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Abstract

Binding free energy calculations based on molecular simulations provide predicted affinities for 

biomolecular complexes. These calculations begin with a detailed description of a system, 

including its chemical composition and the interactions between its components. Simulations of 

the system are then used to compute thermodynamic information, such as binding affinities. 

Because of their promise for guiding molecular design, these calculations have recently begun to 

see widespread applications in early stage drug discovery. However, many challenges remain to 

make them a robust and reliable tool. Here, we highlight key challenges facing these calculations, 

describe known examples of these challenges, and call for the designation of standard community 

benchmark test systems that will help the research community generate and evaluate progress. In 

our view, progress will require careful assessment and evaluation of new methods, force fields, and 

modeling innovations on well-characterized benchmark systems, and we lay out our vision for 

how this can be achieved.
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1. INTRODUCTION

Molecular simulations provide a powerful technique for predicting and understanding the 

structure, function, dynamics, and interactions of biomolecules. Often, these techniques are 

valued because they provide a movie of what might be going on at the atomic level. 

However, simulations also can be used to make quantitative predictions of thermodynamic 

and kinetic properties, with applications in fields including drug discovery, chemical 

engineering, and nanoengineering. A thermodynamic property of particular interest is the 

binding affinity between biomolecules and ligands such as inhibitors, modulators, or 

activators. With accurate and rapid affinity predictions, we could use simulations in varied 
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health-related applications, such as the prediction of biomolecular interaction networks in 

support of systems biology, or rapid design of new medications with reduced side-effects 

and drug resistance. In this work, we give a view of how these simulations could impact 

drug discovery, briefly discuss where they stand now, and then argue for benchmark systems 

chosen to drive and assess the advancement of these methods, helping to make them 

practical for drug discovery.

1.1. Imagining a tool for drug discovery

A major aim in the development of molecular simulations is to create quantitative, accurate 

tools which will guide early stage drug discovery. Consider a medicinal chemist in the not-

too- distant future who has just finished synthesizing several new derivatives of an existing 

inhibitor as potential drug leads targeting a particular biomolecule, and has obtained binding 

affinity or potency data against the desired biomolecular target. Before leaving work, he or 

she generates ideas for perhaps 100 new compounds which could be synthesized next, then 

sets a computer to work overnight prioritizing them. By morning, the compounds have all 

been prioritized based on reliable predictions of their affinity for the desired target, 

selectivity against alternative targets which should be avoided, solubility, and membrane 

permeability. The chemist then looks through the predicted properties for the top few 

compounds and selects the next ones for synthesis. If synthesizing and testing each 

compound takes several days, this workflow compresses roughly a year’s work into a few 

days.

While this workflow is not yet a reality, huge strides have been made in this direction, with 

calculated binding affinity predictions now showing real promise (83, 19, 27, 109, 128, 18, 

25, 123), solubility predictions beginning to come online (107, 99, 70), and predicted drug 

resistance/selectivity also apparently tractable (67, 67), with some headway apparent on 

membrane permeability (62, 23). A considerable amount of science and engineering still 

remains to make this vision a reality, but, given recent progress, the question now seems 

more one of when rather than whether.

1.2. Increasing accuracy will yield increasing payoffs

Recent progress in computational power, especially the widespread availability of graphics 

processing units (GPUs) and advances in automation (72) and sampling protocols, have 

helped simulation-based techniques reach the point where they now appear to have sufficient 

accuracy to be genuinely useful in guiding pharmaceutical drug discovery at least for a 

certain subset of problems (78, 53, 109, 128, 18, 25, 123). Specifically, in some situations, 

free energy calculations appear to be capable of achieving RMS errors in the 1-2 kcal/mol 

range with current force fields, even in prospective applications. As a consequence, 

pharmaceutical companies are beginning to use these methods in discovery projects. The 

most immediate application of these techniques is to guide synthesis for lead optimization, 

but applications to scaffold hopping and in other areas also appear possible.

