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Leveraging Multi-ethnic Evidence
for Risk Assessment of Quantitative Traits
in Minority Populations

Marc A. Coram,1,5 Huaying Fang,2 Sophie I. Candille,2 Themistocles L. Assimes,3,4 and Hua Tang2,*

An essential component of precision medicine is the ability to predict an individual’s risk of disease based on genetic and non-genetic

factors. For complex traits and diseases, assessing the risk due to genetic factors is challenging because it requires knowledge of both the

identity of variants that influence the trait and their corresponding allelic effects. Although the set of risk variants and their allelic effects

may vary between populations, a large proportion of these variants were identified based on studies in populations of European descent.

Heterogeneity in genetic architecture underlying complex traits and diseases, while broadly acknowledged, remains poorly character-

ized. Ignoring such heterogeneity likely reduces predictive accuracy for minority individuals. In this study, we propose an approach,

called XP-BLUP, which ameliorates this ethnic disparity by combining trans-ethnic and ethnic-specific information. We build a poly-

genic model for complex traits that distinguishes candidate trait-relevant variants from the rest of the genome. The set of candidate

variants are selected based on studies in any human population, yet the allelic effects are evaluated in a population-specific fashion.

Simulation studies and real data analyses demonstrate that XP-BLUP adaptively utilizes trans-ethnic information and can substantially

improve predictive accuracy inminority populations. At the same time, our study highlights the importance of the continued expansion

of minority cohorts.
Introduction

An important component of precision medicine is to

incorporate the genetic variation of an individual in

disease risk assessment, as well as in optimizing disease

prevention and treatment strategies. In the context of

complex traits, such as blood glucose level, lipid concen-

tration, and body mass index, this goal has proven chal-

lenging for two reasons: first, these traits are strongly

influenced by an array of genetic, environmental, and life-

style risk factors, most of which are not systematically

measured; second, the genetic components of complex

traits feature polygenic architecture, meaning hundreds

or thousands of genes influence an individual’s pheno-

type, of which our current knowledge—largely derived

from regions reaching statistical significance in genome-

wide association studies (GWASs)—represents only the

tip of the iceberg.1 At the same time, studies with expand-

ing cohorts continue to uncover variants associated with a

variety of traits and diseases, indicating moderate to high

heritability.2–5 Therefore, while genetic variation alone is

insufficient for accurate disease or trait prediction, it is

reasonable to expect that a summary score of all trait-rele-

vant variants can meaningfully quantify the heritable

component that underlies variation in complex traits or

disease risks. Furthermore, this genetic score comple-

ments conventional non-genetic risk factors, and integra-

tion of genetic and non-genetic risk factors may lead to

more accurate health assessment. The goal of this paper
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is to develop an analytical approach to quantifying the

genetic risk score that influences the trait; the term ‘‘trait

prediction’’ is used as shorthand, but it should be empha-

sized that the output of this ‘‘trait prediction’’ aims to

capture only the genetic risk factors, and is meant to be

combined with non-genetic risk factors such as age,

gender, or smoking status.

Although a number of methods have been developed

for complex trait prediction, most of these methods are

designed for and applied to populations of European

descent (EUR). These methods fall into two categories.

One group ofmethods builds regularized regressionmodels

based on established or suggestive trait loci.6 In its simplest

form, such a method selects independent SNPs reaching a

pre-specified p value threshold. At each SNP, one allele is

designated as the trait-increasing allele, while the other

allele is a trait-decreasing allele. The genetic risk simply tal-

lies the number of trait-increasing alleles across all selected

SNPs.7,8 More sophisticated methods have been developed

to weigh SNPs by the corresponding allelic effects, which

are estimated from an independent training cohort.9,10

These methods are computationally efficient and perform

well in populations where large cohorts are available. How-

ever, for minority individuals, who are under-represented

in GWASs, these methods are sub-optimal because much

less information is available for selecting relevant SNPs

and for estimating allelic effects. Consequentially, under

this framework, trait prediction may be considerably less

precise in minority populations.
icine, Stanford, CA 94305, USA; 2Department of Genetics, Stanford Univer-

Stanford University School of Medicine, Stanford, CA 94305, USA; 4Cardio-

5, USA

3, 2017

mailto:huatang@stanford.edu
http://dx.doi.org/10.1016/j.ajhg.2017.06.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2017.06.015&domain=pdf


