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Purpose: Single-case experimental designs are widely
used to study interventions for communication disorders.
Traditionally, single-case experiments follow a response-
guided approach, where design decisions during the study
are based on participants’ observed patterns of behavior.
However, this approach has been criticized for its high rate
of Type I error. In masked visual analysis (MVA), response-
guided decisions are made by a researcher who is blinded
to participants’ identities and treatment assignments.
MVA also makes it possible to conduct a hypothesis test
assessing the significance of treatment effects.
Method: This tutorial describes the principles of MVA,
including both how experiments can be set up and how
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results can be used for hypothesis testing. We then report a
case study showing how MVA was deployed in a multiple-
baseline across-subjects study investigating treatment for
residual errors affecting rhotics. Strengths and weaknesses
of MVA are discussed.
Conclusions: Given their important role in the evidence base
that informs clinical decision making, it is critical for single-
case experimental studies to be conducted in a way that
allows researchers to draw valid inferences. As a method
that can increase the rigor of single-case studies while
preserving the benefits of a response-guided approach,
MVA warrants expanded attention from researchers in
communication disorders.
S ingle-case design, also called single-subject experi-
mental design, is a widely used methodology in the
study of interventions for communication disorders

(Kearns, 1986; McReynolds & Kearns, 1983; McReynolds
& Thompson, 1986; Robey, Schultz, Crawford, & Sinner,
1999; Thompson, 2006). The single-case design involves
measuring a behavior before, during, and/or after treat-
ment in an individual or small sample of individuals. A
distinguishing characteristic of single-case design is the
collection of multiple repeated measurements of a depen-
dent variable within each subject (Horner & Odom, 2014;
Thompson, 2006). Using these repeated measures, the
design aims to demonstrate a functional or causal relation-
ship between the application of an intervention and a
change in the dependent variable. Replication of this dem-
onstration either within or across participants is essential
to control for threats to internal validity and/or establish
the robustness of the effect. The single-case design should
not be confused with the similarly named case study design,
which lacks the element of experimental control.

Although the randomized controlled trial (RCT)
continues to be regarded as the gold standard for estab-
lishing the efficacy of a treatment, the RCT methodology
is not always feasible, particularly if the condition under
investigation has a low prevalence in the population (Byiers,
Reichle, & Symons, 2012; Kazdin, 2010). In addition, by
collecting detailed data on individual participants over
time, single-case studies offer a more complete picture of
the range of trajectories of response to an intervention than
an RCT can (Howard, Best, & Nickels, 2015). Finally, in
a multiphase model of clinical research (e.g., Robey, 2004),
RCTs represent Phase III; this phase should be undertaken
only after an initial phase of exploratory studies (Phase I)
and a subsequent phase of small-scale systematic studies, in-
cluding single-case designs (Phase II). By conducting care-
ful single-case studies during Phase II, researchers can refine
their intervention protocol, anticipate any confounding fac-
tors, and estimate an effect size so that they can conduct a
power analysis to set the appropriate sample size for the
RCT.

A number of different designs are included in the
family of single-case studies. In the interest of brevity, the
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Figure 1. Schematic example of multiple-baseline across-subjects data.
The dotted line represents the point of introduction of biofeedback
treatment. Adapted from “Investigating the use of traditional and
spectral biofeedback approaches to intervention for /r / misarticulation,”
by T. McAllister Byun and E. Hitchcock, 2012, American Journal of
Speech-Language Pathology, 21, pp. 207–221. Copyright © 2012
by American Speech-Language-Hearing Association. Adapted with
permission.
present tutorial will focus on the multiple-baseline design,
which is commonly used in research in communication dis-
orders. Interested readers should see Byiers et al. (2012) or
Horner and Odom (2014) for more comprehensive overviews.
In a multiple-baseline study, treatment is applied in a stag-
gered fashion to multiple participants or to multiple targets
within one participant, such as different speech sounds in
a child with a speech sound disorder. A schematic example of
a multiple-baseline across-subjects design is presented in
Figure 1. If the dependent variable remains stable throughout
the baseline period and changes only after the application
of treatment, and this effect is replicated across participants
or targets, it provides evidence of a functional influence of
treatment on the behavioral outcome.
Improving the Credibility
of Single-Case Design

Although single-case design is well established in
some fields, it is relatively unknown in others, which can
pose a challenge when researchers communicate single-case
findings to the broader research community (Kratochwill
& Levin, 2014). In an effort to increase the rigor and repu-
tation of single-case design, the What Works Clearing-
house (WWC) convened a panel of researchers to lay out
consensus guidelines for acceptable design in the single-
case methodology (Kratochwill et al., 2013). With respect
to design, the WWC criteria require that the independent
variable or treatment be systematically manipulated; the
study cannot be observational or correlational. It is also
specified that the study must include a minimum of three
“phase transitions,” that is, opportunities to demonstrate
an intervention effect, at three different points in time.
Additional criteria require a minimum number of obser-
vations in each phase (preferably no fewer than five, with
a duration of three data points accepted “with reserva-
tions”), and a minimum level of interrater agreement (e.g.,
80% point-to-point agreement for a categorical dependent
variable) assessed over a minimum of 20% of data points
in each phase of treatment.

