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Reappraisal of dioxygen binding in
NOV1 crystal structures
Philip D. Kisera,b,1

McAndrew et al. (1) report the crystal structure of
NOV1, a stilbene-cleaving carotenoid cleavage oxygen-
ase (CCO), in substrate-free and substrate/product-
bound forms, all of which with dioxygen (O2) bound to
the nonheme iron center of the enzyme. In mononuclear
nonheme iron enzymes studied to date, the Fe–O2 in-
teraction is strongly promoted by the binding of organic
substrate/cofactor at or near the iron center (2), limiting
formation of potentially detrimental reactive oxygen spe-
cies (3). This proposed nonsequential substrate binding
in NOV1 deviates from the current paradigm of O2

activation by nonheme iron enzymes.
The substrate-free NOV1 structure features O2 bound

side-on to iron, modeled based on an elongated electron
density peak. However, the strength of this elongated
peak is nonuniform, in contrast to other side-on Fe–O2

complexes (4, 5), as reflected by the disparate B-factors
for the two oxygen atoms (44 and 68 vs. 21 Å2 for iron).
The oxygen with the shortest iron bond unexpectedly
has the highest B-factor. O2 also was modeled in the
NOV1–vanillin complex but has weak electron density
support and clashes with the carbonyl oxygen of the
bound product.

Also reported was a NOV1–resveratrol complex
featuringboundorganic substrate andO2 that seempoised
to react (6). Suppressive effects of crystal packing on catal-
ysis were invoked to rationalize the stability of the ternary
complex but without supporting kinetic data. O2 was mod-
eled similarly to the product complex. Despite the assertion
that “well-resolved electron density was observed for the
entire substrate molecule,” the map shows a break
between the resveratrol α-carbon and 3,5-dihydroxy
ring. Substrate B-factors are variable and elevated
compared with the surrounding protein atoms. More-
over, resveratrol is listed as an electron density outlier

in the Protein Data Bank validation report, as is O2. Thus,
cleavage reaction products may significantly occupy the
active site.

What other evidence supports these unusual iron–
oxy structures? The authors state that the complex
could be “described as Fe3+-superoxo or Fe(II)-O2,”
although the citation provided is not particularly rele-
vant. O2 complexation with Fe(II) is accompanied by
electron transfer from the metal to oxygen, providing
an EPR-detectable species (7). However, EPR mea-
surements were made only on anaerobic NOV1. In-
stead, the reactivity of NOV1 was examined with the
O2 surrogate, nitric oxide (NO) (8). NOV1 formed an
Fe–NO complex in the absence of substrate with sim-
ilar reactivity toward O2 implied. However, enzymes
with known sequential substrate-O2 binding also react
with NO in the absence of substrate (9, 10).

If the density does not represent O2, what are
the alternatives? I rerefined the substrate-free NOV1
structure with unrestrained O–O and Fe–O bonds for
the Fe–O2 complex (Fig. 1). Interestingly, the O–O
bond length refined to a value of ∼1.8 Å, which is in-
consistent with a covalent diatomic oxygen species.
The density could instead be simply explained by
solvent binding to iron at two distinct sites, each with
partial occupancy.

In conclusion, the NOV1 iron–oxy complexes should
be viewed with some skepticism. More rigorous studies
of the Fe–O2 interaction in CCOs with advanced kinetic
and spectroscopic techniques are needed.
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Fig. 1. Structure of the NOV1 iron center refined without O–O and Fe–O bond-length restraints. Shown is an σA-weighted Fo − Fc electron
density map (green mesh, contoured at 3 rmsd with a 3-Å carve around the dioxygen atoms) calculated with the oxygen atom of the O2 molecule
(red spheres) marked with an asterisk omitted from the model. The 1.8-Å distance between the two oxygen atoms after refinement is
inconsistent with a diatomic oxygen species bound to the iron center (brown sphere). Alternative refinements in which two solvent molecules
weremodeled and repulsive nonbonding interactions between the solvent molecules omitted from the refinement target resulted in a similar but
slightly longer O–O distance. Diffraction data and starting atomic coordinates used for the refinements are deposited in the Protein Data Bank
under ID code 5J53. Refinement was carried out using REFMAC version 5.8.0158.
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