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Abstract

Target-identification and mechanism-of-action studies have important roles in small-molecule 

probe and drug discovery. Biological and technological advances have resulted in the increasing 

use of cell-based assays to discover new biologically active small molecules. Such studies allow 

small-molecule action to be tested in a more disease-relevant setting at the outset, but they require 

follow-up studies to determine the precise protein target or targets responsible for the observed 

phenotype. Target identification can be approached by direct biochemical methods, genetic 

interactions or computational inference. In many cases, however, combinations of approaches may 

be required to fully characterize on-target and off-target effects and to understand mechanisms of 

small-molecule action.

Modern chemical biology and drug discovery each seek to identify new small molecules that 

potently and selectively modulate the functions of target proteins. Historically, nature has 

been an important source for such molecules, with knowledge of toxic or medicinal 

properties often long predating knowledge of precise target or mechanism. Natural selection 

provides a slow and steady stream of bioactive small molecules, but each of these molecules 

must perforce confer reproductive advantage in order for nature to ‘invest’ in its synthesis. In 

recent decades, investments in finding new small-molecule probes and drugs have expanded 

to a paradigm of screening large numbers (typically 103–106) of compounds for those that 

elicit a desired biological response1,2. In some cases, these studies interrogate natural 

products3,4, but more often they involve collections of synthetic small molecules prepared by 

organic chemistry strategies5,6 that rapidly yield large collections of relatively pure 

compounds. Thus, the overall discovery paradigm involves investments both in organic 

synthesis and in biological testing of large compound collections.

Since the revolution in molecular biology, the biological testing component of screening-

based discovery has overwhelmingly involved testing compounds for effects on purified 

proteins. However, with advances in assay technology, many research programs are 
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increasingly turning (or returning) to cell- or organism- based phenotypic assays that benefit 

from preserving the cellular context of protein function7. The cost paid for this benefit is that 

the precise protein targets or mechanisms of action responsible for the observed phenotypes 

remain to be determined. Even after a relevant target is established, additional functional 

studies may help to identify unwanted off-target effects or establish new roles for the target 

protein in biological networks. In this review, we address these important steps in the 

discovery process, termed target identification or deconvolution8, illustrating methods 

available to approach the problem, highlighting recent advances and discussing how findings 

from multiple approaches are integrated.

Background

Historically, genetics has provided powerful biological insights, allowing characterization of 

protein function by manipulation of genetic sequence. A forward genetics (or classical 

genetics) approach is characterized by identifying, often under experimental selection 

pressure, a phenotype of interest, followed by identification of the gene (or genes) 

responsible for the phenotype (see refs. 9, 10). Modern molecular biological methods, 

particularly genetic engineering approaches, have given rise to reverse genetics (sometimes 

equated with molecular genetics), in which a specific gene of interest is targeted for 

mutation, deletion or functional ablation (for example, with RNAi11), followed by a broad 

search for the resulting phenotype (see refs. 12, 13).

By analogy to genetics, there are two fundamental approaches to understanding the action of 

small molecules on biological systems14,15. Biochemical screening approaches are 

analogous to reverse genetics (Fig. 1a). In advance of conducting a high-throughput screen, 

the protein target is selected and (typically) purified before exposure to small molecules16,17. 

This target validation or credentialing is a time-consuming process that involves 

demonstrating the relevance of the protein for a particular biological pathway, process or 

disease of interest18,19. Once a target has been validated, it is presumed that binders or 

inhibitors of this protein will affect the desired process. Often, however, such an impact 

needs to be characterized more completely in cells or animals by observing compound-

induced phenotypes; hence, this approach has been termed reverse chemical genetics.

In contrast, forward chemical genetics refers to the process of testing small molecules 

directly for their impact on biological processes, often in cells or even in animals (Fig. 