Other efforts to strengthen the scientific reputation
of single-case design have focused on how effects of treat-
ment are assessed, and how decisions are made to under-
take a transition from one phase of the study to another,
such as from baseline to treatment. The traditional norm
in single-case research uses a “response-guided” design, in
which the experimenter inspects the data throughout the study
and decides when to make transitions on the basis of visual
impressions of the stability of the data (e.g., Thompson, 2006).
The major advantage of this approach is that it allows the
experimenter to minimize instances where the interpretation
of results is complicated by “demonstrations of noneffect”
such as rising baselines or excessive variability in the base-
line phase. Although in some cases a rising baseline trend is
a genuine reflection of maturation or other outside influ-
ences on participant performance, in other cases it may be
a chance occurrence. In a response-guided approach, the
1456 Journal of Speech, Language, and Hearing Research • Vol. 60 •
researcher can opt to extend the baseline phase and observe
whether stability is regained. When the transition from one
phase to another is slated to occur after a predetermined
number of sessions, this is not possible, and the researcher
may be left uncertain whether improvements after the onset
of intervention represent a true response to treatment or
a continuation of a baseline trend. (An illustration is pro-
vided in Figure 2; note that if the initiation of treatment
had occurred after the second data point, it would be unclear
1455–1466 • June 2017



Figure 2. A rising or unstable baseline can complicate the
interpretation of single-case data. Schematic example adapted
from “Investigating the use of traditional and spectral biofeedback
approaches to intervention for /r/ misarticulation,” by T. McAllister
Byun and E. Hitchcock, 2012, American Journal of Speech-
Language Pathology, 21, pp. 207–221. Copyright © 2012 by
American Speech-Language-Hearing Association. Adapted with
permission.
whether subsequent gains reflected a response to treatment
or a continuation of the baseline trend.) Because each partic-
ipant in a single-case treatment study can represent a sizable
investment of time on the part of the experimenter, many
researchers are unwilling to risk compromising data inter-
pretability by deviating from the response-guided design.

However, the response-guided design creates a dif-
ferent problem. When experimenters have the opportunity
to choose when each participant will make the transition
from baseline to treatment, they can take corrective action
in response to high outliers or rising baselines; however,
they may be more likely to accept or even favor low out-
liers and falling trends in the baseline. The principle of
regression to the mean dictates that these unusually low
points will typically be followed by a shift back to a rising
trajectory, which may then be interpreted as a treatment
effect. The response-guided approach is therefore associ-
ated with an increased likelihood of a Type I error, in which
a spurious change is misinterpreted as evidence of a treat-
ment effect (Ferron & Levin, 2014; Howard et al., 2015).
Thus, the single-case methodology poses a double bind:
Experimenters can use random assignment and risk dif-
ficulties with interpretation if data are compromised by
demonstrations of noneffect, or they can adopt a response-
guided approach and risk overestimating the magnitude of
any treatment effect. The masked visual analysis (MVA)
approach reviewed here (Ferron & Jones, 2006) is intended
as a “best-of-both-worlds” solution that makes it possible to
control the risk of Type I error while still undertaking phase
transitions only when data are sufficiently stable. The
MVA approach is described in detail in Section II; be-
fore proceeding, we briefly review methods used to mea-
sure treatment effects in single-case design.
Measuring Treatment Effects
in Single-Case Design

Hand in hand with the response-guided approach to
phase transitions, the traditional approach to single-case
design draws on visual inspection of data points to docu-
ment any effects of treatment. A treatment effect may be
reported when the level, slope, and variability of data points
remain stable within baseline phases but change each time
there is a transition to treatment. However, visual inspec-
tion has been criticized as excessively prone to both Type I
and Type II errors (Brossart, Parker, Olson, & Mahadevan,
2006; Howard et al., 2015; Matyas & Greenwood, 1990;
Robey et al., 1999). Likewise, measures to quantify the
amount of overlap in the values assumed by the dependent
variable during treatment phases versus nontreatment
phases, such as percentage of nonoverlapping data (Scruggs,
Mastropieri, & Casto, 1987), have been criticized as yield-
ing “unacceptably high levels of error” (Wolery, Busick,
Reichow, & Barton, 2010: p. 18). Many single-case studies
in communication disorders calculate effect sizes reflecting
the magnitude of change over the course of intervention,
often drawing on variants of Busk and Serlin’s (1992) mod-
ification of Cohen’s d (Beeson & Robey, 2006; Gierut &
Morrisette, 2011; Gierut, Morrisette, & Dickinson, 2015).
Effect size measures provide a valuable quantitative com-
plement to visual inspection. However, they are limited by
the lack of a standard reference for interpretation, because
Cohen’s (1988) benchmarks to interpret effect sizes in group
designs are not valid when applied to single-case studies.
When effect sizes are large, this may not pose a problem,
but if effect sizes are small due to a slow rate of change
and/or high variability, readers may disagree as to whether
a given case represents a meaningful demonstration of effect.
In such cases, it is highly desirable to have the ability to
conduct a hypothesis test evaluating whether post-treatment
performance represents a significant change relative to
pretreatment levels.

