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Lignin, the plant cell wall polymer that binds fibers together but makes processing difficult, is traditionally formed from
three monomers, the so-called monolignols (p-coumaryl, coniferyl, and sinapyl alcohols). Recently, we discovered, in grass
lignins, a phenolic monomer that falls outside the canonical lignin biosynthetic pathway, the flavone tricin. As we show
here, palm fruit (macaúba [Acrocomia aculeata], carnauba [Copernicia prunifera], and coconut [Cocos nucifera]) endocarps
contain lignin polymers derived in part from a previously unconsidered class of lignin monomers, the hydroxystilbenes,
including the valuable compounds piceatannol and resveratrol. Piceatannol could be released from these lignins upon
derivatization followed by reductive cleavage, a degradative method that cleaves b-ether bonds, indicating that at least a
fraction is incorporated through labile ether bonds. Nuclear magnetic resonance spectroscopy of products from the
copolymerization of piceatannol and monolignols confirms the structures in the natural polymer and demonstrates that
piceatannol acts as an authentic monomer participating in coupling and cross-coupling reactions during lignification.
Therefore, palm fruit endocarps contain a new class of stilbenolignin polymers, further expanding the definition of
lignin and implying that compounds such as piceatannol and resveratrol are potentially available in what is now
essentially a waste product.

Lignin has long been considered to be a complex
phenylpropanoid polymer derived essentially from the
oxidative radical coupling of three p-hydroxycinnamyl
alcohols (monolignols) differing in their degree of
methoxylation, p-coumaryl, coniferyl, and sinapyl al-
cohols, that form the p-hydroxyphenyl (H), guaiacyl
(G), and syringyl (S) units, respectively, when incor-
porated into the lignin polymer (Boerjan et al., 2003;
Ralph et al., 2004; Morreel et al., 2010). Once synthe-
sized in the cytoplasm, the monolignols are trans-
ported to the cell wall, where they are oxidized and
polymerized. The oxidation/dehydrogenation reac-
tion is initiated by one-electron oxidation of a phenolic
monolignol to its phenoxy radical by plant peroxi-
dases and laccases. Lignification then proceeds by
radical coupling of two phenoxy radicals between
positions dictated by resonance delocalization of the
single-electron density and usually in an end-wise
manner between a monomer and the growing lignin
chain, giving rise to variously interconnected monomer-
derived units characterized by their interunit ether and
carbon-carbon linkages.

It is now increasingly appreciated that lignins also
derive from monomeric units beyond the traditional
monolignols. As has been reviewed (Ralph, 2010;
Vanholme et al., 2012; Mottiar et al., 2016), several other
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phenolic compounds, all deriving from the shikimate-
derived monolignol biosynthetic pathway, have been
found to behave as lignin monomers in many plants,
participating in radical coupling reactions during lig-
nification and resulting in cross-coupled structures.
Several monomers derived from truncated monolignol
biosynthesis, such as the hydroxycinnamaldehydes
that are the immediate precursors of monolignols, also
are especially prevalent in various mutant and trans-
genic plants. Incompletely methylated monomers,
caffeyl and 5-hydroxyconiferyl alcohols, are found in
O-methyltransferase-deficient mutants and transgenics
and can be found as the sole lignin monomers involved
in seed coat lignification in several plants (Chen et al.,
2012, 2013). Monolignol ester conjugates (with acetate,
p-coumarate, and p-hydroxybenzoate) also are used as
lignin monomers in a variety of natural plants (Ralph,
2010). We recently exploited the clear metabolic mal-
leability of lignification by extending the monolignol
conjugates to includemonolignol ferulates. Introducing
an exotic feruloyl-CoA monolignol transferase gene/
protein into poplar (Populus spp.) and Arabidopsis
(Arabidopsis thaliana), in a nature-inspired manner, was
recently shown to successfully introduce readily chemi-
cally cleavable ester linkages into the lignin backbone,
facilitating its depolymerization during pretreatments or
pulping (Wilkerson et al., 2014). It was shown subse-
quently, via more sensitive analytical methods, that
nature has, in fact, been biosynthesizing ligninswith low
levels of these conjugates all along in a variety of plant
species but not universally (Karlen et al., 2016).
In all of the cases above, however, the monomers

have been derived from the monolignol biosynthetic
pathway. The recent discovery of the flavone tricin in
the lignins from grasses and other monocots, therefore,
was unanticipated, but is now well established (del
Río et al., 2012b; Rencoret et al., 2013; Lan et al., 2015,
2016a, 2016b; Eloy et al., 2017). Tricin, unlike mono-
lignols that originate from the shikimate biosynthetic
pathway, is biosynthesized from a combination of the
shikimate and acetate/malonate-derived polyketide
pathways. Tricin’s only mode of incorporation is via
49-O-b-coupling with a monolignol; therefore, it can
only appear at the initiating end of the lignin chain.
All these discoveries indicate that lignification is a

flexible mechanism and that the plant is capable of us-
ing a variety of phenolic compounds for the formation
of the lignin polymers. The discovery of nonconven-
tional phenolic precursors, different from the three
canonical monolignols, illustrates the high metabolic
plasticity of lignification and reveals that any phenolic
compound that is transported to the cell wall may be
oxidized and incorporated into the lignin polymer
during lignification via radical coupling reactions,
subject exclusively to simple chemical compatibility
(Boerjan et al., 2003; Ralph et al., 2004, 2008; Ralph,
2006, 2010; Vanholme et al., 2008, 2012; Morreel et al.,
2010; Mottiar et al., 2016). In this study, we report the
occurrence of a second class of polyphenolic com-
pounds, hydroxystilbenes, also arising from outside

the monolignol biosynthetic pathway, in the lignins of
palm fruit endocarps.