The second group of methods is based on best linear

unbiased prediction (BLUP) for predicting random effects

in linear mixed effects models (LMMs).11,12 Originally

applied to animal and plant breeding,13,14 LMMs have

become a powerful method to estimate SNP-based herita-

bility using GWAS data.15,16 By assuming a common distri-

bution that describes the allelic effects at all SNPs and

focusing on the aggregated genetic effects rather than indi-

vidual genetic effects, LMMs and BLUP are particularly

attractive for modeling polygenic architecture. On the

other hand, to capture minute effects spread over a major-

ity of the genome, this assumed common distribution—

usually a Gaussian distribution—fails to capturemajor trait

loci with large effects efficiently. To cope with this prob-

lem, a number of methods have been proposed that use

multiple random effect terms with distinct variances to

represent classes of SNPs with varying allelic effects.17–19

External biological annotation offers a natural grouping

of SNPs into classes that correspond to the multiple

random effects terms; Speed and Balding17 developed an

algorithm that groups genomic regions based on their

observed regional heritability. In parallel, Bayesian hier-

archical models have been developed, which consider

the underlying allelic effects as drawn from a mixture of

Gaussian distributions, thus providing a probabilistic

framework that allocates a sparse fraction of the SNPs

to have moderate to large effects.18–20 Although these

methods differ in how the SNP classes are defined, simula-

tion and real data analyses results consistently suggest

that very large GWAS sample sizes are needed to achieve

good predictive performance. Under favorable simulation

settings, a sample size of �100,000 is recommended.16

While such a sample size is becoming feasible for some

common traits in European populations, it remains infea-

sible for minority populations.

In this paper, we present a trans-ethnic framework for

assessing genetic risk for minority individuals. Previously

we have shown that complex traits genetic architecture

overlaps substantially between ethnicities and that har-

nessing trans-ethnic information leads to substantial

improvement in our ability to discover trait loci that are

relevant inminority populations.21,22 Therefore, we reason

that trait prediction in minority populations may also

benefit from integrating much larger GWAS data generated

from populations of European descent. Our proposed

approach, termed cross-population BLUP (XP-BLUP), is a

multiple-component LMM model designed specifically to

address the need for efficient prediction in minority popu-

lations. The SNPs are placed into classes defined using

GWAS evidence from any ethnicity, while the variances

of the random-effects and BLUP are computed using pop-

ulation-specific data. We use simulation to illustrate the

usefulness of trans-ethnic information, as well as the

importance of minority-specific GWAS data. Application

to real data of lipid concentration indicates that the ge-

netic risk factor formulated by XP-BLUP on a moderate

sized African American (AA) cohort achieves similar predic-
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tive accuracy as commonly measured non-genetic risk fac-

tors, such as age and BMI.
Material and Methods

LMM and BLUP for Complex Traits
Our proposed trans-ethnic prediction approach is based on

LMM and BLUP; the statistical theory and computation are well

established. To facilitate the comparison and to set up notations,

we briefly summarize the standard LMM and BLUP for complex

traits. Details about the computation and the underlying model

assumptions have been described in the context of SNP-based her-

itability estimation.15,17,23

Let X be the N 3 M genotype matrix of N individuals and M

markers, and Y be the vector of length N, representing the quan-

titative phenotype centered at 0. Following convention, let Z be

the centered and scaled genotype matrix: if Xjm˛ð0;1;2Þ denotes
genotypes of individual j at SNP m, then Zjm ¼ ðXjm � 2fmÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fmð1� fmÞ

p
where fm is the allele frequency.15 Y is modeled as

the sum of the genetic (g) and non-genetic (e) contributions:

Y ¼ g þ e. (In what follows, all boldfaced symbols represent

vectors or matrices.) For cohorts in which individuals are not close

relatives, it is convenient to assume that the non-genetic contri-

bution ej is drawn independently from a Gaussian distribution,

Nð0; s2e Þ. Under a polygenic architecture, the additive genetic

component can be represented as a linear combination of the stan-

dardized genotypes (Z) weighted by the corresponding allelic ef-

fects,u: g¼ Zu. In its simplest form, we consider the allelic effects,

um, as independently sampled from a Gaussian distribution with

mean 0 and variance s2=M, Nð0; s2=MÞ. It can be shown that

g � Nð0; As2Þ, where A ¼ ZZ0=M is a genetic relationship matrix

(GRM). Covariates, such as age and gender, can be included in the

model as fixed effects terms.Wewill refer to this basicmodel as the

single-component model.

Building upon the single-component model, a number of

studies have aimed to use multiple random effects terms to repre-

sent groups of SNPs with different allelic effects.18,20,24 Let Zk

denote the sub-matrix (columns of matrix Z) that corresponds to

the SNPs in group k. The general form of a K-component LMM

can be written as:

Y ¼
XK
k¼1

gk þ e (Equation 1)

where gk ¼ Zkuk represents the genetic contribution of group k.