Kratochwill and Levin (2010, 2014) have argued that
the most effective strategy to bring single-case research
into the scientific mainstream is to incorporate hypothesis
tests that evaluate the statistical significance of any change
observed, increasing the interpretability of results. To meet
the assumptions for inferential statistics, they advocate the
adoption of single-case designs incorporating randomization.
The argument that randomization and hypothesis testing
can elevate the status of single-case design in the broader
scientific literature received an important endorsement in
2011 when the Oxford Center for Evidence-Based Medicine
(OCEBM) added the n-of-1 randomized controlled trial, a
type of single-case design with randomization, to its hierar-
chy of levels of evidence (OCEBM Levels of Evidence
Working Group, 2011). Whereas the n-of-1 trial was ab-
sent from previous versions of the CEBM hierarchy, the 2011
hierarchy indicates that a series of n-of-1 trials can provide
the highest level of evidence (Howard et al., 2015). In the
communication disorders literature, the single-case random-
ization design has been promoted as an effective solution
Byun et al.: Masked Visual Analysis Tutorial 1457



in cases where a treatment effect coexists with a long-term
learning or maturational trajectory (Rvachew, 1988). MVA
makes it possible to incorporate randomization into a study
design, legitimizing the use of statistical hypothesis testing,
while avoiding some of the risks to interpretability that
often arise in connection with randomization.
Masked Visual Analysis
MVA aims to reduce the influence of experimenter

bias on single-case design while still using a response-guided
approach to ensure that each phase of the study exhibits a
consistent and interpretable response pattern. It also allows
researchers to incorporate an element of randomization and
thus make use of statistical hypothesis tests, but it does so
without posing too great a risk that data will be compro-
mised by demonstrations of noneffect. The MVA approach
involves dividing the study team into two parts. The inter-
vention team conducts the intervention and collects the
data that will be used to measure treatment effects. The
analysis team inspects the plotted data and selects an
appropriate time to make a phase transition. However, the
data reviewed by the analysis team are masked; that is,
they do not carry information about the identity or treat-
ment status of a participant. In the initial baseline phase,
the analysis team looks for a point when all participants
are maintaining a stable trajectory without problematic
outliers or rising trends. In subsequent stages, the analysis
team looks for evidence of a selective response to treatment.
For example, in a multiple-baseline across-subjects study,
the analysis team looks for one participant to show a response
while other participants remain at baseline—although the
analysis team remains unaware of the identity of any partic-
ipant(s) in treatment. If a stable pattern has not yet emerged,
the analysis team can request that additional data be col-
lected before another phase transition is initiated. The anal-
ysis team’s data-driven guesses about the masked aspects
of the study can be used to conduct a hypothesis test and
derive a p value, as described below. In the detailed discussion
that follows, we continue with the example of a multiple-
baseline across-subjects design, although MVA has in fact
been extended to other single-case designs, including with-
drawal and alternating treatment designs (for more infor-
mation, see Ferron & Levin, 2014).

Setting the Initial Parameters
Before the initiation of any study activities, the inter-

vention team and the analysis team must agree on the
parameters that will guide the course of the study once un-
derway. Because information that is accessible to one part
of the team will be masked from the view of the other
part of the team, it is essential to consider a comprehensive
set of possibilities before initiating the study. To begin
with, the team must agree on all of the elements that need
to be operationalized for any treatment study. These include
the number of participants to be enrolled, the number and
1458 Journal of Speech, Language, and Hearing Research • Vol. 60 •
duration of treatment sessions to be provided, the number of
trials to be elicited per treatment session, the treatment tar-
gets and the contexts in which they will be elicited, the nature
of cueing, and the nature of feedback to be provided (see,
e.g., Maas et al., 2008). If the protocol calls for changes in
treatment parameters in response to participant progress, such
as reducing the level of clinician support or increasing the
complexity of targets, these must also be agreed upon before
the start of the study (see, e.g., Hitchcock & McAllister
Byun, 2015; Rvachew & Brosseau-Lapré, 2012).

It is also necessary to set a number of parameters spe-
cific to the context of single-case experimental design incor-
porating MVA. A minimum number of observations per
phase must be determined (e.g., a minimum of four baseline
sessions must be collected from all participants before any
participant can enter treatment). This may or may not be
the same as the minimum stagger or spacing between par-
ticipants or conditions after treatment has been initiated.
Finally, the team should discuss what criteria will be used
to identify a rising trend or classify an observation as an
outlier, and they must also plan their response in the event
that problematic data are observed (e.g., extend the phase
by three sessions). Finally, experimenters may wish to set a
contingency plan for cases in which a stable baseline is not
maintained or a treatment effect is not observed: After a
set number of sessions, the study can automatically proceed
to the next phase, so all participants have a fair chance to
receive treatment.