At the same time, it is clear that not all situations are so favorable, so it is worth asking what 

level of accuracy is actually needed. It is often suggested that we need binding free energy 

predictions accurate to within ~ 1 kcal/mol, but we are not aware of a clear basis for this 
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figure beyond the fact it is a pleasingly round number that is close to the thermal kinetic 

energy, RT. Instead of setting a single threshold requirement for accuracy, it is more 

informative to consider how accurate calculations must be to reduce the number of 

compounds synthesized and tested by some factor, relative to the number required without 

computational prioritization. If one targets a three-fold reduction, the answer appears to be 

that calculations with a 2 kcal/mol RMS error will suffice (113, 83). Thus, one can gain 

substantial benefit from simulations that are good yet still quite imperfect.

More broadly, this analysis does not address the net value of computational affinity 

predictions in drug discovery. Costs include those of the software, computer time, and 

personnel required to incorporate calculations into the workflow; while benefits include the 

savings, revenue gains, and externalities attributable to reducing the number of low-affinity 

compounds synthesized and arriving earlier at a potent drug candidate. In addition, with 

sufficiently reliable predictions, chemists may choose to tackle difficult synthesis efforts 

they otherwise might have avoided, resulting in more novel and valuable chemical matter.

1.3. Overview of free energy calculations

The present review focuses on a class of methods in which free energy differences are 

computed with simulations that sample Boltzmann distributions of molecular configurations. 

These samples are usually generated by molecular dynamics (MD) simulations (59), with 

the system effectively coupled to a heat bath at constant temperature, but Monte Carlo 

methods may also be used (75, 76, 21). In either case, the energy of a given configuration is 

provided by a potential function, or force field, which estimates the potential energy of a 

system of solute and solvent molecules as a function of the coordinates of all of its atoms. 

Such simulations may be used in several different ways to compute binding free energies or 

relative binding free energies, as detailed elsewhere (76, 20, 17, 112) and summarized 

below. In all cases, however, the calculations yield the free energy difference between two 

states of a molecular system, and they do so by computing the reversible work for changing 

the initial state to the final one. Two broad approaches deserve mention.

The first general approach directly computes the standard free energy of binding of two 

molecules by computing the reversible work of transferring the ligand from the binding site 

into solution. (This is sometimes called an absolute binding free energy calculation.) The 

pathway of this change may be one that is physically realizable, or one that is only realizable 

in silicoin which case it is sometimes called an “alchemical” pathway. Physical pathway 

methods provide the standard binding free energy by computing the reversible work of, in 

effect, pulling the ligand out of the binding site. Although, by definition, the pathway used 

must be a physical one that could occur in nature, it need not be probable, and improbable 

pathways, governed by an order parameter specifying how far the ligand is from the binding 

site, are often used (133, 138, 122, 50, 54, 8). In addition, artificial restraints may be useful 

to avoid sampling problems in the face of often complex barriers along the pathway (133, 

122, 50, 54, 8). By contrast, alchemical pathway methods artificially decouple the ligand 

from the binding site and then recouple it to solution from the protein (58, 51, 45, 9, 80). 

Although alchemical decoupling methods may avoid clashes of the ligand with the protein 

that might be problematic in pathway methods for a tight binding site, they still can pose 
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some of the same sampling challenges. For example, sampling of the unbound receptor must 

be adequate after the ligand is removed, and water molecules must have time to equilibrate 

in the vacated binding site. Given that free energy is a state function, it is not surprising that 

alchemical and physical pathway approaches yield apparently comparable results when 

applied to the same systems (65, 49, 26, 136).

The second general approach computes the difference between the binding free energies of 

two different ligands for the same receptor, by computing the work of artificially converting 

one ligand into another, first in the bound state and then free in solution (119, 76, 20, 17). 

Because these conversions are not physically realizable, such calculations are, again, called 

alchemical. These calculations can be quite efficient if the two ligands are very similar to 

each other, but they become more complicated and pose greater sampling problems if the 

two ligands are very different chemically or if there is a high barrier to interconversion 

between their most stable bound conformations (72). In addition, there may be concerns 

about slow conformational relaxation of the protein in response to the change in ligand. 

Nonetheless, alchemical relative free energy calculations currently are the best automated 

and most widely used free energy methods (83, 72, 128).

