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Abstract

In order to identify important variables that are involved in making optimal treatment decision, Lu, 

Zhang and Zeng (2013) proposed a penalized least squared regression framework for a fixed 

number of predictors, which is robust against the misspecification of the conditional mean model. 

Two problems arise: (i) in a world of explosively big data, effective methods are needed to handle 

ultra-high dimensional data set, for example, with the dimension of predictors is of the non-

polynomial (NP) order of the sample size; (ii) both the propensity score and conditional mean 

models need to be estimated from data under NP dimensionality.

In this paper, we propose a robust procedure for estimating the optimal treatment regime under NP 

dimensionality. In both steps, penalized regressions are employed with the non-concave penalty 

function, where the conditional mean model of the response given predictors may be misspecified. 

The asymptotic properties, such as weak oracle properties, selection consistency and oracle 

distributions, of the proposed estimators are investigated. In addition, we study the limiting 

distribution of the estimated value function for the obtained optimal treatment regime. The 

empirical performance of the proposed estimation method is evaluated by simulations and an 

application to a depression dataset from the STAR*D study.
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1. Introduction

Personalized medicine, which has gained much attentions over the past few years, is a 

medical paradigm that emphasizes systematic use of individual patient information to 

optimize that patient's health care. In this paradigm, the primary interest lies in identifying 

the optimal treatment strategy that assigns the best treatment to a patient based on his/her 

observed covariates. Formally speaking, a treatment regime is a function that maps the 

sample space of patient's covariates to the treatments.
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There is a growing literature for estimating the optimal individualized treatment regimes. 

Existing literature can be casted into as model based methods and direct search methods. 

Popular model based methods include Q-learning (Watkins and Dayan, 1992; Chakraborty, 

Murphy and Strecher, 2010) and A-learning (Robins, Hernan and Brumback, 2000; Murphy, 

2003), where Q-learning models the conditional mean of the response given predictors and 

treatment while A-learning models the interaction between treatment and predictors, better 

known as the contrast function. The advantage of A-learning is robustness against the 

misspecification of the baseline mean function, provided that the propensity score model is 

correctly specified. Recently, Zhang et al. (2012) proposed inverse propensity score 

weighted (IPSW) and augmented-IPSW estimators to directly maximize the mean potential 

outcome under a given treatment regime, i.e. the value function. Moreover, Zhao et al. 

(2012) recast the estimation of the value function from a classification perspective and use 

machine learning tools, to directly search for the optimal treatment regimes.

The rapid advances and breakthrough in technology and communication systems make it 

possible to gather an extraordinary large number of prognostic factors for each individual. 

For example, in the Sequenced Treatment Alternative to Relieve Depression (STAR*D) 

study, over 305 covariates are collected from each patient. With such data gathered at hand, 

it is of significant importance to organize and integrate information that is relevant to make 

optimal individualized treatment decisions, which makes variable selection as an emerging 

need for implementing personalized medicine. There have been extensive developments of 

variable selection methods for prediction, for example, LASSO (Tibshirani, 1996), SCAD 

(Fan and Li, 2001), MCP (Zhang, 2010) and many others in the context of penalized 

regression. Their associated inferential properties have been studied when the number of 

predictors is fixed, diverging with the sample size and of the non-polynomial order of the 

sample size.

In contrast to the large amount of work on developing variable selection methods for 

prediction, the variable selection tools for deriving optimal individualized treatment regimes 

have been less studied, especially when the number of predictors is much larger than the 

sample size. Among those available, Gunter, Zhu and Murphy (2011) proposed variable 

ranking methods for the marginal qualitative interaction of predictors with treatment. Fan, 

Lu and Song (2015) developed a sequential advantage selection method that extends the 

marginal ranking methods by selecting important variables with qualitative interaction in a 

sequential fashion. However, no theoretical justifications are provided for these methods. 

Qian and Murphy (2011) proposed to estimate the conditional mean response using a L1-

penalized regression and studied the error bound of the value function for the estimated 

treatment regime. However, the associated variable selection properties, such as selection 

consistency, convergence rate and oracle distribution, are not studied. Lu, Zhang and Zeng 

(2013) introduced a new penalized least squared regression framework, which is robust 

against the misspecification of the conditional mean function. However, they only studied 

the case when the number of covariates is fixed and the propensity score model is known as 

in randomized clinical trials. Song et al. (2015) proposed penalized outcome weighted 

learning for the case with the fixed number of predictors.
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In this paper, we study the penalized least squared regression framework considered in Lu, 

Zhang and Zeng (2013) when the number of predictors is of the non-polynomial (NP) order 

of the sample size. In addition, we consider a more general situation where the propensity 

score model may depend on predictors and needs to be estimated from data, as common in 

observational studies. A two-step estimation procedure is developed. In the first step, 

penalized regression models are fitted for the propensity score and the conditional mean of 

the response given predictors. In the second step, the optimal treatment regime is estimated 

using the penalized least squared regression with the estimated propensity score and 

conditional mean models obtained in the first step. There are several challenges in both 

numerical implementation and derivation of theoretical properties, such as weak oracle and 

oracle properties, for the proposed estimation procedure. First, since the posited model for 

the conditional mean of the response given predictors may be misspecified, the associated 

estimation and variable selection properties under model misspecification with NP 

dimensionality is not standard. Second, it is unknown how the asymptotic properties of the 

estimators for the optimal treatment regime obtained in the second step will depend on the 

estimated propensity score and conditional mean models obtained in the first step under NP 

dimensionality. To our knowledge, these two challenges have never been studied in the 

literature. Moreover, we estimate the value function of the estimated optimal regime and 

study the estimator's theoretical properties.