This model allows SNPs in group k to have allelic effects

drawn from a group-specific Gaussian distribution, u � Nð0;s2k=
jCk j Þ, where jCk j is the number of markers in group k. Analogous

to the single-component model, gk � Nð0; Aks
2
kÞ, where

Ak ¼ ZkZ
0
k=jCk j can be thought of as the GRM based on SNPs in

group k. It should be noted that the SNP groups do not need to

be disjoint; a SNP belonging to both groups k1 and k2 has an effect

size drawn from Nð0;s2k1=
��Ck1

�� þ s2k2=
��Ck2

�� Þ .
The variance parameters s21;.; s2K and s2e are estimated by

restricted maximum likelihood (REML).25,26 Given that the vari-

ance parameters have been estimated, the BLUP of allelic effects

for SNPs in class k is:

buk ¼ bs2
kAkZ

0
kV

�1Y

where V ¼ P
kbs2

kAk þ bs2
e IN , and IN is the identity matrix of

dimension N.
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Figure 1. Overview of the XP-BLUP Procedure
Step 1: SNPs are sorted into two classes based on summary statistics in a trans-ethnic auxiliary GWAS. Step 2: A two-component linear
mixed-effects model (LMM) and ethnic-specific trainingGWAS data are used to compute the allelic effects associatedwith each variant in
the target population. Step 3: Trait value of an individual of unknown phenotype can be estimated using his/her genotypes and the
allelic effects estimated in step 2.
Finally, the predicted trait values of individuals, with genotype

Ztest, are computed by

bY test ¼
XK
k¼1

Ztest
k

buk: (Equation 2)

Trans-ethnic Genetic Prediction
We now describe the problem of trans-ethnic trait prediction.

Consider a setting in whichGWASs have been conducted for a trait

in a target population of primary interest (e.g., AA) and the goal is

to predict the trait value of other individuals from the same popu-

lation. We will refer to the first set of individuals, for whom both

genotype data and trait values are used to build the prediction

model, as the training set; the second set of individuals, for

whom we wish to predict trait values using genotype data, is the

testing set. In simulation studies, the (simulated) true trait values

of the test set are used as the gold standard to evaluate the predic-

tive accuracy. For trans-ethnic auxiliary information, we use the

summary-level statistics—specifically SNP-level p values—from

an independent auxiliary GWAS of matching trait (e.g., EUR). We

make no assumption with regard to the genetic similarity between

the target and the auxiliaryGWAS—in fact, the auxiliaryGWAS can

be trans-ethnic or multi-ethnic; the ‘‘independent’’ assumption

merely requires that the target GWAS and the auxiliary GWAS

consist of non-overlapping individuals.
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Figure 1 shows a flow chart of the trans-ethnic prediction

approach, which utilizes a two-component LMM (K ¼ 2 in

Equation 1). The grouping of the SNPs is based on the summary

statistics of the auxiliary GWAS. One component, denoted as C2,

consists of all genotyped SNPs; the other component, C1, includes

only SNPs showing evidence of association in the auxiliary GWAS.

The variance parameters of the LMM and the BLUP of the allelic

effects are estimated using genotypes of the training set in the

target population. The predicted trait values on the testing indi-

viduals are computed using their genotype, according to Equation

2. Note that individual-level data from the auxiliary GWAS are not

needed in the trans-ethnic prediction.

To select SNPs with strong evidence of association in the base

GWAS, we use program XPEB to compute the local false discovery

rate (locfdr) defined by Equation 5 in Coram et al.22 In brief, this

approach assumes that the observed test statistics, S (chi-square

statistics that can be computed from the p values), arise from

a mixture of null and non-null distributions. By maximizing

the joint likelihood of all observed test statistics in the base

GWAS, the mixture proportions can be estimated. The locfdr at a

marker, m, is then computed as the posterior probability that Sm
is drawn from the null component. We pre-specify a locfdr

threshold, y�, such that a SNP is included in C1 only if its locfdr

falls below y�. For all simulations presented below, y� ¼ 0:05. Alter-

natively, one can pre-specify a p value threshold, t�, such that

a SNP is included in C1 if its p value in the base GWAS falls
3, 2017



below t�. Since there is a monotonic relationship between the

p value and locfdr, using a locfdr criterion is equivalent to using

some p value threshold. In the Discussion, we propose approaches

that adaptively choose y� (equivalently, t�).
Simulation
We evaluate the proposed prediction algorithm using simulated

genotype and trait data generated in a previous study.22 The geno-

type data consist of �727,000 autosomal SNPs on the Illumina

1M SNP array with minor allele frequencies greater than 1%.

It is simulated using program HAPGEN2 and HapMap Phase 3

genotypes and includes eight CEU-like cohorts (simEUR) and

one YRI-like cohort (simAFR) of 10,000 individuals each. To simu-

late the phenotypes, 1,000 SNPs are sampled as causal variants in

each ethnic population; the proportions of causal variants that

overlap between the simEUR and the simAFR cohorts ðdÞ range

from 0.001 to 1, with d ¼ 0:001 representing independent genetic

architecture and d ¼ 1 representing complete overlap in causal

variants. The true allelic effects at these causal variants are sampled

from a Gaussian distribution; the correlation between the allelic

effects in simEUR and simAFR is 0.7. Lastly, trait values are simu-

lated using the allelic effects, the simulated genotypes, and a

random non-genetic component, whose variance is calibrated to

achieve a heritability ranging from 40% to 90%. For each value

of d, 20 sets of trait values are simulated, with causal variants

independently sampled from run to run. In practice, not all causal

variants are genotyped. To consider such situations, we addition-

ally analyzed simulated data removing all causal variants in both

simEUR and simAFR.

