemented to minimized false-positive
associations (Zhang et al., 2010). Q, used as a fixed effect, and K, imple-
mented as a random effect, were estimated as described by Zhao et al. (2016).

The genome-wide markers used for the association analysis included (1) a
public data set of ;260,000 SNPs (http://www.morrislab.org/data) obtained
using genotyping-by-sequencing technology (Elshire et al., 2011; Morris et al.,
2013); (2) 263 SNPs specifically targeting brassinosteroid biosynthesis and
signaling genes (Mantilla Perez et al., 2014); and (3) 54 SNPs specifically de-
veloped to cover GA biosynthesis and signaling genes (Zhao et al., 2016). This
complete set of SNPs was filtered to include only those with a minor allele
frequency greater than 5% and missing data less than 40%. After these two
criteria were applied, the final set of SNPs under investigation included 127,992
markers.

The significance threshold was established for each trait and each extraction
method based on a false discovery rate to reduce the number of false positives
due to multiple comparisons. The false discovery rate was estimated using
QVALUE software (Storey and Tibshirani, 2003).

Ground-Truth Validation of Image-Derived Data

Twenty contrasting genotypes for plant architecture were selected for
ground-truth validation and evaluated, both manually and using Phenobot 1.0,
on August 18 and 25 at AEARF and Curtiss Farm, respectively. Additionally,
images from earlier dates also were correlated with ground-truth data to
evaluate the robustness of the sensor platform and algorithms throughout the
season and to predict plant architecture parameters at different growth stages.
These earlier dates were August 13 for AEARF and August 14 for Curtiss Farm.
In summary, these images spanned a growing period from 63 to 87 d after
planting. A single plant of each genotype was tagged with a red plastic tie, and
its height and stem diameter were measured by hand. Plant height was de-
termined from the ground to the top of the panicle, if the genotype had already

flowered, or to the highest leaf collar, if panicle excision was not complete. Stem
diameter was determined using a caliper at the stem section marked by the red
tie. Phenobot-collected images for the same set of accessions were processed
using the methods described above. For semiautomatic extraction pipelines,
four independent estimations were obtained for each specific tagged plant to
investigate the repeatability of user-defined data. For the automatic hedge-
based extraction method, a single estimate of plant height was obtained per
genotype because the algorithm outputs a unique best solution. Correlations
between manual measurements and image-derived data were calculated using
the Pearson correlation coefficient.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Closeup image of stereo camera heads mounted
on a rotatable rig.

Supplemental Figure S2. Reference images of the three stereo camera
heads.

Supplemental Figure S3. The AABB.

Supplemental Figure S4. Stem diameter extraction using DenS-Di and
IPaS-Di.

Supplemental Table S1. Comparative GWAS results for stem diameter
extracted using Phenobot-obtained images processed with two alterna-
tive algorithms and manually collected data.
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