1b)20,21. Phenotypic screens expose candidate compounds to proteins in more biologically 

relevant contexts than screens involving purified proteins7,22. Because these screens measure 

cellular function without imposing preconceived notions of the relevant targets and signaling 

pathways, they offer the possibility of discovering new therapeutic targets. Indeed, several 

important drug programs have been inspired by phenotypic screening results, including the 

effects of cyclosporine A and FK506 on T-cell receptor signaling7,23, leading to the 

discoveries of FKBP12 (ref. 24), calcineurin25 and mTOR26, and the performance of 

trapoxin A in differentiation and proliferation assays27, leading to the discovery of histone 

deacetylases28,29. Importantly, such assays ‘prevalidate’ the small molecule and its (initially 

unknown) protein target as an effective means of perturbing the biological process or disease 

model under study.
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However, phenotypic assays require a subsequent effort to discover the molecular targets of 

bioactive small molecules, which can be a complex endeavor30. We often assume that direct 

interaction with a single target is responsible for phenotypic observations, but this need not 

be the case. Many drugs show side effects owing to interactions with ‘off-target’ 

proteins31,32, and even small molecule–induced phenotypes observed in cell culture may 

represent the superposition of effects on multiple targets33,34. For drug development, target 

identification is important to follow-up studies, aiding medicinal chemistry efforts. 

Furthermore, identifying both the therapeutic target and other targets that might cause 

unwanted side effects enables optimization of small-molecule selectivity35. Conversely, 

polypharmacology can be considered a new tool, leveraging multiple small-molecule effects 

to gain maximal effect, once again underscoring the benefit of an unbiased approach to 

screening and the need for target deconvolution36.

Approaches to target identification

In this review, we will cover three distinct and complementary approaches for discovering 

the protein target of a small molecule: direct biochemical methods, genetic interaction 

methods and computational inference methods. Direct methods involve labeling the protein 

or small molecule of interest, incubation of the two populations and direct detection of 

binding, usually following some type of wash procedure (reviewed in ref. 37). Genetic 

manipulation can also be used to identify protein targets by modulating presumed targets in 

cells, thereby changing small-molecule sensitivity (reviewed in ref. 38). Target hypotheses, in 

contrast, can be generated by computational inference, using pattern recognition to compare 

small-molecule effects to those of known reference molecules or genetic perturbations39–41. 

Mechanistic hypotheses, rather than targets per se, for new compounds emerge from such 

tests. The target pathway or protein of a new small molecule is inferred but remains to be 

confirmed42. Similarly, hypotheses regarding the mechanism of action of a compound can be 

generated by gene expression profiling in the presence or absence of compound treatment. 

Many target-identification projects actually proceed through a combination of these 

methods, where researchers use both direct measurements and inferences to test increasingly 

specific target hypotheses. Indeed, we suggest that the problem of target identification will 

not generally be solved by a single method but rather by analytical integration of multiple, 

complementary approaches.

Direct biochemical methods

Biochemical affinity purification provides the most direct approach to finding target proteins 

that bind small molecules of interest37. Because they are based on physical interactions 

involving mammalian or human proteins, biochemical methods can lead to information 

about molecular mechanisms of efficacy or toxicity highly relevant to human disease. 

Similarly, small-molecule optimization efforts can be complemented by biochemical 

methods when three-dimensional structure information about the target is known. Finally, 

unbiased protein identification, especially from lysates containing intact protein complexes, 

potentially allows evaluation of polypharmacology.
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Pioneering work in affinity purification involved monitoring chromatographic fractions for 

enzyme activity after exposure of extracts to compound immobilized on a column, followed 

by elution43. In general, such an approach requires large amounts of extract, possibly 

prefractionated, and stringent wash conditions. Such approaches have been used with 

success to identify certain protein targets, including those of both natural29 and synthetic44 

small molecules, and one such approach has been used to elucidate the mechanism of the 

teratogenic side effect of thalidomide35. However, these methods seem best suited for 

situations where a high-affinity ligand binds a relatively abundant target protein. High-

stringency washes can bias proteins identified to those with the highest-affinity interactions, 

decreasing the likelihood of finding additional targets that might be important in cellular 

contexts, as suggested by proteomic profiling studies (for example, those described in 

refs. 45, 46). Furthermore, stringent washing will also reduce the ability to identify protein 

complexes in which the direct target participates and whose members’ identities might help 

illuminate the connection between the direct target and the cellular activity of the small 

molecule.