Hydroxystilbenes are a class of nonflavonoid poly-
phenolics that, like the flavonoids, are metabolic
hybrids resulting from a combination of the shikimate-
derived phenylpropanoid and the acetate/malonate-
derived polyketide pathways. Hydroxystilbenes, as
with monolignols, can be oxidized to form radicals
that are resonance stabilized, as shown for piceatannol
1 in Figure 1A. Hydroxystilbene (dehydro)dimerization
(Fig. 1, B and C), or the cross-coupling of different
hydroxystilbenes, produces a wide variety of dimers
and higher oligomers. Illustrating their latent chemical
compatibility with lignification, hydroxystilbenes can
cross-couple with monolignols M (Fig. 1, D and E);
several stilbenolignans have been identified in a variety
of plants from different families (Kobayashi et al., 1996;
Lee et al., 2001; Yao et al., 2006; Begum et al., 2010).
Therefore, it is reasonable to speculate that phenolic
stilbenoids present in the cell wall also could cross-
couple with monolignols and the growing lignin poly-
mer to become integrally incorporated into the lignin
structure, as occurs with other nontraditional mono-
mers. We propose that such polymers be classed as
stilbenolignins and the low-molecular-mass oligomers
as stilbenolignols, as for the recently coined terms
flavonolignins and flavonolignols (Lan et al., 2015,
2016a, 2016b).

RESULTS AND DISCUSSION

Release of Hydroxystilbenes by Derivatization Followed
by Reductive Cleavage

Lignins isolated from macaúba (Acrocomia aculeata),
carnauba (Copernicia prunifera), and coconut (Cocos
nucifera) palm fruit endocarps were analyzed by de-
rivatization followed by reductive cleavage (DFRC),
the degradation method that cleaves b-ether bonds in
the lignin polymer but leaves g-esters intact (Lu and
Ralph, 1997a; Wilkerson et al., 2014; Lu et al., 2015;
Karlen et al., 2016). The chromatograms of the DFRC
degradation products from macaúba (Fig. 2) and from
all three palms (Supplemental Fig. S1) show the re-
leased cis- and trans-isomers of G (cG and tG) and S (cS
and tS) lignin monomers (as their acetylated deriva-
tives) arising from normal units in lignin as well as
peaks corresponding to g-p-hydroxybenzoylated S
(cSpB and tSpB) lignin units as usually noted from
the lignins from palms (Ralph and Landucci, 2010;
Rencoret et al., 2013; Lu et al., 2015). More interesting
was a strong peak, released from both macaúba and
carnauba lignins and at low levels from coconut lignin,
that we had not observed previously and was identi-
fied as the hydroxystilbene piceatannol 1 (Fig. 2;
Supplemental Fig. S1). Its identity was confirmed by
comparison with an authentic piceatannol standard
that presented exactly the same retention time and
mass spectrum as the released compound. Two other
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related hydroxystilbenes, isorhapontigenin 2 and
resveratrol 3, also were released from these lignins upon
DFRC, although in lower amounts. The relative areas
from the gas chromatography-mass spectrometry-total
ion chromatogram peaks are given on the figures. For
reasons that will become evident below, we note that
neither of the products from other catechols, caffeyl or
5-hydroxyconiferyl alcohol, that have been observed
in lignins from various O-methyltransferase-deficient
plants, was evident beyond the trace levels that are al-
ways seen from the demethylation of G and S units via
DFRC (and are always in proportion to the normalG and
S monomer levels; Lu and Ralph, 1998).

Piceatannol, isorhapontigenin, and resveratrol have
not been detected previously in native lignins. Such
hydroxystilbenes, like the ligninmonomers themselves,
can only be released via DFRC from polymer units that
are present in b-ether-linked structures. Unlike tricin,
which has only one possible mode of incorporation,
piceatannol would be expected to couple and cross-
couple with other piceatannol molecules through dif-
ferent types of linkages, forming a variety of dimeric
(e.g., Pb [Fig. 1B] and Pc [Fig. 1C]) and oligomeric
structures. Indeed, such compounds, often optically
active, are known from various plant extractives (Baba
et al., 1994; Iliya et al., 2002; Li et al., 2005; Xiang et al.,