Role of the Intervention Team
The intervention team is responsible for delivering

all treatment in accordance with the protocol specified dur-
ing the parameter-setting phase. Performance during base-
line, within-treatment, and/or maintenance sessions can be
scored by the intervention team, who then share the scores
with the analysis team in a masked format, that is, stripped
of information that could identify participants or their treat-
ment assignments. An alternative is to transmit raw session
data, such as audio or video files, to a blinded third party
who scores the data before transmitting them to the analysis
team. This measure, discussed in more detail in the case
study to follow, offers an additional level of protection
against experimenter bias. Once the analysis team indicates
that an adequately stable baseline has been established, the
intervention team makes a random assignment pertaining
to the provision of treatment. In a multiple-baseline design,
this involves randomly selecting the participant or target
that will begin to receive treatment. The intervention team
informs the analysis team that a random assignment has
been made, but the specific outcome is not conveyed. The
intervention team then continues to provide intervention
and transmit probe data to the analysis team until they
receive the signal that it is time for an additional transition,
at which point another random assignment will be made.
This continues until the analysis team signals that the study
should be ended, or until a predetermined study duration is
reached.
1455–1466 • June 2017



Role of the Analysis Team
The analysis team plots and inspects the performance

data that have been collected by the intervention team and
scored by the intervention team or a third party. During
the baseline phase, the analysis team looks for any prob-
lematic trends or outliers that could compromise experi-
mental control. If such a deviation is noted, the analysis
team requests that additional data points be collected be-
fore a phase transition is undertaken. Increasing the num-
ber of data points will give the analysis team a better basis
for deciding whether an apparent rising trend is a robust
effect or a random deviation, and it will diminish the influ-
ence of any outliers. Once all participants display a stable
baseline, or once a predetermined time limit is reached, the
analysis team indicates that a random determination about
treatment initiation can be made. In a multiple-baseline
across-subjects design, this involves transitioning one par-
ticipant from a baseline phase to a treatment phase.

Once treatment has been initiated, the analysis team
looks for a situation in which they can make a confident
guess about the treatment status of all participants. In the
first phase of a multiple-baseline across-subjects design, the
analysis team looks for one participant to show evidence
of a response to treatment while all others remain stable.
(See the case study below for discussion of how this response
to treatment might be operationalized.) If the analysis team
is not able to establish a strong hypothesis as to which
participant has advanced to treatment, they request that ad-
ditional data points be collected prior to the next phase tran-
sition. This process is repeated as successive participants in
the study make the transition from baseline to treatment.
Finally, after a set number of phases or after a predetermined
threshold for discontinuation is reached, the analysis team
indicates that the study should be terminated.
Summative Analysis and Hypothesis Testing
The MVA procedure makes it possible to incorporate

randomization into a single-subject design while reducing
the risk that valuable data will be compromised by outliers
or spurious trends. As discussed above, randomization has
the benefit of increasing internal validity in single-case
designs. It removes any opportunity for the experimenter’s
bias, on the basis of baseline performance, to influence how
participants are assigned to treatment conditions. The sec-
ond major benefit is that the incorporation of randomiza-
tion and blinding makes it possible to conduct a hypothesis
test and calculate a p value.

To conduct a hypothesis test in a study using MVA
methodology, first the analysis team must make its best guess,
on the basis of the complete set of plotted data, regarding
the order of application of intervention in the study. In a
multiple-baseline across-subjects design, the analysis team
guesses the order in which participants made the transition
from baseline to treatment, based on the sequence in which
different participants’ plotted values diverged from baseline
levels. The null hypothesis holds that there is no effect of
treatment, so treatment and no-treatment observations are
not meaningfully different; if the null hypothesis is true, the
analysis team is essentially making a random guess about
the order of application of treatment. In this case, the prob-
ability of guessing the correct order purely by chance is
equal to one divided by the total number of possible order-
ings in which participants could be transitioned from base-
line to treatment. This value can be treated as an empirically
derived p value, because the p value represents the probabil-
ity of obtaining the observed outcome or a more extreme
outcome purely by chance when the null hypothesis holds
true. If the analysis team guesses the correct order of treat-
ment transitions in a multiple-baseline across-subjects study
with five participants, this probability is 1/5!, where 5! is the
total number of possible orderings of five participants. We
thus derive a p value of 1/120 = .008 and provisionally re-
ject the null hypothesis of no treatment effect. If the analy-
sis team guesses the correct intervention order not on the
first but on the second try, the p value is 2/120 = .017; on
the third try, p = 3/120 = .025; on the fourth try, p = 4/120 =
.033; on the fifth try, p = 5/120 = .042; and on the sixth try,
p = 6/120 = .05. Note that the intervention team does not
disclose any additional information (such as how close the
last guess was or which subjects have been ordered correctly)
between guesses. Thus, even though the analysis team can
make up to five guesses and still reject the null hypothesis with
p < .05, it is not trivial to identify the correct order of treat-
ment for all five participants within those first five attempts.
Case Study of Masked Visual Analysis in
Speech-Language Intervention Rationale
for Adopting Masked Visual Analysis