Importantly, the accuracy and precision of all of these methods are controlled by the same 

considerations. First, many conformations typically need to be generated, or sampled, in 

order to obtain an adequate representation of the Boltzmann distribution. In the limit of 

infinite sampling, a correctly implemented method would yield the single value of the free 

energy difference dictated by the specification of the molecular system and the chosen force 

field. In reality, however, only finite sampling is possible, so the reported free energy will 

differ from the nominal value associated with infinite sampling. In addition, because 

sampling methods are typically stochastic and the dynamics of molecular systems are highly 

sensitive to initial conditions (2), repeated calculations, using different random number seeds 

or initial states, will yield different results. The problem of finite sampling is most acute for 

systems where low-energy (hence highly occupied) conformational states are separated by 

high effective barriers, whether energetic or entropic. Second, even if adequate sampling is 

achievable, free energy differences may disagree substantially with experiment if the force 

field is not sufficiently accurate. Third, errors may also arise if the representation of the 

system in the simulation does not adequately represent the actual system, e.g. if protonation 

states are assigned incorrectly and held fixed.

1.4. Challenges and the domain of applicability

Thus, in order for a free energy calculation to be reliable, it must use an appropriate 

representation of the physical system and an accurate force field, and it must adequately 

sample the relevant molecular configurations. In the case of the more widely used 

alchemical relative free energy approach, this means that the best results are expected when:

• a high quality receptor structure is available, without missing loops or other 

major uncertainties

• the protonation state of the ligand and binding-site residues (as well as any other 

relevant residues) can reliably be inferred
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• the ligand binding mode is defined by crystallographic studies and is not 

expected to change much on modification

• the receptor does not undergo substantial or slow conformational changes

• key interactions are expected to be well-described by underlying force fields

Beyond this domain of applicability—whose dimensions are, in fact, still somewhat vague 

— substantial challenges may be encountered. For example, binding free energy calculations 

for a cytochrome C peroxidase mutant suggest limitations of fixed-charge force fields. In 

this case, the strength of electrostatic interactions in a buried, relatively nonpolar binding site 

appears to be overestimated by a conventional fixed-charge force field, likely due to 

underestimation of polarization effects (103). Sampling problems are also common, with 

slow sidechain rearrangements and ligand binding mode rearrangements in model binding 

sites in T4 lysozyme posing timescale problems unless enhanced or biased sampling 

methods are carefully applied (81, 12, 82, 56, 37, 127); and larger-scale protein motions 

induced by some ligands also posing challenges (12, 68).

Although such problems need not prevent free energy calculations from being used, they can 

require specific adjustment of procedures and parameters based on experience and 

knowledge of the system at hand. Thus, a key challenge for the field is how to use insights 

from well-studied cases to enable automation and reduce the detailed knowledge of each 

system required to carry out high quality simulations.

Troubleshooting is also a major challenge. In most cases where calculations diverge 

substantially from experiment, the reason for the discrepancy is not apparent. Is the force 

field inaccurate? Would the results improve with more sampling? Were protonation states 

misassigned—or do they perhaps even change on binding? There might even be a software 

bug (30) or a human error in the use of the software. As a consequence, it is not clear what 

steps are most urgently needed to advance the field as a whole. In this work, we argue that 

many of these problems can be alleviated, and that the field will advance more rapidly, if we 

select a set of well-chosen benchmark systems on which free energy methods are regularly 

tested.

1.5. Improving modeling by cycles of testing, prediction, and improvement

Modeling can in some cases improve rapidly, but, in our experience, rapid advances are most 

common when computational models undergo regular cycles of improvement, predictive 

testing, learning, and then further improvement. This can be particularly difficult for 

academic groups which may not have the resources for predictive tests; however, these are 

essential, since it is only in predictive tests that we can be sure we are assessing the 

performance of a method as it works in real life, rather than relying on knowledge of the 

expected outcome to inform setup of the calculations. With this in mind, the Statistical 

Assessment of the Modeling of Proteins and Ligands (SAMPL) blind challenges, as well as 

the Community Structure Activity Resource (CSAR) challenge, later replaced by the Drug 

Design Data Resource (D3R) grand challenges, have arisen to meet part of this need. 