Figure 1. Piceatannol radical, and rad-
ical coupling reactions. A, The most
stable phenolic radical is that from de-
hydrogenation of the 4-OH. Resonance
forms show how coupling can occur at
the 4-O-, 5-, 8-, and 10-positions,
among others. B, Piceatannol dehy-
drodimerization by 8-O-49 coupling to
give Pb, cassigarol E (Li et al., 2005). C,
Piceatannol dehydrodimerization by
8-109 coupling to give Pc, scirpusin B
(Nakajima et al., 1978). D, Cross-coupling
of monolignols M, sinapyl and coniferyl
alcohol, with piceatannol 1 via b-O-49
coupling to give the stilbenolignols V,
aiphanol (Lee et al., 2001; Begum et al.,
2010) and its G analog. E, Cross-coupling
of monolignolsM with piceatannol 1 via
b-89 coupling to give the stilbenolignols
K, kompasinol A or maackolin (Kobayashi
et al., 1996; Lee et al., 2001; Yao et al.,
2006; Begum et al., 2010) and their G
analogs. Note that the names are often
given for dimeric hydroxystilbenes or stil-
benolignans that may be optically active;
here, we are referring to the racemic
compounds produced during lignification.
Stereochemical rendering on Pb, Pc,V, and
K is to show the trans-nature of the rings
and does not imply optical activity: the
other enantiomer is equally present in the
racemates. These structures, other than K
(for which no indication can be found), are
evidenced in the lignins from macaúba,
carnauba, and coconut palm endocarps.
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2005; Morikawa et al., 2010; Quideau et al., 2011).
Moreover, piceatannol also can cross-couple with
monolignols (and oligolignols) in a variety of ways, two
of which are shown in Figure 1, D and E. That such
cross-coupling reactions can occur is evidenced by the
array of stilbenolignans, including aiphanol V and
kompasinol A (or maackolin) K, which are the radical
coupling products of piceatannol and sinapyl alcohol
(Kobayashi et al., 1996; Lee et al., 2001; Banwell et al.,

2005; Begum et al., 2010). Although lignification and
lignan formation are distinct processes separated in time
and space (Ralph et al., 1999; Umezawa, 2003), the pres-
ence of such stilbenolignans reveals that piceatannol also
is compatible with the radical coupling reactions that
typify lignification. The actual amounts of piceatannol
monomers being incorporated into these lignins is
logically, due to the coupling modes available to them,
higher than the level released by DFRC. An assessment
of the extent to which the polymer derives from picea-
tannol (and the other hydroxystilbenes), and the types
of structures produced, is most readily gained from
NMR studies.

NMR Examination of the Lignins for Coupling and
Cross-Coupling Products of Piceatannol

The lignins isolated from macaúba, carnauba, and
coconut palm fruit endocarps were analyzed by 2D
HSQC (heteronuclear single-quantum coherence) NMR
in DMSO-d6:pyridine-d5 (4:1; Figs. 3 and 4); in order to
assess the product levels in the entire material, the
unfractionated cell wall material also was analyzed via
previously described whole cell wall NMR methods
(Mansfield et al., 2012; Supplemental Fig. S2). Large
differences were observed in the spectra of these lignins
with respect to the spectra of other typical lignins,
particularly in the signals observed in the aromatic re-
gion (Fig. 3). The main aromatic correlation peaks cor-
responded to the different lignin (G and S) units as well
as the pendant p-hydroxybenzoates (pB). The most
striking feature was the presence of a previously un-
reported group of strong signals (labeled Pb and Pc)
appearing at 100 to 107/5.8 to 6.8 ppm (dC/dH) that we
assign here to piceatannol-derived units. Likewise, the
oxygenated-aliphatic region of the spectra (Fig. 4) also
showed signals other than those commonly observed
from conventional lignin structures (b-aryl ethers A,
phenylcoumarans B, resinols C, or cinnamyl alcohol
end groups I). These correlation peaks, labeled Pb and
Pc, are assigned here to structures involving piceatannol
units. Definitive assignments of these signals were
achieved by HSQC-TOCSY (Supplemental Fig. S3) and
HMBC (Supplemental Fig. S4) experiments and by
comparing with piceatannol polymerization products
and in vitro biomimetic cross-coupling reaction results
(Figs. 3 and 4, D–F). Thus, Pb was identified as a ben-
zodioxane structure formed via 8-O-49-type radical
coupling of a piceatannol unit at its 8-position with
another piceatannol unit (at its O-49 position), followed
by internal trapping of the quinone methide interme-
diate by the 39-hydroxyl group (Fig. 1B); Pc was iden-
tified as a phenylcoumaran structure formed by the
radical coupling of a piceatannol unit (at its 8-position)
with another piceatannol unit (at its 109-position)
followed by a subsequent 119-O-7 bonding during
rearomatization of the quinone methide intermediate (Fig.
1C). The structure of Pcwas confirmed by comparing with
the HSQC spectrum of e-viniferin, a related dehydrodimer