Affinity purification experiments also involve the challenge of preparing immobilized 

affinity reagents that retain cellular activity, so that target proteins will still interact with the 

small molecule while it is bound to a solid support. A related issue is the identification of 

appropriate controls and tethers. Different approaches are possible; control beads loaded 

with an inactive analog47,48 or capped without compound have been used49. These control 

experiments have limitations, most notably the availability of related inactive compounds. 

The inactive analog must be sufficiently different from the compound of interest to fail to 

bind the target, raising the possibility that it will have different physicochemical properties 

and therefore different nonspecific interactions with proteins. In the case of capped beads, 

the results are confounded by the background of high-abundance, low-affinity proteins with 

slight differential binding to the control bead. Elution from the bead-bound small molecule24 

or preincubation of lysate with compound is a viable alternative control35,49,50 but is limited 

by compound solubility. The choice of tether, influencing the type of background proteins 

identified, also becomes a critical parameter51–55. These challenges can frustrate individual 

attempts at affinity purification, particularly if a biochemical approach is used in isolation.

Recent affinity-based methods have attempted to overcome one or more of these challenges. 

Approaches based on chemical or ultraviolet light–induced cross-linking56,57 use covalent 

modification of the protein target to increase the likelihood of capturing low-abundance 

proteins or those with low affinity for the small molecule. This method requires prior 

knowledge of the enzyme activity being targeted, making it a slightly biased approach. If 

there is no bias, cross-linking of the small molecule to proteins is burdened with the 

possibility of high, nonspecific background owing to the cross-linking event itself. A 

variation on the use of photoaffinity reagents couples covalent modification to two-

dimensional gel electrophoresis in an attempt to deconvolve nonspecific interactions58. A 

nonselective universal coupling method that enables attachment to a solid support by a 

photoaffinity reaction resulted in the identification of an inhibitor of glyoxalase I59. This 

method assumes that a compound could bind the solid support in multiple ways while some 

functional relevant sites remain available to interact with the protein target. This approach, 

however, runs the risk of false-negative results when the functional group is masked in the 
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coupling reaction. Another method for immobilizing small molecules, that is, coupling them 

to peptides that allow them to recover the probe-protein complex by immunoaffinity 

purification60, was devised to address this issue.

Some small-molecule libraries are prepared with synthetic handles primed for making 

affinity matrices after an activity is identified61,62. Because these methods rely on advance 

modification of the compound structure, they require additional chemistry expertise and may 

not be possible for all compound classes. Similarly, if a small molecule can be fluorescently 

labeled, it can be used to probe proteins separated by microarray (reviewed in ref. 63). 

However, such methods are limited to proteins that can be readily manipulated, usually in 

heterologous expression systems. The use of purified proteins does not necessarily ensure 

physiological expression levels, giving incorrect information about relative binding to 

alternative targets in cells and masking effects due to the formation of protein complexes.

Two interesting new target-identification approaches that circumvent the need to immobilize 

compounds have emerged in the last few years. One of them uses changes in protein 

susceptibility to proteolytic degradation upon small-molecule binding (reviewed in ref. 64). 

The other is based on a characteristic shift in the chromatographic retention-time profile 

after a compound binds a protein target65. Although the generality of these approaches 

remains to be determined, their combination with quantitative proteomics is quite promising.

Affinity chromatography has been coupled to powerful new techniques in MS, which can 

possibly provide the most sensitive and unbiased methods of finding target proteins. 

Quantitative proteomics66 (reviewed in ref. 67) has been effective in identifying specific 

protein-protein interactions by affinity methods68,69 and has been increasingly applied to 

protein–small molecule interactions (reviewed in ref. 70). In the context of target 

identification, two different quantitative techniques have been used; these can be broadly 

divided into metabolic and chemical labeling.

Metabolic labeling, more specifically stable-isotope labeling by amino acids in cell culture 

(SILAC)71, has been effectively used, in experiments with gentle washing and free soluble 

competitor pre-incubation of lysates, to provide unbiased assessment of multiple direct and 

indirect targets (Fig. 2)49. It has also been used in combination with serial drug-affinity 

chromatography to characterize the quantitative changes of the kinome in different phases of 

the cell cycle72. Metabolic labeling has the advantage of allowing sample pooling early in 

the process, eliminating quantification errors due to sample handling. A disadvantage is that 

it limits the workflow to immortalized cell lines73.