Currently, D3R focuses on running blind challenges on protein-ligand binding with datasets 

from the pharmaceutical industry, allowing testing and evaluation of computational methods 
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on systems of direct pharmaceutical relevance. SAMPL, in contrast, focuses on predictions 

in simpler physical settings (? ), such as small molecules in aqueous and organic phases, and 

small molecules binding to supramolecular hosts. Together, the SAMPL and D3R challenges 

roughly span the spectrum from properties we can predict now (though they may be 

challenging in some cases (6, 136? )) to the drug binding we want to be able to reliably 

predict. These challenges are vital as they provide our only opportunity, at present, to 

routinely see how different methods compare when attempting to compute the same 

properties, and they provide the beginnings of a model for how we can best advance free 

energy techniques: routinely testing our methods on the same, well-understood systems to 

learn what does and doesn’t work to improve performance. Thus, we need not just blind 

tests, but retrospective testing on well-understood, “benchmark” systems, detailed below.

2. THE NEED FOR WELL-CHOSEN BENCHMARK SYSTEMS

Although tests of individual free energy methods are not uncommon today (78, 128, 18, 25, 

123), the use of nonoverlapping molecular systems and computational protocols makes it 

difficult to compare methods on a rigorous basis. In addition, few studies are designed to 

identify key sources of error and thereby focus future research and development. A few 

molecular systems have now emerged as de facto standards for general study (Section 3). 

These selections result in part from two series of blinded prediction challenges (SAMPL 

(91), and CSAR (29) followed by D3R (40)), which have helped focus the computational 

chemistry community on a succession of test cases and highlighted the need for 

methodological improvements. However, broader adoption of a larger and more persistent 

set of test cases is needed. By coalescing around a compact set of benchmarks, well chosen 

to challenge and probe free energy calculations, practitioners and developers will be able to 

better assess and drive progress in binding free energy calculations. Our primary goals in 

this work are to explain how benchmark systems can be used to advance the field, to 

encourage adoption of a standard set of benchmark systems, and to propose some candidates 

for this set.

2.1. Benchmark types and applications

We envision two classes of benchmark cases: “hard” benchmarks, which are simple enough 

that well-converged results can readily be computed; and “soft” benchmarks, for which 

convincingly converged results cannot readily be generated, but which are still simple 

enough that concerted study by the community can delineate key issues that might not arise 

in the simpler “hard” cases. The following subsections provide examples of how hard and 

soft benchmark systems may be used to address important issues in free energy simulations.

2.1.1. Hard benchmarks

2.1.1.1. Systems to test software implementations and usage: It is crucial yet nontrivial to 

validate that a simulation package correctly implements and applies the desired methods 

(111), and benchmark cases can help with this. First, all software packages could be tested 

for their ability to generate correct potential energies for a single configuration of the 

specified molecular system and force field. These results should be correct to within 

rounding error and the precision of the physical constants used in the calculations (111). 
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Similarly, different methods and software packages should give consistent binding free 

energies when identical force fields are applied with identical simulation setups and 

compositions. The benchmark systems for such testing can be simple and easy to converge, 

and high precision free energies (e.g., uncertainty ≈ 0.1 kcal/mol) should serve as a 

reference. Test calculations should typically agree with reference results to within 95% 

confidence intervals, from established methods (110, 35), For this purpose, the correctly 

computed values need not agree with experiment; indeed, experimental results are 

unnecessary.

2.1.1.2. Systems to check sampling completeness and efficiency: As discussed above, free 

energy calculations require thorough sampling of molecular configurations from the 

Boltzmann distribution dictated by the force field that is employed. This sampling is 

typically done by running molecular dynamics simulations, and for systems as large and 

complex as proteins, it is difficult to carry out long enough simulations. Calculations with 

inadequate sampling yield results that are imprecise, in the sense that multiple independent 

calculations with slightly different initial conditions will yield significantly different results, 

and these ill-converged results will in general be poor estimates of the ideal result obtained 

in the limit of infinite sampling. Advanced simulation methods have been developed to 

speed convergence (118, 112), but it is not always clear how various methods compare to 

one another. To effectively compare such enhanced sampling methods, we need benchmark 

molecular systems, parameterized with a force field that many software packages can use, 

that embody various sampling challenges, such as high dimensionality and energetic and 

entropic barriers between highly occupied states, but which are just tractable enough that 

reliable results are available via suitable reference calculations. Again, experimental data are 

not required, and the point of comparison may be, at least in part, sampling measures.