To apply the proposed trans-ethnic prediction model, the eight

simEUR cohorts are meta-analyzed (total N ¼ 80,000) and treated

as the auxiliary GWAS. Within simAFR, we randomly sample

8,000 individuals to form the training dataset, leaving the re-

maining 2,000 individuals as the testing set for evaluating the

predictive accuracy, for which we focus on correlation (r) between

the simulated true trait values and the predicted values. For each

simulated trait, we compute the locfdr that the SNP is associated

with the trait in simEUR using meta-analysis summary statistics.

SNPs with locfdr below 0.05 are selected to C1; all SNPs are

included in set C2. Next, we compute the two-component LMM

and BLUP on the simAFR training set, recording the BLUP of

allelic effects. These BLUP estimates are then used to predict the

corresponding trait values in the 2,000 testing individuals. The

accuracy measure reported is corðy�; by �Þ, where by �
is defined by

Equation 2.

We compare the proposed method with two alternative ap-

proaches. First, we consider a single-component LMM on the

simAFR training set (N ¼ 8,000) alone. This comparison assesses

the contribution of trans-ethnic information. Second, we consider

a two-component LMM that uses only European individuals. For

this analysis, a ninth simEUR cohort is simulated as described

above and used as the training dataset. For all comparisons, the

testing set is the 2,000 simAFR individuals. These comparisons

are designed to assess the importance of trans-ethnic and popula-

tion-specific training data.
Predicting Genetic Scores for Lipid Concentration in

African American Women
As a real data example, we analyze lipid concentration in African

American females in the Women’s Health Initiative SNP Health

Association Resource (WHI-SHARe), which includes 8,153 post-
The Americ
menopausal AA women. All WHI participants have provided writ-

ten informed consent, and institutional review board approval has

been obtained at each of the 40 WHI clinical centers and at the

clinical coordinating center at the Fred Hutchinson Cancer

Research Center. For analyses described in this manuscript, which

uses de-identified data, institutional review board approval has

been obtained at Stanford University. We randomly sample four

non-overlapping sets of 2,000 individuals as test sets; for each

test set the remaining individuals are used to compute the BLUP.

Prediction accuracy reported in Results are averaged across the

four testing sets. For auxiliary GWAS, we use the meta-analysis

of the Global Lipids Genetics Consortium (GLGC), which consists

largely of individuals of European descent, with no overlap with

WHI-SHARe.3 In GLGC, 47, 37, and 32 loci meet the genome-

wide significance threshold of 5 3 10�8 and are associated with

high-density lipoprotein (HDL) cholesterol, low-density lipopro-

tein (LDL) cholesterol, and triglyceride (TG) levels, respectively.

Using the p value threshold of 5 3 10�8 selects approximately

the same SNPs as using a locfdr of 0.05. In the WHI-SHARe AA

cohort, genome-wide African ancestry proportion explains less

than 1% of the observed phenotypic variance in HDL, LDL, and

TG. Nonetheless, to eliminate the effects of admixture, we first

regress out the estimated proportion of African ancestry from

each lipid trait and use the residuals in XP-BLUP. To assess the

effect of the pre-specified threshold, we also apply XP-BLUP vary-

ing the p value threshold from 5 3 10�3 to 5 3 10�8. To compare

the predictive accuracy of XP-BLUP with other risk factors, we use

the same training individuals to estimate the predictive models

that are based on (1) age or (2) BMI. To compare XP-BLUP with a

conventional polygenic risk scores (PRSs) approach, we performed

single-marker GWAS analysis using training individuals (inde-

pendent loci are defined as being at least 250 kb apart). PRSs in

testing individuals are computed using PLINK’s score option,

which weighs the index SNPs by the corresponding estimated

allelic effects.27

Computation
For all results reported in the next section, we used GCTA to

perform REML and BLUP estimation, although a number of avail-

able software programs can perform similar tasks.12,17,28 The BLUP

output of GCTA is re-processed to account for the two classes of

SNPs using a customized script, and the predicted trait values on

the testing set are produced in PLINK.27
Results

Predictive Accuracy on Simulated Data

Figure 2 compares the predictive accuracy, measured by

correlation coefficients, of the proposed trans-ethnic pre-

diction (XP-BLUP) with two alternative LMM methods.