The remainder of the paper is organized as follows. The proposed method for estimating the 

optimal treatment regime is introduced in Section 2. Simulation results are presented in 

Section 3. An application to a dataset from the STAR*D study is illustrated in Section 4. 

Section 5 and 6 demonstrate the weak oracle and oracle properties of the resulting 

estimators, respectively. The estimator for the value function of the estimated optimal 

treatment regime is given in Section 7, followed by a Conclusion Section. All the technical 

proofs are given in the Appendix.

2. Method

Let Y denote the response, A ∈  denote the treatment received, where  is the set of 

available treatment options, and X denote the baseline covariates including constant one. For 

demonstration purpose, we focus on a binary treatment regime, i.e.,  = {0, 1}, with 0 for 

the standard treatment and 1 for the new treatment. We consider the following 

semiparametric model:

(2.1)

where h0(X) is the unspecified baseline function, β0 is the p-dimensional regression 

coefficients and e is an independent error with mean 0 and variance σ2. Under the 

assumptions of stable unit treatment value (SUTVA) and no unmeasured confounders 

(Rubin, 1974), it can be shown that the optimal treatment regime dopt(x) for patients with 

baseline covariates X = x takes the form
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where I(·) is the indicator function.

Our primary interest is in estimating the regression coefficients β0 defining the optimal 

treatment regime. Let π(x) = P(A = 1|X = x) be the propensity score. We assume a logistic 

regression model for π(x):

(2.2)

with p-dimensional parameter α0. Here, we allow the propensity score to depend on 

covariates, which is common in observational studies and the parameters α0 can be 

estimated from the data. For randomized clinical trials, π(x, α0) is a constant. We assume 

the majority of elements in β0 and α0 are zero and refer to the support supp(β0), supp(α0) as 

the true underlying sparse model of the indices.

Consider a study with n subjects. Assume X = (x1, …, xn)T is deterministic. The observed 

data consist of {(Yi, Ai, xi) : i = 1, ⋯, n}. Define μ(x) = h0(x) + π(x, α0)xTβ0, the 

conditional mean of the response given covariates X = x. We propose the following two-step 

estimation procedure to estimate the optimal treatment regime. In the first step, we posit a 

model Φ(x, θ) for the conditional mean function μ(x), and consider the penalized estimation 

for the propensity score and conditional mean models as follows.

Define

(2.3)

and

(2.4)

where αj and θj refer to the jth element in α and θ, q is the dimension of θ, and ρ1 and ρ2 

are folded concave penalty functions with the tuning parameters λ1n and λ2n, respectively. 

We allow p, q to be of NP order of n and assume logp = O(n1−2dβ) and logq = O(n1−2dθ) for 

some dβ and , respectively. The posited model Φ(x, θ) may be misspecified.
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Define Φ̂
i = Φ(xi, θ̂) and π̂

i = π(xi, α̂). In the second step, we consider the following 

penalized least square estimation:

(2.5)

where ρ3 is a folded-concave penalty function with the tuning parameter λ3n. Here the 

folded-concave penalty functions ρ1, ρ2 and ρ3 are assumed to satisfy the following 

condition:

Condition 2.1. ρ(t, λ) is increasing and concave in t ∈ [0, ∞), and has a continuous 

derivative ρ′(t, λ) with ρ′(0+, λ) > 0. In addition, ρ′(t, λ) is increasing in λ ∈ [0, ∞) and ρ
′(0+, λ) is independent of λ.

Popular penalties, such as LASSO, SCAD and MCP, satisfy Condition (2.1). In our 

implementation, we use SCAD penalty. Here, we adopt a two-step estimation procedure due 

to its computational simplicity. Alternatively, we can jointly estimate the parameters θ in the 

conditional mean model and β in the contrast function in a single penalized regression. 

However, this joint approach will require more computational effort since the tuning 

parameters for θ and β need to be selected simultaneously. In contrast, our two-step method 

only requires a single tuning parameter at each step and thus can be easily implemented by 

existing softwares, for example, the R package ncvreg.

3. Numerical studies

In this section, we evaluate the numerical performance of the proposed estimators in various 

settings. We generated the propensity score from the logistic regression model (2.2), with 

only one important covariate with the coefficient of 1.5. We chose three forms for the 

baseline function h0(x), including a simple linear form, a quadratic form and a complex non-

linear form,

• Model I: ,

• Model II: ,

• Model III: ,

where X is a p-dimensional vector of covariates and X̃ = (1, XT)T. We set p = 1000. 

Covariates were generated independently from two distributions: standard normal or s 

shifted exponential distribution with mean 0 and variance 1.

For each model, the first two covariates were chosen as important variables both in the 

baseline mean function and the contrast function with θ0 = (−2, −1, 0, …, 0)T and β0 = (0, 

−1.5, 1.5, 0, …, 0)T. We considered two different sample sizes, n = 300 and n = 500. For 

each scenario, we conducted 1000 replications. In our method, we fitted a linear model for 
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Φ(X, θ) and used the SCAD penalty for variable selection. The tuning parameter was chosen 

using 10-fold cross-validation.

To evaluate the performance of the proposed estimator, we also compared our method with 

the penalized Q-learning using the SCAD penalty. Specifically, we fitted a linear model with 

baseline covariate effects and treatment-covariates interaction. Note that it is correctly 

specified under model I but misspecified under models II and III.

Let β̂ and β̃ denote our estimator and the penalized Q-learning estimator, respectively. We 

report the L2 loss of β̂ and β̃, the number of missed important variables (denoted as FN), the 

number of selected noisy variables (denoted as FP) and the average percentage of making 

correct decisions (denoted as PCD), which is defined as 

for treatment rules d̂(x) = I(xTβ̂ > 0) and d̃(x) = I(xTβ̃ > 0). In addition, we estimated 

E{Y⋆(d̂)}, E{Y⋆(d̃)} and E{Y⋆(dopt)}, the value functions of the estimated optimal treatment 

regimes by our method and the penalized Q-learning method, and of the true optimal regime, 

respectively, using Monte Carlo simulations. For a given treatment rule d(x), we compute 

E{Y⋆(d)} by averaging the responses for 20000 subjects generated from the true model with 

A being determined by d(x). We report the averages of mean responses over 1000 

replications as well as their standard deviations.