Figure 2. Hydroxystilbenes released from lignins by reductive cleav-
age. Top, Total ion chromatogram of the DFRC degradation products
released from the lignin from macaúba fruit endocarps, showing the
presence of stilbenoid compounds (1, piceatannol; 2, isorhapontigenin;
3, resveratrol, as their acetate derivatives). cG, tG, cS, and tS are the
normal cis- and trans-coniferyl (G) and sinapyl (S) alcohol monomers
(as their acetate derivatives). cSpB and tSpB are the cis- and trans-sinapyl
p-hydroxybenzoates (as their acetate derivatives). Bottom, Electron-
impact mass spectrum from peak 1 matches that of an authentic stan-
dard of piceatannol 1 (acetylated). The chromatograms from all three
palm endocarps examined here (macaúba, carnauba, and coconut) are
shown in Supplemental Figure S1. Relative peak areas are given, with
all identified lignin-derived aromatic components, including those from
the released hydroxystilbenes, totaling 100%. (For the traces from all
three palm samples, see Supplemental Fig. S1).
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of resveratrol (Ngoc et al., 2008; Wang et al., 2011). As-
signment details are described in Supplemental Data S1.

In addition to the radical dehydrodimerization struc-
tures from two piceatannol monomers, an important
structureV, arising from the cross-coupling of piceatannol
and monolignols, also was identified in the lignins of all
three palm fruit endocarps. As anticipated for cross-
coupling of a monomer with a catechol unit, character-
istic benzodioxane structures are clearly observed in

the NMR spectra of Figure 4. The Ca/Ha (Va) and Cb/
Hb (Vb) correlations were observed at dC/dH 75.8/4.97
and 78/4.2 in DMSO-d6:pyridine-d5 (4:1), whereas the
Cg/Hg correlations appear at around dC/dH 60.1/3.44
and 3.63, superimposed on other signals. All these
signals are in the same coupling network, as seen in
the HSQC-TOCSY spectrum (Supplemental Fig. S3).
These correlation signals match those for benzodioxane
structures found in other lignins from the catechol

Figure 3. Aromatic regions of the 2D HSQC NMR spectra. A, Macaúba fruit endocarp milled wood lignin (MWL). B, Carnauba
fruit endocarp MWL. C, Coconut endocarp MWL. D, Dimers and oligomers from biomimetic coupling of piceatannol. E,
Piceatannol and coniferyl alcohol cross-coupled polymers from biomimetic coupling. F, Piceatannol and sinapyl alcohol cross-
coupled polymers from biomimetic coupling. The piceatannol-derived peaks in the palm endocarp lignins are well matchedwith
those from the biomimetic in vitro polymerization and dimerization products. Note that, as neither the piceatannol stilbene
double-bond P7 and P8 peaks nor the corresponding P79 and P89 peaks from the piceatannol dimers Pb and Pc or the crossed-dimer
V are evident in the lignins (A–C) or the cross-coupled synthetic lignins (E and F), the initial coupling of piceatannol at its
8-position must be highly dominant; the piceatannol-containing structures shown are to label the moieties from the various
homo-coupled and cross-coupled entities but do not imply that such intact units are in the polymer (i.e. they are clearly further
coupled in the polymer). All spectra were run in DMSO-d6:pyridine-d5 (4:1). Analogous spectra from unfractionated whole cell
wall samples and the coniferyl alcohol + piceatannol biomimetic cross-coupling, showing most of the same spectral features, are
shown in Supplemental Figure S2. Compositional percentages are from volume integration and are on an S +G +H+ piceatannol
= 100% basis; the p-hydroxybenzoate, because it is pendant on the lignin and because, as a more slowly relaxing unit, it is
significantly overrepresented, is not included in this total but expressed as a percentage of that total.
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monomers caffeyl alcohol and 5-hydroxyconiferyl al-
cohol, particularly with the trans-isomer (Chen et al.,
2012, 2013; Tobimatsu et al., 2013), and are clearly
different from the benzodioxane structure of homo-
coupled piceatannols Pb. The benzodioxane structures
do not result from the incorporation of caffeyl alcohol or
from the related 5-hydroxyconiferyl alcohol, both of
which may be evidenced in the spectra of lignins fromO-
methyltransferase-deficient plants (Ralph et al., 2001;
Wagner et al., 2011), as the expectedmonomers from such
involvement in lignins were not observed here by DFRC
and the characteristic aromatic signals from such cate-
chols also were not evident; all of the peaks in the HSQC

spectra (Fig. 3, A–C) are fully consistent with those from
the incorporation of piceatannol andwith the piceatannol
homo-coupled dimers/oligomers (Fig. 3D) and, for
structures V in particular, its cross-coupling products
with monolignols (Fig. 3, E and F). The cross-coupled
benzodioxane structures found in the lignins from
palm fruit endocarps, therefore, are uniquely formed
via radical coupling of a monolignol (at its b-position)
and the catechol moiety of piceatannol (at its O-49-
position), followed by internal trapping of the quinone
methide intermediate by the 39-hydroxyl group in the
piceatannol unit to form the benzodioxane structure
V (Fig. 1D). A similar cross-coupling product of