Chemical labeling has also been successfully used in the past. Isotope-coded affinity tag 

(ICAT) technology74, coupled with beads loaded with active and inactive compound as 

controls, has been used to identify malate dehydrogenase as a specific target of the 

anticancer compound E7070 (ref. 47). Isobaric tags for relative and absolute quantification 

(iTRAQ)75, coupled with free soluble competitor for elution as a control, has been used to 

profile kinases enriched by affinity purification with nonselective kinase-binding small 

molecules76. There are variations on chemical-labeling strategies, such as mass differential 

tags for relative and absolute quantification (mTRAQ)75, tandem mass tags (TMT)77 and 
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stable isotope dimethyl labeling78,79. These chemical labeling strategies provide more 

versatility regarding the type of samples that can be labeled, but a weakness lies in the fact 

that they generally rely on labeling at the peptide level, later in the proteomic workflow, and 

thus are prone to more variation and less accuracy80.

These unbiased approaches show great promise but will require new software81–83 and 

analytical techniques84 to quantify the relative expression of members of candidate target 

lists to aid in experimental prioritization. In contrast, biased approaches to target 

deconvolution based on profiling small-molecule activity against a panel of enzymes are 

now commercially available and widely used. These methods rely on prior knowledge of the 

enzyme family (kinases, ubiquitinases, demethylases and so on). For example, assay-

performance profiling and compounds with a known mode of action were used to predict 

kinase inhibitory activity for new compounds emerging from a phenotypic screen42. A 

commercial kinase profiling panel85 then confirmed activity against a subset of kinases. 

Having information from genetic studies or computational methods to decide which set of 

enzymes to investigate provides a valuable tool, again underscoring the importance of 

integrating all methods at the researcher’s disposal.

Genetic interaction and genomic methods

Target identification based on genetic or genomic methods leverages the relative ease of 

working with DNA and RNA to perform large-scale modifications and measurements. These 

methods often use the principle of genetic interaction, relying on the idea of genetic 

modifiers (enhancers or suppressors) to generate target hypotheses. Gene knockout 

organisms, RNAi (reviewed in ref. 86) and small molecules with well-defined mechanisms 

can each be used to alter the functions of putative targets, uncovering dependencies on 

activity. For example, if a gene knockdown phenocopies a compound’s effects, the evidence 

that the protein could be the target relevant to that phenotype would be strengthened. In this 

case, hypersensitivity of individual mutants to sublethal concentrations of compound 

demonstrates a chemical-genetic interaction (Fig. 3a). Similarly, mating of laboratory and 

wild yeast strains can reveal patterns of small-molecule sensitivity with specific genetic loci 

(Fig. 3b)87.

These concepts have been expanded to include molecularly barcoded libraries of open 

reading frames88 and detection of small molecule–resistant clones by microarray (Fig. 3c). 

Importantly, these studies provide a conceptual framework for understanding complex 

diseases. Although direct translation to human biology may not be forthcoming, owing to 

the lack of conservation of some pathways between yeast and human, this framework 

enables us to envision technical advances that facilitate this type of analysis in mammalian 

systems. An accompanying perspective in this series89 addresses these approaches in more 

detail.

A promising genetics-based technique for target identification involves combining results 

from small-molecule and RNAi perturbations. This approach enables parallel testing of 

small-molecule and RNAi libraries for induction of the same cellular phenotype90,91. RNAi 

experiments can be performed on a genome-wide scale to find phenotypes similar to those 
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induced by small molecules (Fig. 4a)92. Alternatively, when some mechanistic clues already 

exist, a more focused set of RNAi reagents can be used to find pathway members that alter 

the effects of a small molecule (Fig. 4b)93. The main strength of combining small-molecule 

and RNAi perturbations is the ability to measure phenotypic effects in more physiologically 

relevant cellular contexts, using mammalian, or even human, cells. Clearly, genetic 

perturbations cannot always recapitulate or phenocopy the effect of a small molecule94, for 

example because of the risk of genetic compensation. Using RNAi libraries that contain 

entire families of genes may help alleviate this problem. Another way to dissect these effects 

is to use a suboptimal concentration of small molecule in combination with genetic 

knockdown. An elegant study provided proof of concept for RNAi-sensitized small-

molecule screens95, which could serve as a follow-up method for the other techniques 

described in this review.