Table 1 summarizes the results. The penalized Q-learning method performs pretty well 

under Model I where the fitted linear model is correctly specified and is more efficient than 

the proposed method as expected. For example, when covariates are i.i.d normal and n = 

300, the PCD is around 99.3% and the estimated value function is very close to the true 

optimal, E{Y⋆(dopt)}. In contrast, under this setting, the PCD of our proposed method is 

97.5%, and the estimated value function is slightly lower.

However, for Models II and III, the penalized Q-learning method could lead to substantial 

bias and works much worse than the proposed method. Taking the second model as an 

example, when covariates are normal and n = 300, ‖β̃ − β0‖2 = 4.86, approximately third 

times as large as ‖β̂ − β0‖2. The PCD of the estimated treatment regime obtained by the 

penalized Q-learning is 55.0%, only a little better than a random guess. In contrast, for this 

scenario, the PCD of our proposed method is 73.4%. Moreover, when sample size increases, 

the performance of the penalized Q-learning method is even worse. This is due to the 

misspecification of the baseline mean function. For our method, there's a big increase in the 

PCD as the sample size gets larger. The L2 loss and average number of missed important 

variables are also greatly reduced. This demonstrates the robustness of the proposed method 

to the misspecification of the baseline mean function.

4. Real data example

We applied our method to the data set from the STAR*D study for 4041 patients with 

nonpsychotic major depressive disorder (MDD). The aim of the study was to determine the 

effectiveness of different treatments for those people who have not responded to initial 

medication treatment. At Level 1, all patients received citalopram (CIT), an selective 

serotonin reuptake inhibit (SSRI) medication. After 8-12 weeks, three more levels of 
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treatments were offered to participants whose previous treatment didn't give an acceptable 

response. Available treatments at Level 2 included sertraline (SER), venlafaxine (VEN), 

bupropion (BUP) and cognitive therapy (CT) and augmenting CIT which combines CIT with 

one more treatment. At Level 2A, switch options to VEN or BUP treatment were provided 

for patients receiving CT but without sufficient improvement. Four treatments were available 

at Level 3 for participants without anticipated response, including medication switch to 

mirtazapine (MIRT), nortriptyline (NTP), and medication augmentation with either lithium 

(Li) and thyroid hormone (THY). Finally, treatment with tranylcypromine (TCP) or a 

combination of mirtazapine and venlafaxine (MIRT+VEN) were provided at Level 4 for 

those without sufficient improvement at Level 3.

Here, we only focused on a subset of data for those patients receiving treatment BUP (coded 

as 1) or SER (0) at Level 2. The outcome of interest was the 16-item Quick Inventory of 

Depressive Symptomatology-Clinician-Ratings (QIDS-C16), which indicated the severity of 

patient's depressive symptom. The maximum vale of QIDS-C16 was 24 and its distribution 

was highly skewed. Hence, we considered the transformation Yi = log(25 − QIDS-C16) as 

our response. Larger value of Yi indicates better response. All baseline variables at Level 1 

and intermediate outcomes at Level 2 were included as covariates in our study, yielding 305 

covariates in total for each patient. There are 383 patients receiving treatment BUP or SER 

at Level 2, however, only 319 patients have complete records of all 305 covariates and the 

response. Among them, 153 were treated with BUP and 166 with SER. Our proposed 

method selected 14 variables that are important for treatment decision. We reestimate the 

coefficients of these variable by solving A-learning estimating equations (Robins, 2004) and 

obtained the resulting estimated optimal treatment regime.

To examine the performance of the estimated optimal treatment regime, we compared it with 

the fixed treatment regimes by assigning all patients to either BUP or SER, in terms of the 

estimated value functions obtained by the IPSW method (Zhang et al., 2012). The results for 

the estimated value functions were given in Table 2. In addition, we reported the 95% 

confidence intervals for the difference between the estimated values of the obtained optimal 

regime and the fixed regime based on 500 bootstrap samples. Our estimated optimal 

treatment regime gave larger estimated values than those of the fixed regimes, BUP and 

SER. The difference is significant when comparing to the BUP treatment at 5% level, but is 

less significant when comparing to the SER treatment. One reason is that our estimated 

optimal regime assigns the majority of patients (about two-thirds) to the SER treatment. 

Please refer to Table 3 for the numbers of patients receiving BUP or SER according to the 

estimated optimal regime.

In addition, as suggested by a referee, we examined the effects of missing data. Specifically, 

we deleted one patient whose response was missing, and imputed all the missing values in 

covariates using the R package missForrest available in CRAN. This package uses a 

random forest trained based on the observe entries in the design matrix to predict those 

missing values. The optimal treatment regime obtained based on the imputed data was 

similar to the one based on the complete-case analysis as shown above. It selected 14 

variables among which 11 variables were also included in the estimated optimal treatment 

regime without imputation. In addition, the bootstrap results suggested that the estimated 
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value of the estimated optimal treatment regime is significantly larger than those of the fixed 

treatment regimes, under 0.05 significance level. Since results are similar, we omitted them 

here.

5. Non-asymptotic weak oracle properties

In this section we show that the proposed estimator enjoys the weak oracle property, that is, 

α̂, β̂ and θ̂ defined in (2.3)-(2.5) are sign consistent with probability tending to 1, and are 

consistent with respect to the L∞ norm. Weak oracle properties of θ̂ are established in the 

sense that it converges to some least false parameter θ⋆ when the main effect model is 

misspecified.