Figure 4. Oxygenated-aliphatic regions of the 2D HSQC NMR spectra. A, Macaúba fruit endocarp MWL. B, Carnauba fruit
endocarp MWL. C, Coconut endocarp MWL. D, Piceatannol dimers and oligomers showing both Pb and Pc structures with
correlations that are well matchedwith peaks in the three lignins. E, Piceatannol and coniferyl alcohol cross-coupled polymers. F,
Piceatannol and sinapyl alcohol cross-coupled polymers. The piceatannol-monolignol polymers provided evidence of the cross-
coupling reactions to produce benzodioxane structures V. Both trans- and cis-configurations are evidenced in the in vitro po-
lymerization products, but only the trans-form can be found in the lignins. Again, analogouswhole cell wall spectra are shown in
Supplemental Figure S2. Structures arewith R =H (Gunit) or R =OMe (S unit) and are labeled asX (R9=H) orX′ (R9 = pB), whereX
is generic for A, B,D, and I; C′ is a special case that gets its own structure. Aromatic rings also are designated as G or S (or G/S in
the case of either being allowed), with a label’s color intensity signifying the main types; for example, structures C and C′ are
largely S based, with such G units being minor. Percentages for the various units are from volume integration and total 100%.
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piceatannol and sinapyl alcohol, the stilbenolignan
aiphanol, having a benzodioxane bridge, has been found
in the seeds ofAiphanes aculeata from theArecaceae family
(Lee et al., 2001). Biomimetic cross-coupling reactions
between piceatannol and p-hydroxycinnamyl alco-
hols successfully proved that benzodioxane structures
V could be easily formed during the radical reaction;
both coniferyl alcohol (Fig. 4E) and sinapyl alcohol
(Fig. 4F) produced respectable levels of benzodioxane
structuresV, in which the chemical shifts of the unique
peaks are well matched with the correlations appear-
ing in the lignins here (Fig. 4). The occurrence of these
benzodioxane structures in the lignins from macaúba,
carnauba, and coconut palm fruit endocarps compel-
lingly demonstrates that the stilbene piceatannol acts
as an authentic monomer participating in coupling
and cross-coupling reactions during the lignification
of these tissues.

Further strong evidence for the cross-coupling of
piceatannol to monolignol or lignin components is
the complete absence of P7 and P8 peaks from the
piceatannol end group in cross-coupling reactions and
in the lignin samples. Such P7 and P8 peaks of the
piceatannol end group were detected and assigned
from in vitro piceatannol homo-coupling dimerization/
oligomerization reactions (Fig. 3D). Normally, monolignol
end groups, including the double bonds in cinnamyl
alcohol side chains (Fig. 3E, peaks for structure I), can
be easily found in the spectra from synthetic lignins
and also at lower levels in isolated lignin polymers.
However, we could not detect the piceatannol end-
group peaks (P7 and P8) in the spectra from any of
the lignin samples (Fig. 3, A–C) or from the products of
the in vitro cross-coupling experiments (Fig. 3, E and
F), yet the piceatannol had clearly integrated into these
polymers. It is apparent that most of the piceatannol
must radically couple tomonolignols or the phenolic end
of the growing lignin polymer by coupling at P8 before
further polymerization at its catechol and/or resorcinol
ends. As neither the piceatannol stilbene double-bond P7
and P8 peaks nor the corresponding P79 and P89 peaks
from the piceatannol dimers Pb and Pc or the crossed
dimer V are evident in the lignins (Fig. 3, A–C) or the
cross-coupled synthetic lignins (Fig. 3, E and F), the
initial coupling of piceatannol at its 8-position must be
highly dominant. Elucidating piceatannol’s mode of
incorporation into the lignin polymer will require
significantly more sophisticated studies.

Mechanisms for Dehydrodimerization of Piceatannol and
Its Cross-Coupling with Monolignols and the Growing
Lignin Polymer

As occurs with monolignols, piceatannol (as for other
hydroxystilbenes) also is oxidized by peroxidases and/
or laccases to form a radical that is stabilized by res-
onance (Fig. 1A). These radicals can couple and cross-
couple with other stilbenoids, forming a variety of
dimers and higher oligostilbenes (Fig. 1, B and C;

Quideau et al., 2011; Keylor et al., 2015). In addition,
piceatannol can cross-couple with monolignols via
radical coupling reactions, generating a variety of
stilbenolignans (Fig. 1, D and E); chiral compounds of
this type are presumably used in plant defense (Lee
et al., 2001; Begum et al., 2010). It is obvious from the
polymers analyzed here that piceatannol (and also its
dimers and higher oligomers) also can cross-couple
with monolignols and the growing lignin polymer,
in the typically chemically controlled fashion of lig-
nification, to be integrally incorporated into the race-
mic lignin polymer. As we have concluded previously,
any phenolic component present in the cell wall dur-
ing lignification can be incorporated into the polymer,
simply subject to its chemical compatibility with the
radical coupling reactions involving the components
in that zone (Ralph et al., 2008). The implication here is
that, for whatever reason, these palms are both syn-
thesizing and, possibly, transporting hydroxystilbenes
to the cell wall for polymerization to produce these
previously unknown polymers.