Genetic target-identification efforts are increasingly focused on mammalian cells. For 

example, examination of compound-resistant clones of cells, using transcriptome sequencing 

(RNA-seq), identified intracellular targets of normally cytotoxic compounds96. Advantages 

of this approach include the ability to perform cell type–specific analyses and not having to 

chemically modify the compound to perform the analysis. Clones of HCT116 colon cancer 

cells resistant to the polo-like kinase 1 (PLK1) inhibitor BI 2356 were sequenced and 

compared to the parental line. Although PLK1 was not mutated in every clone, it was the 

only gene mutated in more than one group; moreover, mutations were present in the known 

binding site of BI 2356. This proof-of-principle study may pave the way for more rapid 

target identification in mammalian cells, although this approach is currently limited to cell 

viability as a phenotype.

Finally, recent efforts to use gene expression signatures to determine compounds’ 

mechanisms of action illustrate the close relationship between genetic techniques and 

computational methods. Using transcription profiling data from the Connectivity Map97, a 

recent study described a weighting scheme to rank order lists of genes across multiple cell 

lines, resulting in what was termed a prototype ranked list98. The authors then used gene-set 

enrichment analysis99 to compute pairwise distances between the ranked lists for each 

compound and constructed a network in which each compound was a node. Clustering 

revealed communities of nodes connected to each other, two-thirds of which were enriched 

for similar mechanisms of action, as determined by anatomical therapeutic chemical codes. 

A limitation of this approach is the reliance on accurate annotation of small-molecule 

activity, but even so, this type of sophisticated approach will most likely uncover similarities 

between known bioactive compounds and new screening hits. The line separating genetic 

and computational approaches increasingly blurs as the technical hurdles to generating 

massive data sets are surmounted.

Computational inference methods

On their own, computational methods are used to infer protein targets of small molecules, in 

addition to providing analytical support for proteomic and genetic techniques. These 

methods can also be used to find new targets for existing drugs, with the goal of drug 

repositioning or explaining off-target effects. Profiling methods rely on pattern recognition 
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to integrate results of parallel or multiplexed experiments, typically from small-molecule 

phenotypic profiling100,101. Ligand-based methods also incorporate chemical structures to 

predict targets. Structure-based methods rely on three-dimensional protein structures to 

predict protein–small molecule interactions102,103. Owing to their limitation to proteins with 

known structures, structure-based methods will not be discussed in detail.

In general, bioactivity profiling methods are based on the principle that compounds with the 

same mechanism of action will have similar behavior across different biological assays. 

Public databases of, for example, gene expression97,104 or small-molecule screening105,106 

data sets house measurements that record phenotypic consequences of small-molecule 

perturbations. Target or mechanism inference frequently relies on the fact that molecules 

with known mechanisms of action (sometimes called landmark compounds100) are also 

profiled, allowing new compounds to be assessed for similar patterns of performance107,108. 

Small-molecule profiling data can be mined most effectively when there exists a critical 

mass of data generated using a common set of compounds and cell states (multidimensional 

screening109). A prototypical example of this type of study is the US National Cancer 

Institute’s ‘NCI-60’ set of 60 cancer cell lines that was exposed to a large collection of small 

molecules110. In a seminal study using the NCI-60 data set, protein targets were connected 

(via their degree of expression in each cell line) to small-molecule sensitivity patterns in the 

same cell lines39 (reviewed in ref. 101). Similar studies, including those using the 

COMPARE algorithm110, have allowed researchers to hypothesize new activities for small 

molecules111. Such approaches represented important conceptual advances in this field 

because they considered multidimensional profiling as a method to identify small-molecule 

mechanisms of action.