Theorem 5.1 provides the main results. Some regularity conditions are discussed in 

subsections 5.1 and 5.2. A major technical challenge in deriving weak oracle properties of β̂ 

is to analyze the deviation in (5.18), for which we develop a general empirical process result 

in the supplementary article (Shi et al., 2016). This result is important in its own right and 

can be used in analyzing many other high-dimensional semiparametric models where the 

index parameter of an empirical process is a plug-in estimator. The following notation is 

introduced to simplify our presentation.

Let 1 denote a vector of ones, E denote the identity matrix, O denote the zero matrix 

consisting of all zeros. For any matrix Ψ, let P(Ψ) denote the projection matrix 

Ψ(ΨTΨ)−1ΨT. ΨM the submatrix of Ψ formed by columns in the subset M. For any vector 

a, b, let “○” denote the Hadamard product: a ○ b = (a1b1, …, anbn)T, |a| = (|a1|, …, |an|)T, 

diag(a) as the diagonal matrix with elements of vector a and aM the subvector of a formed by 

elements in M. The jth element in a is denoted as aj. Let ‖ · ‖p be the Lp norm of vectors or 

matrices. Let ‖Y‖ψm be the Orlicz norm of a random variable Y,

for any m ≥ 1.

Let Mα = supp(α0), Mβ = supp(β0), Mθ⋆ = supp(θ⋆), and , ,  be their 

complements. Assume each xj, is standardized such that ‖xj‖2 = √n. Let Φ(θ) = [Φ(x1, θ), …, 

Φ(xn, θ)]T, ϕ(θ) = [ϕ1(θ), …, ϕq(θ)] denote its Jacobian matrix. The derivatives are taken 

componentwise, i.e.,

for all l = 1, …, q. We denote Φ(θ⋆) and ϕ(θ⋆) as Φ and ϕ when there's no confusion. We use 

a short-hand Φ̂, ϕ̂ for Φ(θ̂), ϕ(θ̂).
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5.1. The misspecified function

We first define the least false parameter under the misspecification due to the posited mean 

function Φ(x, θ). For regression models with fixed number of predictors, the definition of 

the least false parameter under model misspecification has been widely studied in the 

literature (e.g, White, 1982; Li and Duan, 1989). However, for regression models with NP 

dimensionality, its definition is more tricky. Here, we define our least false parameter as 

follows.

For each θ ∈ ℝq, let dnθ = 1/2 minj{|θj| : θj ≠ 0}, Mθ be the support of θ, μ = (μ(x1), …, 

μ(xn))T and

Consider the set

for some constant C0, and s0 ≪ n. We assume the set Θ to be nonempty and define the least 

false parameter as

In addition, we assume

(5.1)

for some γ0 ≥ 0. By its definition, θ⋆ satisfies

(5.2)

and |Mθ⋆| ≤ s0.

Remark 5.1. Conditions (5.1) and (5.2) are key assumptions determining the degree of 

model misspecification. Condition (5.1) requires that the posited working model Φ can 

provide a good approximation for μ. In that case, the residual μ – Φ will be orthogonal to the 

jacobian matrix ϕMθ⋆ and the left-hand side of (5.1) will be small. In general, our 
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assumptions are weaker than the weak sparsity assumption imposed for Lasso (Bunea, 

Tsybakov and Wegkamp, 2007), which assumes the L2 approximation error ‖μ – Φ‖2 

converges to 0 at some certain rate.

Condition 5.1. We assume the following conditions:

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

for some constants 0 ≤ a3 ≤ 1/2, 0 ≤ γθ⋆ ≤ γ0, sθ⋆ = |Mθ⋆|. If the response is unbounded, we 

require

(5.8)

and the right-hand side of (5.6) shall be modified to .

Remark 5.2. Conditions (5.6) and (5.7) put constraints on the derivatives of ϕ, requiring the 

misspecified function to be smooth. The right-hand side order in (5.6) is not too restrictive 

when nγθ⋆ ≫ sθ⋆ logn.

Two common examples of the main-effect function Φ are provided below to examine the 

validity of Condition 5.1.
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Example 1. Set Φ = 0. Then, no model is needed for Φ. It is easy to check that Condition 

5.1 is satisfied.

Example 2. When a linear model is specified, i.e., Φ(x, θ) = xTθ, conditions (5.6) and (5.7) 

are automatically satisfied since the second-order derivative of Φ vanishes. In this example, 

θ⋆ takes the form

and . Note that  is the regression coefficients between XMθ⋆ and μ. Condition 

(5.1) holds automatically since

Condition (5.2) becomes

(5.9)

Each element in the left-hand side vector in (5.9) can be viewed as the inner product of the 

residuals obtained by fitting XMθ⋆ on each noise variable in  and those fitted by 

regressing XMθ⋆ on μ. When μ depends only on XMθ⋆, (5.9) holds for Gaussian linear 

model.