The mechanisms for the formation of the different
structures involving piceatannol units identified in
the lignins from palm fruit endocarps are detailed in
Figure 1. Piceatannol dimerization can produce various
structures characterized by their different interunit
linkages, including the 8-O-49 and 8-109 structures
found in the lignins from palm fruit endocarps. The
8-O-49 (cassigarol E type) benzodioxane structure is
formed via 8-O-49-type radical coupling of a piceatannol
unit at its 8-position (a position equivalent to the
b-position of a monolignol) with another piceatannol
unit (at its O-49 position) followed by internal trapping
of the quinonemethide intermediate by the 39-hydroxyl
group, forming a benzodioxane structure (Fig. 1B), as in
structures Pb in the lignins. The mechanism for the for-
mation of the 8-109 (scirpusin A type) phenylcoumaran
structure (Pc in the lignin) involves the radical coupling
of a piceatannol unit (at its 8-position) with another
piceatannol unit (at its 109-position) followed by a
subsequent 119-O-7 bonding during rearomatization
of the quinone methide intermediate, producing the
phenylcoumaran structure, as shown in Figure 1C.
Such a coupling reaction is possible due to the highly
extended conjugation in these stilbene systems, in
which single-electron density from the radical pro-
duced by abstraction of the H from the 4-OH of
piceatannol extends all the way out to C10 (and, in
fact, C12; Fig. 1A). The mechanism for b-O-49 cross-
coupling of a p-hydroxycinnamyl alcohol (at its
b-position) and a piceatannol (as its 49-O-position) is
similar to that for the formation of the benzodioxane
structure from two piceatannols shown above and
also involves the subsequent 39-O-a9 bonding during
quinone methide rearomatization, producing the ben-
zodioxane structure V found in the lignins of the se-
lected palm fruit endocarps (Fig. 1D).

In addition to the structures identified in the lignins
from palm fruit endocarps, and due to the large variety
of radical coupling products that can potentially form
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from the highly conjugated piceatannol and p-hydroxy-
cinnamyl alcohols, several other structures coupled at
different positions also could be formed by homo- and
cross-coupling. Among these structures, we can refer
to the stilbenolignans kompasinol A (isolated from
Koompassia malaccensis, from the Fabaceae) and
maackolin (isolated from Maackia amurensis, from the
Fabaceae; Kobayashi et al., 1996; Begum et al., 2010).
The key ring structure in kompasinol A is formed by
radical coupling of sinapyl alcohol at its b-position with
the 89-position of piceatannol followed by internal
trapping of the quinone methide on the piceatannol
moiety by the g-OH and rearomatization of the sinapyl
alcohol-derived moiety’s quinone methide by nucleo-
philic attack at its a-position by the electron-rich 109-
position of the piceatannol (Fig. 1E). Although these
b-89 structures were not detected in the lignins here,
they and other linkage types may exist, and the un-
ambiguous identification of any of themwould provide
additional evidence for piceatannol’s being incorpo-
rated into the lignin polymer.

Mr Distributions and the Role of Stilbenolignins

The three lignins exhibited similar Mr distributions,
around 5,500 to 6,500 g mol21 with relatively narrow
polydispersity, with weight-average (Mw)/number-
average (Mn) Mr of ;1.61 to 1.84 (Supplemental Fig. S5;
Supplemental Data S2), which appears to indicate that
the lignin polymer in the selected palm fruit endocarps is
quite homogenous and, therefore, does not include
simple stilbenes, dimers, or higher oligostilbenes mixed
with the lignin. Therefore, these data support our con-
tention that the lignin polymer in palm fruit endocarps
includes hydroxystilbenes, mostly piceatannol, fully
integrated into the polymeric structure.
We can only speculate on the role of these stilbeno-

lignin polymers. Palm fruits are drupes that contain an
extremely hard lignified endocarp surrounding the
seed. Endocarp lignification, therefore, plays an im-
portant role in seed protection. The incorporation of
hydroxystilbenes into the lignin polymer may allow the
production of higher amounts of lignin (using other
phenolic compounds present in the lignification zone)
and appears to contribute to endocarp hardening. The
piceatannol-derived components also could provide
additional antioxidant properties to the endocarp, con-
tributing to seed protection. Although piceatannol has
been identified in the lignins of the fruit endocarps from
the three palm species selected for this study, the
analysis of a broader collection of palm species (and
beyond) is required in order to establish the phylogenic
range of the occurrence of such stilbenolignins.

CONCLUSION

It is evident from the three palm endocarp lignin poly-
mers analyzed here that piceatannol can cross-couple with