Since the simulation model assumes a genetic architec-

ture with a heritability of 0.7, the maximum achievable

correlation between the predicted and observed traits isffiffiffiffiffiffiffi
0:7

p ¼ 0:84. Using the standard, single-component LMM

and simAFR data alone (N ¼ 8,000), the mean predictive

accuracy on the out-of-sample testing individuals is 0.14

(Figure 2, blue box). As expected, the predictive accuracy

of the proposed XP-BLUP increases with the degree of over-

lap between the auxiliary simEUR and the target simAFR

population. When the trait loci completely overlap in
an Journal of Human Genetics 101, 218–226, August 3, 2017 221



Figure 2. Comparison of Predictive Correlation
XP-BLUP (red) compares favorably to a single-component linear
mixed-effects model (LMM, blue) and a two-component LMM
model trained only on simulated European GWAS data (yellow).
Delta specifies the proportion of overlapping loci between ethnic-
ities. Dashed line is the theoretical maximum.
the two populations, the predictive accuracy is 0.64, indi-

cating that the summary-level statistics from simEUR

GWAS provide substantial information. On the other

hand, for any level of genetic overlap, the predictive accu-

racy trained entirely on simEUR (Figure 2, yellow boxes) is

lower than that trained on simAFR, emphasizing the

importance of ethnically matched training cohorts. Addi-

tional simulations confirm that the same trend holds for

various levels of underlying heritability and when some

or all causal variants are not genotyped (Figures S1 and S2).

It should be noted that the improved predictive accuracy

of XP-BLUP does not require that all true trait loci in the

target population are included in C1 class. This is because,

even with completely overlapping genetic architecture

ðd ¼ 1Þ and a sample size of 80,000, not all simEUR trait

loci can be detected. Over all simulations, the average

number of loci discovered in the simEUR GWAS is 550

out of 1,000 (range 523–581). The moderate simAFR

training samples and the incomplete knowledge of all trait

loci in the simAFR population account for the discrepancy

between the observed predictive accuracy (0.64) and the

theoretical maximum possible accuracy (0.84) at d ¼ 1.

On the other hand, XP-BLUP does not assume all SNPs in

C1 are indeed trait relevant in simAFR. For instance, at

d ¼ 0:5, half of the SNPs in C1 are expected to bear no

predictive information in simAFR, yet XP-BLUP still out-

performs the single-component LMM. Lastly, when the

genetic architecture is independent in simEUR and simAFR

ðd ¼ 0:001Þ, the auxiliary GWAS provides no useful infor-

mation. In this scenario, XP-BLUP achieves similar accu-

racy as a single-component LMM, demonstrating its ability

to ignore irrelevant auxiliary information. In contrast, a
222 The American Journal of Human Genetics 101, 218–226, August
two-component LMM trained on simEUR can perform

substantially worse than a single-component LMM when

d ¼ 0:001. Taken together, this set of analyses demon-

strates two features of the XP-BLUP framework: first, the

predictive model needs to be trained in a population-spe-

cific context; second, regardless of the underlying overlap

in genetic architecture, trans-ethnic auxiliary information

will not negatively impact the predictive accuracy.

BLUP of Allelic Effects

To better understand why the two-component LMM out-

performs the single-component LMM, it is instructive to

examine the BLUP allelic effects under the two approaches

(Figures 3 and S3). Focusing on loci that affect trait values

in simAFR (e.g., uks0Þ, we form two groups based on

whether a variant is selected into C1 in the XP-BLUP anal-

ysis, which requires that locfdr < 0.05 in simEUR. The two

histograms in the first row (Figures 3A and 3B) represent

the true simulated allelic effects in simAFR for each of

the two groups. The slight flattening of the histogram rep-

resenting C1 (Figure 3A) is due to requiring the variant to

pass a significance threshold in the simEUR.

The predicted allelic effects using XP-BLUP and a single-

component LMM are shown in the second (Figures 3C

and 3D) and third (Figures 3E and 3F) rows, respectively.

Under a single-component LMM, the allelic effects of all

variants are assumed to have come from a common

Gaussian distribution. The REML estimate of this common

Gaussian distribution features a small variance of bs2
G=M.

In consequence, it heavily shrinks the estimated allelic

effects toward 0. Such shrinkage captures the reality that

a majority of the variants in the genome have zero or infin-

itesimal effects, in which case shrinkage is an effective

strategy to reduce sampling variability of the prediction.

Undesirably, however, true trait variants with moderate

or even large effects are similarly shrunk (Figures 3E and

S3). As the true trait variants are relatively sparse, the noise

from non-associated variants overwhelms the true signal,

leading to poor predictions.

In contrast, XP-BLUP allows the allelic effects of C1 SNPs

to be drawn from a different Gaussian distribution than

the rest of the variants. Consider that for d ¼ 0:75, approx-

imately 75% of the SNPs in C1 are associated with the trait

in simAFR and the remaining 25% are simEUR specific.