Two authors of this tutorial have collaborated for
some time to investigate the efficacy of biofeedback inter-
ventions for residual or treatment-resistant misarticulation
of the North American English /r/ sound (Hitchcock
& McAllister Byun, 2015; Hitchcock, McAllister Byun,
Swartz, & Lazarus, in press; McAllister Byun & Hitchcock,
2012; McAllister Byun, Hitchcock, & Swartz, 2014). This has
given us ample opportunity to become familiar with several
challenges faced by researchers investigating the treatment
of residual speech errors. First, the prevalence of residual
speech errors is low, estimated at less than 5% in the school-
aged population (Shriberg, Tomblin, & McSweeny, 1999),
and less than 2% in the college-aged population (Culton,
1986). Second, these residual errors are widely recognized to
be challenging to treat (e.g., Ruscello, 1995); this is perhaps
the main reason there is so much clinical and research in-
terest in them. Given this combination of low prevalence
and the need for a fairly extended period of treatment de-
livered by a skilled provider, it is difficult—though not
impossible—to study the efficacy of interventions for resid-
ual speech errors using well-powered group RCTs. This
has led us, along with many other researchers studying inter-
ventions for residual speech errors (e.g., Preston et al., 2014),
to favor single-case experimental design in our treatment
Byun et al.: Masked Visual Analysis Tutorial 1459



studies. However, we have encountered challenges in that
context as well. First, because our treatment is intended to
produce lasting learning effects, we neither expect nor de-
sire that gains made in treatment will disappear when the
treatment is withdrawn; this rules out a reversal design. Sec-
ond, the majority of children in our studies have no speech
errors other than /r/ (although a handful do additionally
present with dentalization or lateralization of /s /), which
rules out a multiple-baseline across-behaviors design. If we
treat /r/ in different positions or phonetic contexts (e.g., /ɝ/
versus /ɪɚ/) as different target behaviors, there is a high risk
that progress in a treated context will generalize to the un-
treated context, compromising experimental control (e.g.,
McAllister Byun, Swartz, Halpin, Szeredi, & Maas, 2016).
We are left with the multiple-baseline across-subjects design
as our only major means of establishing experimental con-
trol. However, there is a challenge here as well: Participants
typically do not respond immediately on application of
treatment; a latency of three to five sessions (between 1 and
3 weeks) is more characteristic, but the duration of this lag
is not predictable across individuals.1 In addition, treatment
for residual speech errors is not effective for 100% of clients,
with most published studies including instances of non-
responders (e.g., McAllister Byun, Hitchcock, & Swartz,
2014; Preston, Brick, & Landi, 2013). With so many fac-
tors making it difficult to document a well-controlled effect
of treatment, it is especially important to guard against any
demonstrations of noneffect such as rising baselines or ex-
cessive variability in the baseline period. The MVA method
provides this opportunity without increasing the risk that
experimenter bias could influence our outcomes and without
sacrificing the opportunity to incorporate randomization
and conduct a hypothesis test.
Method
Treatment Parameters

The study, which is reported in greater detail in a
companion article, consisted of three arms, where each
arm was a multiple-baseline across-subjects study investigat-
ing the influence of one technology to deliver biofeedback
intervention for residual errors affecting /r/.2 One arm eval-
uated the effects of visual-acoustic biofeedback intervention
(see McAllister Byun & Hitchcock, 2012; McAllister Byun
et al., 2016); another tested ultrasound biofeedback (e.g.,
McAllister Byun, Hitchcock, & Swartz, 2014; Preston
et al., 2013; Preston et al., 2014); and a final arm examined
electropalatographic (EPG) biofeedback (e.g., Fletcher,
Dagenais, & Critz-Crosby, 1991; Hitchcock et al., in press).
Four participants with residual /r/ misarticulation were
1The latencies described here refer to the typical length of time before
gains become evident in generalization probes, which is commonly
adopted as a clinically significant indication of progress. If performance
were to be measured within the treatment setting, when clinician cues
and/or biofeedback are available, more immediate gains may be evident.
2The data reported here have been adapted for clarity of presentation.
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enrolled in each leg of the study. Participants ranged in
age from 7;6 to 13;0 overall, with a mean age of 10;3 (SD =
21.7 months) in the visual-acoustic biofeedback arm,
9;9 (SD = 25.9 months) in the ultrasound biofeedback
arm, and 8;3 (SD = 11.3 months) in the EPG biofeedback
arm. One out of four participants in each arm was female,
which is roughly consistent with previous research on the gen-
der distribution of residual speech errors (Shriberg, 2010).
During the intervention phase of the study, participants
received individual biofeedback intervention from a certi-
fied speech-language pathologist in two 30-minute treatment
sessions per week. The protocol for intervention, which was
kept as consistent as possible across all three arms of the
study, called for two initial instructional sessions in which
participants were familiarized with the biofeedback display
and coached on strategies for using the biofeedback to
achieve a more accurate /r/ sound. After the first two ses-
sions, all sessions began with a 5-minute pre-practice or
“free play” period, followed by 72 trials in which /r/ was
elicited at the syllable or word level. Trials were elicited in
blocks of six; between blocks, the treating clinician would
provide a qualitative comment serving as feedback for the
previous block and/or providing the focus for the next block.
In an effort to encourage generalization, the level of diffi-
culty experienced within treatment was adjusted along an
adaptive hierarchy on the basis of “challenge point” prin-
ciples (Hitchcock & McAllister Byun, 2015; Rvachew &
Brosseau-Lapré, 2012). The hierarchy for adjusting the
difficulty of practice was predetermined and implemented
via a customized software (Challenge-R; McAllister Byun,
Hitchcock, & Ortiz, 2014).