monolignols and the growing lignin polymer, in the
typically chemically controlled fashion of lignification,
to be integrally incorporated into the racemic lignin
polymer. As we have concluded previously, any phe-
nolic component present in the cell wall during lignifi-
cation can be incorporated into the polymer, simply
subject to its chemical compatibility with the radical
coupling reactions involving the components in that
zone (Ralph et al., 2008). The implication here is that, for
whatever reason, these palms are synthesizing and,
possibly, transporting hydroxystilbenes to their fruit
endocarp cell walls for polymerization to produce these
previously unknown copolymers;we cannot rule out the
possibility that small stilbenolignols are produced in the
cytoplasm in the same way that oligolignols also are
implicated (Dima et al., 2015) and that it is these that are
transported to the wall. The incorporation of noncon-
ventionalmonomers, not usually present in the lignins of
other plants, as is the case for the piceatannol described
here, can open up new ways to design and engineer the
lignin structure to produce polymers and plant-based
biomaterials with altered properties. A whole new gen-
eration of modified lignin polymers can be envisioned
via introducing hydroxystilbenes into plant lignification
pathways, as already anticipated with other phenolic
compounds (Grabber et al., 2010, 2012, 2015; Elumalai
et al., 2012; Tobimatsu et al., 2012; Vanholme et al.,
2012) and as already achieved with the introduction of
monolignol ferulates and p-coumarates into plants
that do not normally possess them (Wilkerson et al.,
2014; Smith et al., 2015; Sibout et al., 2016). Addition-
ally, hydroxystilbenes such as piceatannol and, in par-
ticular, resveratrol are quite valuable (with the cheapest
prices being approximately $US80 and $280 per kg on
alibaba.com), and their potential availability in bulk
quantities from lignins will spur additional interest into
deriving value from lignins (Rinaldi et al., 2016).

MATERIALS AND METHODS

Samples

Macaúba (Acrocomia aculeata) and carnauba (Copernicia prunifera) palm fruits
were collected from native populations located in the municipality of Mirabela,
Minas Gerais, Brazil. The coconut (Cocos nucifera) sample originated from India
and was supplied from Bonnysa Agroalimentaria. The endocarps of the fruits
were separated manually using a knife and subsequently dried in a forced-air
oven at 40°C until reaching constantmass. The dried samples weremilled using
a knife mill (1-mm screen) and extracted successively for 8 h with acetone
(200 mL) and hot water (100 mL; 3 h at 100°C) in a Soxhlet apparatus to purify
the cell walls. Klason lignin content was estimated as the residue after sulfuric
acid hydrolysis of the preextracted material according to the TAPPI method
T222 om-88 (http://www.tappi.org/content/SARG/T222.pdf) and further
corrected for ash and protein content. Three replicates were used for each
sample. The data indicated that the selected palm fruit endocarps contained
extremely high lignin contents, accounting for 39.8%, 38.8%, and 33.2% in
macaúba, carnauba, and coconut, respectively.

Lignin Isolation and Purification

The lignin preparations were obtained from extractive-free samples
according to the classical MWL procedure (Björkman, 1956). Around 40 g of
extractive-free material was finely ball milled in a Retsch PM100 planetary ball
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mill (Retsch) for 25 h at 400 rpmusing a 500-mL agate jar and agate ball bearings
(203 20 mm). The ball-milled material was then extracted with dioxane:water,
96:4 (v/v; 20mL of solvent g21 milled fiber), and the isolated ligninwas purified
subsequently as described previously (del Río et al., 2012a). The final yields
were ;15% of the original Klason lignin content.

Analyses

DFRC

DFRC degradation was performed according to the developed protocol (Lu
and Ralph, 1997a, 1997b) using the detailed procedure described previously
(del Río et al., 2012a). The acetylated lignin degradation products were then
analyzed by gas chromatography-mass spectrometry on a Saturn 4000 (Varian)
instrument fitted with a medium-length high-temperature capillary column
(DB5-HT; 15 m 3 0.25 mm i.d., 0.1-mm film thickness; J&W Scientific). Helium
was used as the carrier gas at a rate of 2 mL min21. The samples were injected
with an autoinjector (Varian 8200) directly onto the column using a septum-
equipped programmable injector system that was programmed from 120°C
(0.1 min) to 340°C at a rate of 200°C min21 and held at the maximum temper-
ature until the end of the analysis. The oven temperature was programmed
from 120°C (1min) to 340°C (10min) at a rate of 10°Cmin21. The temperature of
the transfer line was set at 300°C during the analysis.

Chromatograms of the DFRC products from each of the palm endocarp
samples are shown in Figure 2 and Supplemental Figure S1.

NMR Spectroscopy

Multidimensional NMR spectra (2D HSQC, 2D HMBC, 2D HSQC-TOCSY,
and three-dimensionalTOCSY-HSQC)experiments fromlignin samples (;40mg)
were acquired, in parallel, in DMSO-d6 (0.75mL) on an AVANCE III 500-MHz
instrument (Bruker) and in DMSO-d6:pyridine-d5 (4:1) on a Bruker Biospin
(Billerica) AVANCE 700-MHz spectrometer, both fitted with cryogenically
cooled 5-mm gradient probes with inverse geometry (proton coils closest to
the sample). NMR of polymerization/dimerization products of piceatannols
and p-hydroxycinnamyl alcohols also was analyzed in DMSO-d6:pyridine-d5
(4:1) on the 700-MHz NMR instrument. Whole cell wall samples were analyzed
in DMSO-d6:pyridine-d5 (4:1) on the 700-MHz NMR instrument based on the
gel-NMR method described previously (Kim and Ralph, 2010). The central re-
sidual DMSO peak was used as an internal reference (dC/dH 39.5/2.49). All NMR
experiments used Bruker’s standard pulse programs: HSQC experiments
used hsqcetgpsisp2.2 (adiabatic-pulsed version), the HMBC experiments
used hmbcgplpndqf with long-range J-coupling evolution times of 62.5 ms
(and/or 80 ms when required), the HSQC-TOCSY experiments used
hsqcdietgpsisp.2, and the three-dimensional TOCSY-HSQC experiments (data
not shown) used mlevhsqcetgp3d. The detailed NMR experimental conditions
have been described elsewhere (del Río et al., 2012a). Integrals are from volume
integration of contours fromC/Hpairs that are in similar coupling environments.
Thus, for the aromatics (Fig. 3), the peaks used are S2/6,G2,H2/6, and Pc2; Pb2 was
not resolved, so its expected integral was calculated from Pc2 via the ratio of the
resolvedPb6 toPc6 peaks; the pB2/6 peakwas used for the p-hydroxybenzoates that
are not included in the lignin background total and are expressed simply as a
percentage of that total. In Figure 4, the various units were relatively quantified
via the volume integrals of the Aa, Ba, Ca, C′a, Pb7, Pc7, and Va correlation peaks.