The allelic effects of C1 SNPs estimated by XP-BLUP are

much less attenuated (Figure 3C), compared with the cor-

responding estimates using a single-component LMM

(Figure 3E). On the other hand, simAFR trait variants that

are not included in C1, either because they are simAFR

specific or because the SNPs did not reach genome-wide

significance in the simEUR GWAS, show similar level of

shrinkage as those in a single-component LMM (Figures

3D and 3F). This observation suggests that the success of

XP-BLUP depends on constructing C1 SNPs enriched for

variants near trait loci in simAFR. At d ¼ 0:001, the SNPs

in C1 are not enriched for simAFR trait variants compared

to the rest of the genome; in this situation, XP-BLUP
3, 2017



Figure 3. True and BLUP of Trait-Rele-
vant SNP Effects in Simulated Data
True SNP effects (A and B), BLUP under
trans-ethnic model (C and D), and BLUP
under a single-component model (E and
F). SNPs in C1 (A, C, and E); SNPs not in
C1 (B, D, and F).
effectively ignores the simEUR auxiliary information and

shrinks the C1 SNPs similarly to the rest of the genome

(Figure S3).

Predicting Genetic Scores for Lipid Concentration in

African American Women

The Women’s Health Initiative is a US-based study of

common health issues in post-menopausal women. Over

a period of 15 years, the study has enrolled a total of

more than 160,000 women aged 50–79 years old. Among

these, 8,153 African American participants have been

genotyped as part of the Women’s Health Initiative SNP

Health Association Resource (WHI-SHARe). Previously,

we have examined the lipid concentrations in this cohort

to characterize overlapping genetic architecture.21 Here

we apply the proposed XP-BLUP method to predict lipid

concentrations. For LDL, HDL, and TG, the total esti-

mated heritability on the training set is 0.33, 0.28, and

0.26, respectively. As such, the theoretical maximal pre-

dictive correlation coefficients are 0.57, 0.53, and 0.51,

respectively. Table 1 summarizes the predictive accuracy

achieved, when C1 is defined by conventional genome-

wide significance threshold of 5 3 10�8. Table 1 also in-

cludes the corresponding predictive accuracy for a number

of epidemiologic risk factors available in this data, such as

age and BMI. We find that XP-BLUP achieves higher accu-

racy than age and BMI for all three lipid traits. Further, XP-
The American Journal of Human G
BLUP achieves higher accuracy

compared to a polygenic risk score

approach that includes only the index

SNPs of genome-wide significant

loci detected in the training dataset.

Finally, combining XP-BLUP scores,

age, age2, smoking, BMI, and fasting

status (for LDL only), the overall pre-

dicted risk scores achieve a correlation

of 0.22, 0.30, and 0.25 with LDL,

HDL, and TG, respectively.

The definition of p < 5 3 10�8 or

locfdr < 0.05 may seem arbitrary.

To investigate the sensitivity of the

performance of XP-BLUP with respect

to this threshold definition, we re-

analyze the lipid traits by varying

the threshold ranging from 5 3 10�3

to 5 3 10�8. As the inclusion

threshold is relaxed from 5 3 10�8 to

5 3 10�5, the number of SNPs
included in C1 increases by a factor of ten, but the predic-

tive correlation remains relatively stable (Tables S1–S3). We

reason that this phenomenon reflects a tradeoff between

true signal and noise: although a bigger set of C1 SNPs

likely includes more trait variants, an increasing propor-

tion of added SNPs are false positives. Consequentially,

the BLUP for C1 SNPs are increasingly shrunk toward

zero. This reasoning is supported by the observation that

the phenotypic variance explained by C1 SNPs does not al-

ways increase as more SNPs are included (column VG1 in

Tables S1–S3). The optimal threshold that balances this

trade-off depends on the underlying genetic architecture

as well as the sample size of training set. With much larger

training samples, one can choose an optimal threshold us-

ing the following cross-validation (CV) approach.29 The

training set is divided into a number of equal parts; to be

specific, we describe a ten-fold CV. At each p value

threshold, the two-component LMM model is computed

on nine parts of the data, and the predictive accuracy is

evaluated on the remaining part, termed the validation

set. In turn, each of the ten parts is treated as the validation

set once; the optimal threshold value is the one that

achieves the best predictive accuracy averaging over all

ten validation sets. However, at the sample size of WHI-

SHARe, we found no substantial differences in the predic-

tive accuracy when the threshold ranges from more than

three orders of magnitudes (Tables S1–S3). Therefore, for
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Table 1. Correlation Coefficients between Predicted Scores and
Observed Lipid Concentration in African Americans of the
Women’s Health Initiative SNP Health Association Resource