5.2. The covariates

Condition 5.2. Assume that

(5.10)

(5.11)

(5.12)
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(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

for some constants 0 ≤ γα, γβ, a2 ≤ 1/2, where

The sequence bαβ in (5.10) shall satisfy

Remark 5.3. Conditions (5.10) and (5.11) control the impact of the deviation of the 

estimated propensity score from its true value on β̂, thus are not needed when the propensity 

scores are known. By the definition of W(δ), magnitudes of the left-hand side in these two 

conditions depend on how accurate Φ models μ. The sequence bαβ in (5.10) can converge to 

0 when XMβ and XMα are weakly correlated. Each element in the left-hand side of (5.11) is 

the multiple regression coefficient of the corresponding variable in  on W(δ)XMα, using 

weighted least squares with weights π ○ (1 − π), after adjusted by XMβ, which characterize 

their weak dependence given XMβ. These two conditions are generally weaker than those 

imposed by Fan and Lv (2011) (Condition 2), and are therefore more likely to hold.
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Remark 5.4. The right-hand side in (5.15) can be relaxed to O(n1/2+γθ⋆/logn) when using 

the linear model. The additional term  is due to the penalty on the complexity of the 

main effect model. This condition typically controls the deviation

(5.18)

where Z = diag(A−π)X. A common approach to bound the deviation is to utilize the 

classical Bernstein's inequality. However this approach does not work here, because the 

indexing parameter in the process Φ(·) in (5.18) is an estimator. To handle this challenge, we 

bound the left-hand side in (5.18) by

A general theory that covers the above result is provided in Proposition C.1 in the 

supplementary article.

Remark 5.5. Conditions (5.16) and (5.17) aim to control the L∞ norm of the quadratic term 

of the Taylor series as a function of α̂, expanded at α0. Similar to (5.10) and (5.11), the two 

conditions are not needed when α0 is known to us.

5.3. Weak oracle properties

Theorem 5.1 (Weak oracle property). Assume that conditions B.1 and B.3 in the 

supplementary Appendix and conditions 5.1, 5.2 hold, and maxi ‖ei‖ψ1 < ∞, where ei is the 

residual for the ith patient in (2.1). Then there exist local minimizers α̂, θ̂ and β̂ of the loss 

functions (2.3), (2.4), and (2.5) respectively, such that with probability at least 1 − c̄/(n + p + 

q):

a.
, , ,

b. ‖α̂
Mα − α0Mα‖∞ = O(n−γαlogn), ‖β̂Mβ − β0Mβ‖∞ = O(n−γβlogn), 

,

for c̄ is some positive constant.

Remark 5.6. In Theorem 5.1, part (a) corresponds to the sparse recovery while (b) gives the 

estimators' convergence rates. Weak oracle property of α̂ directly follows from Theorem 2 in 

Fan and Lv (2011). However, to prove this property of β̂ requires further efforts, to account 

for the variability due to plugging in θ̂ and α̂. L∞ convergence rate of α̂
Mα as well as the 

nonsparsity size sα, play an important role in determining how fast β̂Mβ converges.

Remark 5.7. The convergence rate of θ̂ will not affect that of β̂. This is because we require 

the posed propensity score model to be correct, the estimation of β is robust with respect to 
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the model misspecification of the main effect parameters θ. Simulation results also validate 

our theoretical findings.

6. Oracle properties

In this section we study the oracle property of the estimator β̂. We assume that max(sα, sβ) 

≪ √n and nγθ⋆ ≫ sθ⋆logn. The convergence rates of the estimators are established in Section 

6.1 and their asymptotic distributions are provided in Section 6.2.

6.1. Rates of convergence

Condition 6.1. In addition to (5.16) and (5.17) in Condition 5.2, assume that the right-hand 

side of (5.15) is strengthened to , and the following conditions hold,

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

Remark 6.1. Similar to the interpretation of (5.10) and (5.11), (6.1) corresponds to a notion 

of weak dependence between variables in XMα and XMβ while (6.2) require  and XMα 
are weakly correlated after adjusted by XMβ. Besides, it can be verified that (6.3)-(6.5) hold 

with large probability when the baseline covariates possesses subgaussian tail.

Theorem 6.1. Assume that conditions 2.1, 5.1 and 6.1 and conditions B.2 and B.4 in the 

supplementary Appendix hold, and maxi‖ei‖ψ1 < ∞. Constraints on bθ⋆, dθ, dnθ and λ3n are 

same as in Theorem 5.1. Further assume  with sα = O(nl1), sβ = O(nl2), and 

nγθ⋆ ≫ sθ⋆logn. Then there exists a strict local minimizer β̂ of the loss function (2.5), α̂ of 
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(2.3), such that ,  with probability tending to 1 as n → ∞, and 

, .

Remark 6.2. We note that when establishing the oracle property of β̂, only the weak oracle 

property of θ̂ is required. This is due to the robustness of the A-learning methods and the 

fact that the propensity score is correctly specified.

Remark 6.3. Precision of βM̂β is affected by that of α̂
Mα, since ‖β̂Mβ − β0Mβ‖2 is at least the 

same order of magnitude as ‖α̂
Mα − α0Mα‖2. When the propensity score is known, 

convergence rate of β̂Mβ is improved to .

6.2. Asymptotic distributions

We define Σ12 and Σ22 as

where W is a shorthand for W(θ⋆).

To establish the weak convergence of the estimators, we introduce the following conditions.

Condition 6.2. Assume that

(6.6)

(6.7)

(6.8)

(6.9)
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(6.10)

where xMαi and xMβi stand for the ith row of the matrix XMα and XMβ respectively.

Remark 6.4. Conditions (6.7) and (6.8) are the Lyapunov conditions which guarantee the 

normality of α̂
Mα and β̂Mβ. Condition (6.9) puts constraints on the maximum eigenvalue of 

the variance-covariance matrix of  by requiring it to be finite. 

Condition (6.10) holds when Φ(δ) converges to Φ uniformly in terms of L∞ norm with δ in 

the region Hθ⋆. When ‖μ − Φ‖∞ is bounded, (6.8) and (6.9) are simultaneously satisfied.