Gene expression technology has also had an important role in profile-based inference of 

small-molecule targets and mechanisms. One early study used gene expression profiles of 

yeast treated with the immunosuppressants FK506 and cyclosporine A. This study not only 

recapitulated the importance of calcineurin in immunosuppression but also identified a 

number of other genes that were suggested to be secondary targets112. Later, a compendium 

of yeast gene expression profiles was derived from both genetic mutations and small-

molecule perturbations to annotate uncharacterized genes and pathways40. Commercial 

databases of rat tissue–based expression profiles following drug treatment were developed to 

identify toxicities of new chemical entities113. Subsequently, the Connectivity Map was 

developed as a public database of gene expression profiles derived from small-molecule 

perturbations of human cell lines (Fig. 5a), which enables the functions of new small 

molecules to be identified by pattern matching97.

Several groups have developed profiling methods based on other measurement 

technologies114,115, including affinity profiling of biochemical assays to predict ligand 

binding to proteins116, and on similarities among side-effect profiles117. Affinity profiling 

was also used to design biologically diverse screening libraries118. Several promising studies 

have involved profiling by high-throughput microscopy (sometimes called high-content 

screening), allowing phenotypes to be clustered, in a manner analogous to transcriptional 

profiles, to discover potential small-molecule targets119,120. More generally, public 

databases such as ChemBank105 or PubChem106 provide extensible environments for 
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accumulating rich phenotypic profiles for many compounds exposed to a diverse set of 

assays and have been exploited to understand both bioinformatic121 and 

cheminformatic101,122 relationships (Fig. 5b).

More focused profiling methods investigate only particular aspects of biological systems. 

For example, high-throughput screening (HTS) activity profiling and a guilt-by-association 

approach were used to determine mechanisms of action for hits in an antimalarial screen123. 

Another study124 examined small molecule–induced cell death and systematically 

characterized lethal compounds on the basis of modulatory profiles, created experimentally 

by measuring cell viability. Comparison of modulatory profile clusters with gene 

expression– and structure-based profiles demonstrated that that modulatory profiles revealed 

additional relationships. Bioactivity profile similarity search (BASS) is another method that 

uses profiles of dose-response cell-based assay results to associate targets with small 

molecules125. It is increasingly likely that single measurements will be inadequate to the 

task of determining mechanism of action.

Recent profiling methods have taken full advantage of high-throughput data available in 

public and proprietary screening databases, for example by developing HTS fingerprints 

(HTS-FP) with a goal of facilitating virtual screening and scaffold hopping126. Enrichment 

of gene ontology terms among known protein targets was observed within HTS-FP clusters. 

Further, HTS-FP can be used to select biologically diverse compounds for screening when 

testing the full library is not possible.

Using ligand-based predictive modeling to classify compounds is a well-established practice 

in computational chemistry. Independently, two groups have extended predictive-modeling 

approaches to explore global relationships among biological targets. In one case127, protein-

ligand interactions were explored with a goal of predicting targets for new compounds. 

Using Laplacian-modified naive Bayesian modeling, trained on 964 target classes in the 

WOMBAT database, the researchers were able to predict the top three most likely protein 

targets and validated their approach by examining therapeutic activities of compounds in the 

MDL Drug Data Report database. Such modeling can also be used to explain off-target 

effects or to design target- or family-focused libraries. In a separate but similar approach128, 

a large collection of structure-activity relationship data was assembled from various public 

and proprietary sources, resulting in a set of 836 human genes that are targets of small 

molecules with binding affinities less than 10 μM. These connections were used to generate 

a polypharmacology interaction network of proteins in chemical space. This network enables 

a deeper understanding of compound and target cross-reactivity (promiscuity) and provides 

rational approaches to lead hopping and target hopping.

Chemical similarity is often used as a metric of success for pattern-recognition approaches. 

The similarity ensemble approach (SEA)129 works by quantitatively grouping related 

proteins on the basis of the chemical similarity of their ligands. For each pair of targets, 

chemical similarity was computed and properly normalized according to a null model of 

random similarity. Even though only ligand chemical information was used, biologically 

related clusters of proteins emerged. Importantly, in the SEA results, there were cases of 

ligand-based clusters differing from protein sequence–based clusters; for example, ion 
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channels and G protein–coupled receptors are ligand related, but they have no structure or 

sequence similarity. In contrast, many neurological receptors with related sequences lack 

pharmacological similarity. The authors documented the utility of SEA by predicting and 

confirming off-target activities of methadone, loperamide and emetine. Large-scale 

prediction of off-target activities using SEA was subsequently described130.