Trait j C1j VG/VP XP-BLUP LMM Age BMI FE

LDL 413 0.33 0.18 0.095 0.085 0.044 0.16

HDL 569 0.28 0.22 0.086 0.042 0.21 0.17

TG 413 0.26 0.17 0.078 0.066 0.11 0.13

All correlations are evaluated on the African American testing set individuals.
Abbreviations are as follows: j C1j, number of SNPs in C1 set; VG/VP, SNP-
heritability estimated by program GCTA; XP-BLUP, proposed trans-ethnic
best linear unbiased prediction; C1 SNPs are defined by p < 53 10�8 in Global
Lipids Genetics Consortium (GLGC) meta-analysis; LMM, standard linear
mixed effects model computed by GCTA; age, fixed effects model with age
as a single predictor; BMI, fixed effects model with BMI as a single predictor;
FE, fixed effects model that includes only index SNPs at genome-wide signifi-
cant loci in the African American training set.
current studies in minority populations, we recommend

applying XP-BLUP with a pre-specified threshold of p <

5 3 10�8.
Discussion

We have investigated XP-BLUP, a computational approach

for assessing the genetic risk of complex traits in minority

populations. The underlying idea is to use a two-compo-

nent LMM, in which one component is highly enriched

for trait-associated SNPs that are derived from indepen-

dent, well powered, but possibly ethnically unmatched

GWASs. Although an LMM with multiple random effects

is a generally useful approach for integrating external

knowledge of candidate regions or SNPs, this framework is

particularly appealing for leveraging trans-ethnic GWAS

results because it benefits from partial overlap in genetic

architectures across populations, without assuming trans-

ferability of all trait loci between populations, as we

explain in detail next.

First, both simulation (Figure 1) and the lipid data

analysis (Table 1) emphasize that the performance of a

multi-component LMM for prediction strongly depends

on the level of enrichment in SNP set C1. The ideal C1 is

the set that includes all and only trait-associating SNPs in

the target population. The predictive accuracy diminishes

when C1 is heavily contaminated with SNPs not relevant

in the target population, or it misses trait-associating

SNPs. In theory, it is possible to choose C1 and compute

BLUP using the same GWAS data;17,18 however, for minor-

ity studies with moderate sample size, a set constructed

this way is likely less accurate. In contrast, for a variety

of complex traits studied to date, accumulating evidence

suggests considerable numbers of overlap loci between eth-

nicities.30–33 For these traits, a large proportion of SNPs

selected based on a large European GWAS are expected to

be relevant in non-European populations. Therefore, a

set selected based on a large GWAS in a non-matching

population is expected to harbor higher fraction of vari-

ants for the target population than a set selected on a small
224 The American Journal of Human Genetics 101, 218–226, August
dataset in matching population. Likewise, we expect that

the trans-ethnic GWAS data provides more specific in-

formation than trait-independent biological annotation,

such as chromatin accessibility. It should be noted that

C1 does not need to exclusively contain the causal variants

and should be interpreted accordingly. For the purpose

of prediction, any SNPs in linkage disequilibrium with

causal variants can serve as useful predictors. This feature

makes XP-BLUP easier to use in practice than a fixed-effects

PRS model that requires ‘‘independent’’ risk SNPs, because

defining independent trait loci and identifying likely

causal variants, which may vary across populations, are

challenging on their own.

Second, while our XP-BLUP approach takes advantage of

the strong overlap between ethnicities, it does not assume

all SNPs inC1 to be associated with the trait in theminority

population. In other words, the method accommodates

incomplete overlap in genetic architecture. This is impor-

tant because it is difficult to assess, a priori, the degree of

overlap for a particular trait. Our simulation results suggest

that XP-BLUP is robust to contamination of mis-specified

SNPs. SNPs that are strongly associated in European popu-

lations but not in the target population tend to have small

BLUP estimates because these BLUPs are estimated using

training data in the target population. When C1 includes

a substantial fraction of non-associated SNPs, the pre-

diction accuracy deteriorates due to the shrinkage effect;

however, even when C1 consists of randomly sampled

SNPs ðd ¼ 0:001Þ, the performance of XP-BLUP is not

worse than a standard one-component LMM model.

Furthermore, we choose not to make any assumption

regarding the agreement, in sign or magnitude, between

the estimated allelic effects in the European GWAS and

those in the target population. This choice is based on

the empirical evidence that the correlation between allelic

effects across ethnicities varies by trait, and currently we do

not have sufficient information to accurately model such

correlation structure.