Theorem 6.2 (Oracle property). Under conditions in Theorem 6.1 and Condition 6.2, 

assume max(sα, sβ) = o(n1/3), the right-hand side of (5.15) is strengthened to 

, as n → ∞. Then with probability tending to 1, , 

 in Theorem 6.1 must satisfy

a. α̂
2 =0, β2̂ = 0,

b.
 is asymptotically normally 

distributed with mean 0, covariance matrix Ω, which is the limit of

where A1n is a q1 × sα matrix and A2n is a q2 × sβ matrix such that

We note that conditions on the smoothness of the misspecified function (5.15) is 

strengthened. To better understand the above theorem, we provide the following two 

corollaries. The first corollary gives the limiting distribution when we specify both the 

propensity score and main-effect model while the second one corresponds to case when the 

propensity score is known in advance.

Corollary 6.1. Under conditions of Theorem 6.2, when we correctly specify the main-effect 

model, i.e., μ = Φ,  and  are jointly 

asymptotically normally distributed, with the covariance matrix Ω′, which is the limit of the 

following matrix,
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Remark 6.5. Comparing the results in Corollary 6.1 and in Theorem 6.2, the term 

 accounts for the partial specification of model (2.1). In the most extreme case 

where we correctly specify Φ, β̂Mβ will achieve its minimum variance and is independent of 

αM̂α. In general, we can gain efficiency by posing a good working model for Φ. Numerical 

studies also suggest that a linear model such as Φ = Xθ is preferred compared to the 

constant model. This is in line to our theoretical justification since W is a diagonal matrix 

with the ith diagonal element μi − Φi.

Corollary 6.2. When the propensity score is known, under conditions of Theorem 6.2 with 

all α̂'s replaced by α0, then with probability tending to 1 as n → ∞, 

is asymptotically normally distributed with mean 0, co-variance matrix Ω″ which is the limit 

of

where

Remark 6.6. An interesting fact implied by Corollary 6.2 is that the asymptotic variance of 

βM̂β will be smaller than that of the same estimator had we known the propensity score in 

advance. A similar result is given in the asymptotic distribution of the mean response for the 

value function in the next section. This is in line with the semiparametric theory in fixed p 

case where the variance of augmented-IPWS estimator would be smaller when we estimate 

the parameter in the coarsening probability model, even if we know what the true value is 

(see Chapter 9 in Tsiatis, 2006). By doing so, we can actually borrow information from the 

linear association between covariates in WXMβ and those in XMα.

7. Evaluation of value function

In this section, we derive a non-parametric estimate for the mean response under the optimal 

treatment regime. By (2.1), define our average population-level response under a specific 

regime as
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where the treatment decision for the ith patient is given as . The mean response 

under the true optimal regime is denoted as Vn(β0) and it is easy to verify that β0 is the 

maximizer of the function Vn.

Similarly as in Murphy (2003), we propose to estimate Vn(β0) using

(7.1)

This estimator is not doubly robust but offers protection against misspecification of the 

baseline function and improved efficiency It's not doubly robust because we require the 

propensity score model to be correctly specified to ensure the oracle property of β̂. A key 

condition which guarantees asymptotic normality of (7.1) is given as follows.

Condition 7.1. Assume there exists some constant C′, such that for all ε > 0,

Remark 7.1. The above condition has similar interpretation as Condition (3.3) in Qian and 

Murphy (2011), where random design were utilized. Condition 7.1 requires that the absolute 

value of the average contrast function can not be too small, which together with the 

condition sβ = o(n1/4) ensures the following stochastic approximation condition:

(7.2)

Theorem 7.1. Assume that conditions in Theorem 6.2 hold. If Condition 7.1 holds and the 

nonsparsity size sβ satisfies sβ = o(n1/4), then with probability going to 1, √n{V̂
n − Vn(β0)} 

is asymptotically normally distributed with variance , which is limit of

(7.3)

where υn stands for the vector , and 

Σ22 is defined in Theorem 6.2.

Remark 7.2. Note that we only need sβ = o(n1/2) to guarantee the weak oracle property of β̂ 

or  convergence rate of ‖β̂Mβ − β0Mβ‖2. This condition is strengthened to sβ = 
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o(n1/3) to show the asymptotic normality of βM̂β. Theorem 7.1 further requires sβ = o(n1/4) 

as to ensure the approximation condition (7.2).

Remark 7.3. When (7.2) is satisfied, the asymptotic normality of V̂
n follows immediately 

from the oracle property of the estimator β̂Mβ. The first term σ2 in (7.3) is due to variation of 

the error term ei while the last two terms correspond to the asymptotic variance of β̂Mβ.

We provide a corollary here which corresponds to the case where the main-effect model is 

correctly specified.

Corollary 7.1. In addition to the conditions in Theorem 7.1, if the main-effect model is 

correct, √n{V̂
n − Vn(β0)} is asymptotically normally distributed with variance , which is 

defined as the limit of

where υn is defined in Theorem 7.1.

Similar to the asymptotic distribution of βM̂β, the following corollary suggests that the 

proposed estimator is more efficient in the case when we estimate the propensity score by 

fitting a penalized logistic regression.

Corollary 7.2. Assume the propensity score is known, and conditions in Theorem 7.1 hold 

with all α̂'s replaced by α0, then with probability going to 1, √n{V̂
n − Vn(β0)} is 

asymptotically normally distributed with variance , which is the limit of

with υn defined in Theorem 7.1, and  defined in Corollary 6.2.

By the definition of υn and the condition that , the asymptotic 

variance will reach its minimum when  is close to the propensity score. We 

characterize this result in the following Corollary.

Corollary 7.3. Under the conditions in Theorem 7.1, if we further assume that

then with probability going to 1, √n{V̂
n − Vn(β0)} is asymptotically normally distributed 

with the variance σ2.
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Remark 7.4. Such a result is expected with the following intuition: in an observational 

study, if the clinician or the decision maker has a high chance to assign the optimal treatment 

to an individual patient, i.e., the propensity score is close to , the variation in 

estimating the value function will be decreased. In other words, the more skillful the 

clinician or the decision maker is, the closer the observed individual response Yi approaches 

the potential outcome under the optimal treatment regime.