The NMR spectra had the following parameters for the lignins: spectra were
acquired from 11.5 to 20.5 ppm in F2 (1H) using 3,366 data points for an acqui-
sition time of 200 ms, an interscan delay of 1 s, 215 to 25 ppm in F1 (13C) using
620 increments (F1 acquisition time of 8 ms) of 32 scans, with a total acquisition
time of 7 h. For the in vitro polymerization products, 16 scans per increment were
performed with a total acquisition time of 3.5 h. Processing used typical matched
Gaussian apodization (GB = 0.001, LB =20.5) in F2 and squared cosine-bell in F1.
Interactive integrations of contours in 2D HSQC plots were carried out using
Bruker’s TopSpin 3.5 (Mac) software, as was all data processing. Spectra from
whole cell wall samples (Supplemental Fig. S2) were run under similar conditions
but acquired from 11.5 to20.5 ppm in F2 (1H) with 1,682 data points (acquisition
timeof 100ms), 215 to25 ppm inF1 (13C)with 620 increments (F1 acquisition time
of 8ms) of 56 scanswith a 500-ms interscan delay; the d24 delaywas set to 0.86ms
(1/8J, where J = 145 Hz). The total acquisition time for each was 6 h.

Gel-Permeation Chromatography

Gel-permeation chromatography was performed on the Shimadzu
Prominence-i LC-2030 3D GPC system equipped with a photodiode array

detector using the following conditions: column, PLgel 5-mm MIXED-D, 7.5 3
300 mm (Agilent Technologies); eluent, tetrahydrofuran; flow rate, 0.5 mLmin21;
temperature, 40°C; sample detection, photodiode array response at 280 nm.
The data acquisition and computation used LabSolution GPC software
version 5.82 (Shimadzu). The Mr calibration was via polystyrene standards
(Mw range from 5.8 3 102 to 3.24 3 106; Agilent Technologies).

Dimerization of Piceatannol and Polymerization with
p-Hydroxycinnamyl Alcohols

Piceatannol 1 (20mg, 0.082mmol) was dissolved in acetone:water (1:10 [v/v],
11 mL). Horseradish peroxidase (5 mg; EC 1.11.1.7; 173 purpurogallin units
per mg of solid; type II) was added to the reaction solution directly and
stirred. Excess hydrogen peroxide (30%, 0.5 mL) was added at once into the
reaction solution while the solution was stirred. The color changed to dark
red immediately. The solution was stirred for 15 min at room temperature for
the short-time dimerization reaction or for 1.5 h for the extended polymeri-
zation reaction. The crude products were extracted with ethyl acetate and
washed with saturated aqueous solution andwater. The ethyl acetate fraction
was dried over anhydrous MgSO4 and evaporated.

Cross-coupling polymerization reactions between piceatannol (20 mg,
0.082mmol) and coniferyl alcohol (14.8mg, 0.082mmol) or between piceatannol
1 (20 mg, 0.082 mmol) and sinapyl alcohol (17.2 mg, 0.082 mmol) were per-
formed as above but stirred for 17 h.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Hydroxystilbenes released from lignins by re-
ductive cleavage.

Supplemental Figure S2. 2D HSQC NMR spectra of whole cell walls in
DMSO-d6:pyridine-d5.

Supplemental Figure S3. 2D HSQC-TOCSY and HMBC NMR spectra
of isolated lignins in DMSO-d6 showing diagnostic Pb, Pc, and V
correlations.

Supplemental Figure S4. 2D HMBC NMR spectra of isolated lignins in
DMSO-d6 showing main correlations for piceatannol-derived units.

Supplemental Figure S5. Mr distribution of the lignins from the fruit en-
docarps of macaúba, carnauba, and coconut palm.

Supplemental Data S1. Assignments of the 1H/13C correlation signals
of structures involving piceatannol units in the HSQC spectra (in
DMSO-d6:pyridine-d5) of the lignins from palm fruit endocarps.

Supplemental Data S2. Mw and Mn Mr values and polydispersity of the
MWL isolated from macaúba, carnauba, and coconut fruit endocarps.
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