The XP-BLUP approach described here can be extended

in several directions. First, it is anticipated that GWASs

with expanded cohorts will continue to discover loci asso-

ciated with traits and diseases. As the number of SNPs

becomes sufficiently large and includes variants of infini-

tesimal effects, it may be useful to divide C1 SNPs into

multiple sets, representing variants with varying level of

allelic effects. A practical approach is to split C1 SNPs on

the basis of putative contributions of each variant, defined

by 2bb2
pð1� pÞ, where bb is the estimated allelic effects

in the auxiliary GWAS and p is allele frequency in the

target population. At the same time, expanded minority

cohorts may enable us to discover target population-

specific variants. These variants can be incorporated in

XP-BLUP framework as fixed effects. Second, our current

implementation focuses on one trait and makes use of

auxiliary GWASs of the matching trait. Recent studies

have demonstrated widespread pleiotropy: genetic loci

that simultaneously influence related and sometimes
3, 2017



seemingly unrelated traits.34 Integrating pleiotropic infor-

mation to jointly predict related traits has shown prom-

ise.35 Extending XP-BLUP to leverage both trans-ethnic

and cross-trait information may be particularly useful for

under-studied traits. Third, we have focused on quantita-

tive traits and have described XP-BLUP as a linear mixed-

effects model. For a binary disease outcome, a commonly

adopted approach is the liability-threshold model, which

postulates that genetic factors contribute additively to an

underlying quantitative trait, liability, and the observed

disease status is a dichotomized version of the liability

at a specific threshold. However, in most case-control

GWASs, affected individuals are over-sampled and there-

fore the underlying liability in the cohorts may be strongly

skewed. Computational strategies for estimating heritabil-

ity and predicting disease status in case-control designs

have been developed and may be adapted for trans-ethnic

disease prediction.36,37

While trans-ethnic information can substantially

improve predictive accuracy, our work emphasizes the

importance of estimating the allelic effects in ethnically

matched cohorts. Therefore, sustained efforts should be

dedicated to building large and well-phenotyped cohorts

in minority populations. In the coming years, a number

of large cohorts, such as the US National Institutes of

Health Precision Medicine Initiative and the Millions Vet-

erans Program, will enable researchers to investigate the

genetic basis of a wide range of complex traits and diseases

in diverse populations. We anticipate that approaches

leveraging trans-ethnic information will continue to play

an important role in these studies.
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Gentry, K., B�u�zková, P., et al. (2011). Genetic determinants

of lipid traits in diverse populations from the population ar-

chitecture using genomics and epidemiology (PAGE) study.

PLoS Genet. 7, e1002138.

33. Carlson, C.S., Matise, T.C., North, K.E., Haiman, C.A., Fesin-

meyer, M.D., Buyske, S., Schumacher, F.R., Peters, U., France-

schini, N., Ritchie, M.D., et al.; PAGE Consortium (2013).

Generalization and dilution of association results from Euro-

pean GWAS in populations of non-European ancestry: the

PAGE study. PLoS Biol. 11, e1001661.

34. Solovieff, N., Cotsapas, C., Lee, P.H., Purcell, S.M., and Smol-

ler, J.W. (2013). Pleiotropy in complex traits: challenges and

strategies. Nat. Rev. Genet. 14, 483–495.

35. Li, C., Yang, C., Gelernter, J., and Zhao, H. (2014). Improving

genetic risk prediction by leveraging pleiotropy. Hum. Genet.

133, 639–650.

36. Golan, D., and Rosset, S. (2014). Effective genetic-risk predic-

tion using mixed models. Am. J. Hum. Genet. 95, 383–393.

37. Golan, D., Lander, E.S., and Rosset, S. (2014). Measuring

missing heritability: inferring the contribution of common

variants. Proc. Natl. Acad. Sci. USA 111, E5272–E5281.
3, 2017

http://refhub.elsevier.com/S0002-9297(17)30278-1/sref10
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref10
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref11
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref11
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref11
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref12
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref12
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref12
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref12
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref13
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref13
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref14
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref14
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref14
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref15
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref15
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref15
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref15
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref15
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref16
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref16
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref16
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref17
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref17
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref17
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref18
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref18
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref18
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref19
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref19
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref19
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref20
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref20
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref20
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref20
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref20
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref20
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref21
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref21
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref21
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref21
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref21
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref21
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref22
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref22
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref22
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref22
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref22
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref23
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref23
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref23
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref23
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref24
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref24
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref24
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref24
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref24
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref25
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref25
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref25
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref26
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref26
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref27
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref27
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref27
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref27
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref27
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref28
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref28
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref28
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref29
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref29
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref29
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref30
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref30
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref30
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref30
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref30
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref31
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref31
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref31
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref31
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref31
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref31
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref31
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref32
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref32
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref32
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref32
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref32
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref32
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref32
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref33
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref33
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref33
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref33
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref33
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref33
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref34
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref34
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref34
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref35
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref35
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref35
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref36
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref36
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref37
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref37
http://refhub.elsevier.com/S0002-9297(17)30278-1/sref37

	Leveraging Multi-ethnic Evidence for Risk Assessment of Quantitative Traits in Minority Populations
	Introduction
	Material and Methods
	LMM and BLUP for Complex Traits
	Trans-ethnic Genetic Prediction
	Simulation
	Predicting Genetic Scores for Lipid Concentration in African American Women
	Computation

	Results
	Predictive Accuracy on Simulated Data
	BLUP of Allelic Effects
	Predicting Genetic Scores for Lipid Concentration in African American Women

	Discussion
	Supplemental Data
	Acknowledgments
	Web Resources
	References