8. Conclusion

In this article, we propose a two-step estimator for estimating the optimal treatment strategy 

which selects variables and estimates parameters simultaneously in both propensity score 

and outcome regression models using penalized regression. Our methodology can handle 

data set whose dimensionality is allowed to grow exponentially fast compared to the sample 

size. Oracle properties of the estimators are given. Variable selection is also involved in the 

misspecified model and new mathematical techniques are developed to study the estimator's 

properties in a general form of optimization. The estimator is shown to be more efficient 

when the misspecified working model is “closer” to the conditional mean of the response, 

although our approach does not require correct specification of the baseline function. 

Numerical results demonstrate that the proposed estimator enjoys model selection 

consistency and has overall satisfactory performance.

In the case when there are multiple local solutions of our objective functions (2.5), (2.3) or 

(2.4), although our asymptotic theory only suggests the existence of a local minimum 

possessing the oracle property, it is worth mentioning that we can actually identify the 

desired oracle estimator using existing algorithms (see Fan, Xue and Zou, 2014; Wang, Kim 

and Li, 2013). Theoretical properties can be established in a similar fashion.

The proposed method requires to specify the propensity score model correctly. In 

randomized studies, the propensity score is known in advance and thus the assumption is 

automatically satisfied. However, for observational studies, there's no guarantee. In practice, 

some prior information on treatment decision mechanism used by physicians may be helpful 

for building a reasonable propensity score. In addition, model diagnostic tests can be used to 

check the goodness-of-fit of the posited propensity score model, such as a logistic regression 

model. In general, this might be easier than checking the goodness-of-fit of the regression 

model for the response. In addition, in our current work, we assume the design matrix X to 

be deterministic mainly for technical convenience. To the best of our knowledge, the 

penalized regression with the folded-concave penalties has never been studied in random 

design settings with NP dimensionality. To consider random design settings, we need to 

impose some tail conditions on X, and the derivation of some technical results needs to be 

modified. This is beyond the scope of our current paper and will be investigated elsewhere.

The current framework is focused on point treatment study. It will be interesting and 

practically useful to extend our results to dynamic treatment regimes. Significant efforts are 

needed to handle model misspecification in multiple stages. This is an interesting research 

topic that needs further investigation.

Shi et al. Page 20

Electron J Stat. Author manuscript; available in PMC 2017 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Appendix

Here, we only give the proof of Theorem 5.1. More technical conditions and proofs for 

Theorems 6.1, 6.2 and 7.1 are given in the supplementary Appendix. To establish Theorem 

5.1, we need the following lemmas. The proofs of these lemmas are also given in the 

supplementary Appendix.

Lemma 1. Let z = (z1, …, zn)T be an n-dimensional independent random response vector 

with mean 0 and a ∈ ℝn.

a. If z1, …, zn are bounded in [c, d], then for any ε ∈ (0, ∞),

b. If z1, …, zn satisfy maxi ‖zi‖ψ1 ≤ ω, then for any ε ∈ (0, ∞),

Lemma 2. Define , where εk is defined in Appendix G, under conditions in 

Theorem 5.1, we have Pr(ε) ≥ 1 − c̄/(n + p + q) for some c̄ > 0.

Notation. Let Z = diag(A − π)X, Ẑ = diag(A − π̂)X, and

and π = (π(x1), …, π(xn)). For a given matrix Ψ, the superscript Ψj is used to refer to the 

vector which is the jth column of matrix Ψ while the subscript Ψi stands for the ith row of 

Ψ. We will write Φ(θ), ϕ(θ) with  as Φ(θMθ⋆), ϕ(θMθ⋆) for convenience.

Proof of Theorem 5.1

We break the proof into three steps. Based on Theorem 1 in Fan and Lv (2011), it suffices to 

prove the existence of β̂Mβ, θ̂Mθ⋆ inside the hypercube
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with K a large constant, conditional on the event ε, satisfying

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

Step 1. We first show the existence of a solution to equations (A.1) and (A.2) inside ℵ for 

sufficiently large n. For any δ = (δ1, …, δsβ+sθ⋆)T ∈ ℵ, since dnβ ≥ n−γβ logn, dnθ ≫ n−γθ⋆ 

logn, we have

and sgn(δβ) = sgn(β0Mβ), . The monotonicity condition of , 

gives

(A.7)
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We write the left hand side of (A.1) as

(A.8)

on the set ε3 ∪ ε5 ∪ ε13, we have

(A.9)

Define

Note that η1Mβ = I3 in (A.8), which we represent here using a second order Taylor expansion 

around α0Mα,

(A.10)

where rI3 in (A.10) corresponds to second order remainder, whose jth component is given as

where Σ(α̃) is a diagonal matrix with the ith diagonal element  with α̃ lying in the 

line segment between α̂
Mα and α0Mα. Since π″(·) is a bounded function, we can bound 

‖rI3‖∞ by
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(A.11)

whose order of magnitude is O(sαn1−2γα log2 n) by (5.16).