Masked Visual Analysis Parameters
In each session, participants completed a standard

probe measure eliciting 30 syllables, 25 words, and five sen-
tences containing /r/ targets. In baseline and maintenance
sessions, the probe was the only measure elicited. In treat-
ment sessions, participants completed treatment activities
as described above and then produced the same probe mea-
sures elicited in baseline and maintenance sessions. The
decision to administer probes at the end of treatment ses-
sions, when short-term gains could potentially affect probe
performance, was intended to maximize the sensitivity of
our measures to any response to treatment, in the interest
of moving participants through phases of the study in a
timely manner. For the same reason, the analysis team
focused on vocalic /r/, which clinical and research evidence
suggest to be the earliest-emerging variant (Klein, McAllister
Byun, Davidson, & Grigos, 2013), in the simplest context
(syllable level).

In this study, the intervention team and the analysis
team were in physically different locations at Montclair
State University and New York University. As noted above,
speech tokens were collected and processed by the interven-
tion team, but the tokens were rated by a third party prior to
being plotted and inspected by the analysis team. Obtaining
ratings from a blinded third party instead of the intervention
1455–1466 • June 2017



team offers an additional layer of protection against experi-
menter bias. However, obtaining blinded listeners’ ratings
of speech can be a time-consuming process, and many re-
searchers would hesitate to incorporate outside listeners in a
time-sensitive context such as this study. McAllister Byun
et al. (2015) suggested that the process of obtaining blinded
listener ratings of speech could be made rapid and predict-
able using online crowdsourcing platforms such as Amazon
Mechanical Turk (AMT). Although online data collection
tends to be “noisier” than data collection in the lab setting,
aggregating responses over a larger number of individuals
can improve the signal-to-noise ratio (Ipeirotis, Provost,
Sheng, & Wang, 2014). Simulations reported in McAllister
Byun et al. (2015) indicated that the “industry standard”
level of agreement with an expert listener gold standard was
matched when responses were aggregated across samples
of at least nine AMT listeners. The present study followed
that model by collecting binary ratings of each speech token
from nine unique listeners recruited through AMT. This
use of AMT to obtain speech ratings was approved by the
Institutional Review Board at New York University, and all
participants and parents of participants in treatment gave
consent for sound files to be shared with external listeners in
an anonymized fashion for rating purposes.

The minimum baseline duration was set to four ses-
sions. After four sessions, the intervention team uploaded
all participants’ probe data for rating, and the analysis team
downloaded and plotted the results. The analysis team
could see a continuous trajectory of performance for each
individual in the study, but they had no information about
each individual’s treatment status. Although both word-
and syllable-level data were made available to the analysis
team, the focus in making decisions about baseline stability
was on vocalic /r/ at the syllable level, as noted above. Word-
level data were consulted primarily as a source of poten-
tially disambiguating information when syllable-level results
were unclear. If any participant showed a rising trend or
an outlier, the analysis team would direct the intervention
team to collect two additional data points, then upload those
data for rating and further review. If stability was regained,
the analysis team would give the direction to initiate treat-
ment for one randomly selected participant; otherwise, they
would request that two additional data points be collected.
If stability was still not achieved after a total of eight baseline
sessions, treatment was initiated for one randomly selected
participant in accordance with a time-based criterion. This
provision was necessary in light of the abovementioned fact
that most studies of biofeedback intervention for residual
speech errors do include cases of nonresponders; it is impor-
tant to avoid a situation where participants are held indefi-
nitely at baseline while a nonresponsive participant receives
treatment.

Table 1 reports operational definitions that were
established through consultation between the intervention
team and the analysis team in the example study. Although
we consider it good practice to agree on estimates of these
parameters prior to the initiation of data collection, we note
that it can be challenging to specify exact values without
a priori knowledge of how variable participants’ scores will
be at baseline or how rapidly they will respond once treat-
ment is initiated. The analysis team may find it necessary to
alter certain criteria in order to arrive at what they consider
the most valid visual analysis of the plotted data.

An example of the determination to transition a par-
ticipant from the baseline to the treatment phase is illus-
trated in Figure 3a with data from the first cohort of
participants, who received ultrasound biofeedback treat-
ment. Recall that the minimum baseline duration was four
sessions; if all four participants showed a sufficiently sta-
ble baseline at that point, the analysis team would convey
that treatment could be initiated for a randomly selected
participant. However, one participant (pseudonym Katherine)
exhibited a high outlier data point in the fourth baseline
session. The analysis team thus requested two additional
data points. Review of the additional two observations in-
dicated that adequate stability of the data had been regained,
so the analysis team communicated that treatment could
be initiated for a randomly selected participant.

Once treatment had been initiated for one partici-
pant, the minimum stagger was set to four sessions, that
is, 2 weeks of treatment; after that point, the intervention
team processed and uploaded probe data from the previous
four sessions from all participants to be rated by blinded
listeners on AMT. The analysis team looked for one par-
ticipant to show evidence of a treatment effect while the
other participants maintained a stable baseline level of per-
formance. If multiple participants were showing evidence
of improvement, or if an outlier was observed, the same
protocol used to extend the baseline phase (collect two more
sessions, analyze again, repeat if necessary) was followed
until a clear pattern of response emerged, or until the time-
based criterion of eight sessions was reached.