SEA is well suited to provide insights into the mechanisms of action of small molecules. 

With that purpose in mind, SEA was used on the MDL Drug Data Report database to predict 

new ligand-target interactions131. The predictions were either confirmed by literature or 

database search or investigated experimentally. Out of 30 experimentally tested predictions, 

23 were confirmed. This work was extended to ‘de-orphan’ seven US Food and Drug 

Administration–approved drugs with unknown targets132. SEA has also been used to predict 

targets of compounds that were active in a zebrafish behavioral assay133. Out of 20 

predictions that were tested experimentally, the authors confirmed 11, with activities ranging 

from 1 nM to 10 μM. These results suggest that chemical information alone can be sufficient 

to make predictions using this approach. Additional ligand-based target-identification 

methods have been reported (reviewed in ref. 103).

Network-based approaches extend systems biology to drug-target and ligand-target networks 

and are now known as ‘systems chemical biology’134, ‘network pharmacology’135 or 

‘systems pharmacology’136. Such approaches are necessary, as many phenotypes are caused 

by effects of compounds on multiple targets. An exploration of the relationship between 

drug chemical structures, target protein sequences and drug-target network topology resulted 

in the creation of a unified ‘pharmacological space’ that could predict ligand-target 

interactions for new compounds and proteins137. Several additional studies report recent 

advances in network-based approaches to target prediction138,139.

Inference-based methods arguably have the least bias of any target-identification method as 

they often rely on experiments done by others. The analyst is distant from the original 

experimental design and is therefore poised to reveal unanticipated relationships. In contrast, 

such studies rely on data sets that require substantial time and investment, however 

distributed, to realize. Fortunately, computational techniques have increasingly emerged to 

take advantage of the explosion of public data sources. Structured publicly accessible 

databases are the best hope for the success of such methods; they not only promote the 

availability of data from multiple sources but also encourage rigor among experimentalists 

by exposing their data to critical evaluation by the scientific community at large.

Summary and outlook

Each of the described approaches to target-identification and mechanism-of-action studies 

has strengths and limitations, and, importantly, different laboratories will have different 

technical strengths. Laboratories with expertise in chemistry or biochemistry might gravitate 

toward direct biochemical approaches, whereas genetic or cell biology laboratories might 

favor genetic interaction approaches, and groups with a high degree of computational 

experience might first pursue methods that investigate databases for clues. Of course, there 
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is no ‘right answer’ about which method is best. Rather, we suggest that a combination of 

approaches93,140 is most likely to bear fruit (Fig. 6).

There have been a few examples of successful integration of different methods to help 

determine the mechanism of action of a small molecule. An integrated approach was used to 

characterize the ability of a well-known natural product, K252a, to potentiate Nrg1-induced 

neurite outgrowth141. Integrating quantitative proteomic results with a lentivirus-mediated 

loss-of-function screen to validate candidate target proteins, the authors found that 

knockdown of AAK-1 reproducibly potentiated Nrg-1–driven neurite outgrowth. Similarly, 

the mechanism by which another natural product, piperlongumine, selectively kills cancer 

cells was determined by a combination of direct proteomic affinity-enrichment and short 

hairpin RNA methods142.

To determine whether bortezomib neurotoxicity could be attributed to off-target effects, 

secondary targets of the proteasome inhibitors bortezomib and carfilzomib were explored143. 

The authors used a multifaceted approach, involving screening a panel of purified enzymes, 

activity-based probe profiling in cells and cell lysates and mining a database of known and 

predicted proteases, to show that bortezomib inhibits several serine proteases and to 

hypothesize that its neurotoxicity may be caused by off-target effects.

Computational data integration and network analysis were instrumental in determining 

Aurora kinase A as a relevant target of dimethylfasudil in acute megakaryoblastic 

leukemia144. Dimethylfasudil is a broad-spectrum kinase inhibitor; integrating quantitative 

proteomics data, kinase inhibition profiling and RNA-silencing data allowed the researchers 

to generate a testable hypothesis which not only identified the physiologically relevant target 

of dimethylfasudil but also a potential therapeutic target for acute megakaryoblastic 

leukemia. Another elegant application of integrating transcriptional data with proteomic data 

was used to dissect the synergy between two multikinase inhibitors in chronic myelogenous 

leukemia cell lines145. A combination of proteomic methods to measure drug binding in cell 

lysates, global phosphoproteomics and genome-wide transcriptomics demonstrated synergy 

between danusertib and bosutinib in chronic myelogenous leukemia cells harboring the 

BCR-ABLT315I gatekeeper mutation.