We decompose I4 in (A.8) as . Using similar arguments, on the 

set ε9, it follows from (5.17) that

(A.12)

Using Taylor expansion, it is immediate to see that

(A.13)

by (5.17). Combining (A.12) and (A.13) gives

(A.14)

So far, we have

(A.15)

by (A.9), (A.10), (A.11) and (A.14). Now we approximate I4 by  and 

bound the magnitude of error ‖ωMβ‖∞ where ω = (ẐTẐMβ − XTΔXMβ)(δβ − β0Mβ). We 

present it as

Shi et al. Page 24

Electron J Stat. Author manuscript; available in PMC 2017 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(A.16)

It follows from first-order Taylor expansion that the jth element in ω1Mβ can be presented as

(A.17)

where Δ(α̃
Mα) is a diagonal matrix with the ith diagonal component π(xi, α̃

Mα)(1 − π(xi, 

α̃Mα)), where α̃
Mα lies between the line segment of α̂

Mα and α0Mα. We decompose xj as 

the Hadamard product of two vectors, denoted by x̄j ○ x̃j, where

Let φ = (A − π̂) ○ x̃j ○ {Δ(α̃
Mα)XMα(α̂

Mα − α0Mα)}, we have

(A.18)

Since ‖A − π̂‖∞ ≤ 1, elements in Δ(α̃
Mα) are bounded, we have
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(A.19)

Combining (A.18) with (A.19) gives

(A.20)

which is  by (B.4) and (B.5).

By the same argument, we can verify that ‖ω2Mβ‖∞ is of the same order. Note that on the set 

ε11,

these together with (A.20), yields

(A.21)

Define vector-valued function

(A.22)

then equation (A.1) is equivalent to Ψ1(δβ, δθ) = 0. It follows from (A.7), (A.15) and (A.21) 

that
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By similar arguments in the proof of Theorem 2 in Fan and Lv (2011), we have

(A.23)

on the set ε1 ∪ ε2. Thus by (5.10), (B.1), (B.14) and (B.15), we have

Therefore by (A.20), for sufficiently large n, if (δβ − β0Mβ)j = n−γβ logn,

(A.24)

and if (δ − β0Mβ)j = −n−γβ logn,

(A.25)

Similarly we write the left-hand side of (A.2) as

(A.26)

It is immediately to see that

(A.27)

on the set ε5. The L∞ norm of the first term in (A.26) is bounded by
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(A.28)

on the set ε15.

Using second-order Taylor expansion, we approximate the last term in (A.26) by its first-

order term . It follows from (5.7) that the L∞ norm of the remainder 

term is bounded from above by

(A.29)

where δ̃θ lies between the line segment of  and δθ.

Define Ψ2(δβ, δθ) = {ϕMθ⋆ (δθ)TϕMθ⋆ (δθ)}−1[ϕMθ⋆ (δθ)T{Y − Φ(δθ)} − nλ3nρ̄3(δθ)], 

equation (A.2) is equivalent to Ψ2(δβ, δθ) = 0. Similarly to Ψ1(δβ, δθ), we now show 

Ψ2(δβ, δθ) is mainly dominated by . Define , it follows 

from (5.1), (5.3), (B.13), (A.26), (A.27), (A.28) and (A.29) that

(A.30)

Therefore, we can find a large constant K < ∞, for n large enough such that if 

,

(A.31)

and if ,
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(A.32)

Combining (A.24), (A.25) with (A.31) and (A.32), an application of Miranda's existence 

theorem shows equations (A.1), (A.2) have a solution (β̂Mβ, θ̂Mθ⋆) in ℵ.

Step 2. Let (β̂T, θ̂T)T be a solution to equations (A.1) and (A.2) with  and . We 

show that (βT̂, θ̂T)T satisfies inequalities (A.3) and (A.4). Decompose (A.3) as the sum of 

the following terms,

(A.33)

On the set ε4 ∪ ε6 ∪ ε10 ∪ ε12, it is immediately to see that

(A.34)

By (B.4), (B.5) and (A.20), a first-order Taylor expansion gives

(A.35)

Similarly it follows from (5.17) and (A.13) that

(A.36)

On the set ε10, by (5.17) and (A.12), we have

(A.37)
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Approximating  by , the L∞ norm of remainder error 

term is bounded from above by

(A.38)

by (5.16). Let 

, it 

follows from (A.33)–(A.38) that

(A.39)

Since βM̂β solves (A.1), we have

(A.40)

where uβ is defined as Ψ1(βM̂β, θM̂θ⋆) + β0Mβ − β̂Mβ. Combining (A.40) with (A.23) and 

(A.39) gives

by (5.11), (B.3), (B.16) and (B.19). Since C < 1, for sufficiently large n, (A.3) is satisfied.

Now we verify (A.4), decomposing  as the sums of

(A.41)

on the set ε8 ∪ ε16, we have

(A.42)

Similar to (A.29), a second-order Taylor expansion gives
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(A.43)

by (5.7). Since (βM̂β, θM̂θ⋆) is the solution to Ψ2(δβ, δθ) = 0, it follows from (A.30) that

(A.44)

By (A.41)–(A.44) and conditions in (5.2), (5.4), (B.15) and (B.20), the left-hand side of (A.

4) can be bounded by

for C < 1. Therefore (A.4) is satisfied.

Step 3. Now we show the second order conditions (A.5) and (A.6) hold. Because (A.6) is 

directly implied by (B.17), it suffices to show that  for 

sufficiently large n. Since (ẐMβ − ZMβ)T(ẐMβ − ZMβ) is positive semi-definite, we have

(A.45)

Since any symmetric matrix Ψ, the absolute value of minimum eigenvalue can be bounded 

by
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(A.5) follows if we can show . But 

this is immediate to see because

on the set ε11. Similar to (A.20),  can be 

bounded from above by

(A.46)

which is  implied by the constrain max(l1, l2) < γα. This 

completes the proof.
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Table 2
Estimated value functions and confidence intervals for the difference of the estimated 
values

Treatment regime Estimated value function Diff 95% CI on Diff

Estimated optimal regime 3.10

BUP 2.55 0.55 [0.07, 1.13]

SER 2.80 0.30 [−0.08, 0.64]
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Table 3
Number of patients receiving BUP or SER, according to the estimated optimal treatment 
regime

receives BUP receives SER total

assigns BUP 66 50 116

assigns SER 93 110 203

total 153 160 319
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