An example of the determination to transition an addi-
tional participant from the baseline to the treatment phase
is illustrated with data from Cohort 2 (visual-acoustic bio-
feedback) in Figure 3b. For an extended period after the
transition from baseline to treatment, no participant showed
a clear trajectory of change over time. The analysis team
accordingly requested additional data points until a well-
defined trend emerged. In the eighth session after the transi-
tion, one participant, Samantha, showed strong evidence
of a treatment effect. The analysis team accordingly sig-
naled that another participant could be randomly selected
to receive treatment.

Lastly, a time-based criterion was the primary deter-
minant of the end of the study: Participants completed
10 weeks (20 sessions) of intervention and then proceeded
to complete three post-treatment maintenance probes. Note
that in this fixed-duration design, if data points from one
participant ceased to appear while others continued, the
analysis team could deduce which participant was the first
to receive treatment. This means that the intervention team
needs to transmit dummy data for any participants who
have completed treatment. In the present case, the interven-
tion team recycled maintenance probes from the partici-
pants who had finished treatment (i.e., uploaded the data
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Table 1. Operational definitions set for the sample study.

Term Definition

Stable baseline A series of at least four consecutive data points in which the most recent two data points do not demonstrate
evidence of improvement or any problematic outliers.

Evidence of improvement A participant will be judged to show significant evidence of improvement if:
1. The mean across sessions in the current phase, excluding the first two data points, is more than

10 percentage points higher than the mean in the preceding phase.
2. Treatment probes in the current phase show an upward trend over time (positive overall slope and final

datapoint is at least 10 percentage points higher than the mean in the preceding phase).
Problematic outlier An observation falling greater than two standard deviations above the mean across preceding data points.
Time-based criterion If no participant shows a clear pattern of improvement after eight sessions, apply the time-based criterion and

advance one randomly selected participant to treatment.
to be rerated by blinded listeners on AMT) until the time-
based criterion was reached for all participants.

In the final step of the MVA procedure for multiple-
baseline data, the analysis team reviewed all plotted data
and made their best guess of the order in which participants
received treatment. The final plotted data from the second
cohort (visual-acoustic biofeedback) are represented in
Figure 4. The study period is divided into six phases, with
each boundary between phases representing a point at
which the analysis team indicated that another participant
could make the transition from baseline to treatment.
The phases are not equal in duration across participants
because of occasional absences that could not be made up
before an upload for data rating took place. (As long
as the analysis team keeps track of what session each par-
ticipant was in when a phase transition occurred, these
differences in phase duration have minimal impact on
interpretation.)

The first participant, Alejandro, showed a well-
defined response pattern: His accuracy remained extremely
stable in Phases 1–4 and then began to rise in Phase 5.
From this, it was hypothesized that Alejandro was the
fourth subject to receive treatment. The second partici-
pant, Frank, was unquestionably showing a treatment ef-
fect in Phase 4. Due to high variability in the early phases,
there was some ambiguity about whether his response be-
gan in Phase 2 or 3. Comparison with data from word-
level probes (not pictured) supported the hypothesis that
his treatment effect began in Phase 3, and Frank was thus
speculated to be the second subject to receive treatment.
The third participant, Samantha, was judged to exhibit a
treatment effect starting in Phase 2, as discussed above.
Therefore, Samantha was hypothesized to be the first par-
ticipant to receive treatment. The final participant, Tim,
showed no response to treatment. However, based on their
guesses regarding the other three participants, the analysis
team was able to hypothesize that Tim was the third par-
ticipant to receive treatment, and that the complete order
was (1) Samantha, (2) Frank, (3) Tim, (4) Alejandro. The
intervention team confirmed that this order was correct.
With four participants, the total number of possible order-
ings was 4! ( = 24), and the probability of correctly guess-
ing the correct order was 1/24 = .04. Because this is an
outcome that would be unlikely to occur by chance if
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the null hypothesis of no effect of treatment were true,
the null hypothesis was provisionally rejected.

Discussion
This study reviewed a number of possible benefits

that can be derived from the incorporation of MVA methods
into single-case research in communication disorders. The
MVA approach makes it possible to enjoy some of the major
benefits of a response-guided approach—namely the ability
to mitigate the impact of rising trends, problematic outliers,
and other threats to internal validity—without introducing
an excessive potential for experimenter bias to influence
the outcomes of the study. In addition, MVA makes it pos-
sible to conduct a hypothesis test and compute a p value
in conjunction with single-case data, contrasting with the
purely qualitative assessment of outcomes that is used in
many single-case studies. The case study reported here
illustrates how MVA could be deployed in the context of a
single-case study investigating treatment for residual errors
affecting /r/, which is known to be a challenging context
for obtaining interpretable single-case data. In the example
provided, the analysis team was able to guess the correct
order of treatment application, an outcome that was
unlikely to occur by chance if the null hypothesis of no
treatment effect were true (p < .05). This type of concrete
result, paired with the higher internal validity of a blinded
study, has the potential to enhance the credibility of single-
case research. Although the present tutorial focused on the
application of MVA in the context of a multiple-baseline
across-subjects study, see Ferron and Levin (2014) for dis-
cussion of its use in the context of other designs.