These very recent examples show how powerful the ability to effectively and systematically 

integrate large sets of disparate data will be in understanding the molecular mechanisms of a 

small molecule in biological systems. When done in a disciplined and thoughtful manner, 

such data integration represents a modern instantiation of the scientific method, relying on 

high-throughput technology, data integration and multidisciplinary approaches to provide 

clues and avenues to new targets and mechanisms of small-molecule action.
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Figure 1. Mechanism-of-action and target identification in chemical genetics
(a) Target-based approaches (reverse chemical genetics) begin with target validation, in 

which a role is established for a protein in a pathway or disease, followed by a biochemical 

assay to find candidate small molecules; mechanism-of-action studies are still required to 

validate cellular activities of candidates and evaluate possible side effects. (b) Phenotype-

based approaches (forward chemical genetics) begin with a phenotype in a model system 

and an assay for small molecules that can perturb this phenotype; candidate small molecules 

must then undergo target-identification and mechanism-of-action studies to determine the 

protein responsible for phenotypic change.
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Figure 2. Illustration of stable isotope labeling and quantitative MS
Cells are labeled with either heavy- or light-isotope labels. One sample is exposed to bead-

immobilized small molecules (SM) in the presence of soluble competitor compound and the 

other in the absence of competitor. Following mixing, washing and electrophoresis, samples 

are digested using trypsin and peptide fragments analyzed by quantitative MS49. Ratios of 

heavy- and light-labeled peptides are used to determine specificity of interactions for the 

small molecule, potentially including both direct and indirect targets (for example, members 

of complexes including the direct target), but not to differentiate them.
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Figure 3. Illustrations of yeast genomic methods for target-identification and mechanism-of-
action studies
(a) A panel of viable single-gene deletions is tested for small-molecule (SM) sensitivity, 

indicating synthetic-lethal interactions between potential targets and the original deletion; 

mechanisms are interpreted by comparing interactions to double-knockout strains146. (b) 

Different strains of diploid yeast are mated to form F1 recombinants, and meiotic progeny 

are subjected to small molecules; segregation frequencies allow mapping of small-molecule 

sensitivity to genetic loci147. (c) A recessive small molecule–resistant mutant is transformed 

with a wild-type open reading frame library; transformants obtaining a wild-type copy of the 

mutant gene are selectively sensitive to small molecules, resulting in their depletion among 

pooled transformants, as quantified by microarray89.
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Figure 4. Illustrations of RNAi-based methods for target-identification and mechanism-of-action 
studies
(a) In one implementation, phenotypes from genome-wide RNAi are compared to those 

induced by a small molecule (SM) of interest; full or partial phenocopy of the small-

molecule effect by RNAi provides evidence that the gene product is a small-molecule 

target92. (b) When prior evidence suggests a particular target pathway, focused sets of RNA 

reagents can help to generate mechanistic hypotheses. In general, RNAi can enhance or 

suppress small-molecule effects, as in genetic epistasis analysis; in practice, more complex 

relationships among proteins than those illustrated may also exist93.
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Figure 5. Illustration of computational inference methods for target-identification and 
mechanism-of-action studies
In general, data sets that provide multidimensional readouts of small molecule (SM)-induced 

phenotypes can be used to provide connections between new small-molecule signatures and 

reference databases by similarity to ‘landmark’ compounds with known mechanisms of 

action.
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Figure 6. Illustration of a conceptual workflow for integrated target-identification and 
mechanism-of-action studies
Small-molecule discovery often starts with phenotypic screening, and, depending on the 

expertise available to the researchers, target identification could proceed using any 

combination of direct biochemical methods, genetic or genomic methods or using 

computational inference methods. A key component for success is the integration of data 

from all available methods to produce the most reliable target and mechanistic hypotheses.
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