Of course, the MVA method has disadvantages as
well. The primary difficulty arises from the fact that this
method is labor intensive, at least in the manner that it
was implemented for this study. The authors found it chal-
lenging to operationalize all relevant parameters prior to
the initiation of the study. For example, it was difficult to
dictate what magnitude of progress should be considered
meaningful when we did not yet have estimates of effect
size for all technologies (e.g., EPG). In such cases, research
teams may need to preserve some flexibility to adjust
parameters during the study. Some of the complexity that
characterized this study could be reduced by eliminating
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Figure 3. Schematic data illustrating decision points in a masked visual analysis design. y axis = percent of syllable-level tokens rated correct
by blinded listeners. Vertical dotted lines represent boundaries between phases of the study. Horizontal dotted lines represent baseline mean
for each participant. DP = data point. a: Example of establishing a stable baseline (data from Cohort 1). b: Example of identifying a response
to treatment (data from Cohort 2).
our use of a third party (blinded raters on AMT) to pro-
vide ratings. However, if we eliminate this level of blind-
ing, we reintroduce a real potential for bias to influence
the outcome of the study: The intervention team may
unconsciously give higher scores to participants receiving
treatment than participants for whom treatment has not
yet begun.

An additional set of limitations pertains to the sched-
uling needs of participating families. In our example study,
the duration of the baseline phase ended up being as
long as 28 sessions for the last child to transition from
baseline to treatment. (Recall that all participants had the
opportunity to receive the same duration of treatment re-
gardless of the order in which they transitioned from base-
line to treatment.) This is a much longer baseline phase
than we would ever impose outside of the context of the
MVA model. Parents need to be amply prepared for this
contingency. In our experience, after a conversation with
the research team about the importance of controlled
studies (and the value of free therapy), most families are
willing to participate even with the knowledge that their
child could be the last to enter treatment. The situation
becomes more complicated if families need to travel some
distance to reach the lab for baseline data collection. In
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Figure 4. Schematic data illustrating the process of guessing overall treatment order (data from Cohort 2). The y-axis represents percent of
syllable-level tokens rated correct by blinded listeners. Vertical dotted lines represent boundaries between phases of the study. Horizontal
dotted line represents baseline mean for each participant. DP = data point.
some cases, we found it necessary to send students to
participants’ homes to collect baseline recordings or to train
parents to collect recordings in a quiet room using a portable
digital recorder borrowed from the lab. Although such
recordings are of lower quality than would be obtained in
a sound booth, it is up to the researcher to strike a balance
between optimizing the quality of the data and proposing
a protocol that is feasible for the family as well as the re-
search team.

Concerns can also be raised regarding the power of
MVA to detect effects. In our study, which had four sub-
jects, there were 24 possible orders and thus the order had
to be correctly guessed on the first try to obtain a statisti-
cally significant result (i.e., p < .05). Had there been mul-
tiple nonresponders, it is unlikely that the order would have
been correctly guessed; however, not detecting an effect in
such circumstances is consistent with single-case guidelines
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that suggest minimum evidence of treatment effectiveness
requires three demonstrations of the effect at three points in
time (Kratochwill et al., 2013). In multiple-baseline studies
with only three subjects, there are only six possible orders,
and thus to have any power to detect effects, the randomi-
zation scheme has to be altered. Instead of randomly order-
ing the three subjects, the intervention team could randomly
select without replacement from the set {Subject 1, Subject 2,
Subject 3, and no one} at each point of phase transition,
yielding 24 possible assignments (Ferron & Levin, 2014).
The statistical power of MVA in multiple-baseline stu-
dies has been examined using simulation algorithms that
approximate the decision making of masked visual ana-
lysts. These simulation studies showed that Type I errors
in MVA were sufficiently controlled in both fixed phase
length and response-guided designs, and that the power
was higher for the response-guided design than it was
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for the fixed phase length design (Ferron, Joo, & Levin,
in press).

A final concern, which is general to hypothesis testing,
is that statistically significant results may be incorrectly
interpreted as clinically significant results. To help limit
these sorts of misinterpretations it is recommended that
the significance test from the MVA not be interpreted in
isolation, but rather as one component in the analysis. For
example, the hypothesis test in the MVA could be used to
formally control for Type I errors, and if the null hypoth-
esis is rejected, a traditional visual analysis could be used
to assess the clinical significance of the effect (Ferron et al.,
in press).

Conclusions
In sum, MVA is an approach to single-case data

collection that, although it has drawbacks, in many ways
represents a “best-of-both-worlds” combination. It does
require discipline and detailed preparation by both the
intervention and analysis teams, as well as cooperative fam-
ilies. A major benefit is that data analysis and plotting are
completed in the course of conducting the study—once
treatment is complete, the study is in effect ready to be writ-
ten up. We found it worth the effort to incorporate MVA
into our study comparing treatments for residual /r/ errors,
which pose a unique challenge for single-case design research.
Finally, we perceive the adoption of MVA as compatible
with a broader shift toward better-designed intervention
studies in the field of communication disorders. The defin-
ing features of MVA—thorough operationalization of
study parameters, rigorous blinding, and randomization—
are also critical prerequisites for internal validity in experi-
mental research. Although these elements require additional
effort and attention from the researcher, they also promise
to yield higher quality evidence on the important subject of
treatment efficacy.
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