2.1.1.3. Systems to assess force field accuracy: Some molecular systems are small and 

simple enough that current technology allows thorough conformational sampling, and hence 

well converged calculations of experimental observables. This has long been feasible for 

liquids (57); for example, it is easy to precisely compute the heat of vaporization of liquid 

acetone with one of the standard force fields. More recently, advances in hardware and 

software have made it possible to compute binding thermodynamics to high precision for 

simple molecular recognition systems (50), as further discussed below. In such cases, absent 

complications like uncertain protonation states, the level of agreement with experiment 

reports directly on the accuracy of the force field. Thus, simple molecular recognition 

systems with reliable experimental binding data represent another valuable class of 

benchmarks. Here, of course, experimental data are needed. Ideally, the physical materials 

will be fairly easy to obtain so that measurements can be replicated or new experimental 

conditions (such as temperature and solvent composition) explored.

2.1.2. Soft benchmarks

2.1.2.1. Systems to challenge conformational sampling techniques: Enhanced sampling 

techniques (Section 2.1.1.2), designed to speed convergence of free energy simulations, may 

not be adequately tested by any hard benchmark, because such systems are necessarily rather 

simple. Thus, despite the fact that reliable reference results are not available for soft 
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benchmarks, they are still important for method comparisons. For example, it may become 

clear that some methods are better at sampling in systems with high energy barriers, and 

others in high-dimensional systems with rugged energy surfaces. Developers should test 

methods on a standard set of benchmark systems for informative comparisons.

2.1.2.2. Direct tests of protein-ligand binding calculations: Although it is still very 

difficult to convincingly verify convergence of many protein-ligand binding calculations, it 

is still important to compare the performance of various methods in real-world challenges. 

Appropriate soft benchmarks are likely to be cases which are still relatively tractable, 

involving small proteins and simple binding sites. We need a series of benchmark protein-

ligand systems that introduce various challenges in a well-understood manner. Systems 

should introduce none, one, two, or N of the following challenges in various combinations:

1. Sampling challenges

a. Sidechains in the binding site rearrange on binding different ligands

b. Modest receptor conformational changes, such as loop motion

c. Large scale conformational changes, such as domain motions and 

allostery

d. Ligand binding modes change unpredictably with small chemical 

modifications

e. High occupancy water sites rearrange depending on bound ligand

2. System challenges

a. Protonation state of ligand and/or protein changes on binding

b. Multiple protonation states of the ligand and/or receptor are relevant

c. Results are sensitive to buffer, salts or other environmental factors

3. Force field challenges

a. Strong electric fields suggest that omission of explicit electronic 

polarizability will limit accuracy

b. Ligands interact directly with metal ions

c. Ligands or co-factors challenge existing force fields

2.1.2.3. Progression of soft benchmarks: We envision these more complex benchmark 

systems proceeding through stages, initially serving effectively as a playground where major 

challenges and issues are explored, documented, and become well-known. Eventually, some 

will become sufficiently well characterized and sampled that they become hard benchmarks.

2.2. Applications and limitations of benchmark systems

Standard benchmark systems along the lines sketched above will allow potential solutions to 

be tested in a straightforward, reproducible manner. For example, force fields may be 

assessed by swapping new parameters, or even a new functional form, into an existing 
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workflow to see the impact on accuracy for a hard benchmark test. Sampling methods may 

be assessed by using various enhanced sampling methods for either hard or soft sampling 

benchmarks, here without focusing on accuracy relative to experiment. And system 

preparation tools could be varied to see how different approaches to assigning protonation 

states, modeling missing loops, or setting initial ligand poses, affect agreement with 

experiment—with the understanding that force field and sampling also play a role. Such 

studies will be greatly facilitated by well-characterized standard benchmarks.

At the same time, there is a possibility that that some methods will inadvertently end up 

tuned specifically to generate good results for the set of accepted benchmarks. In such cases, 

the results for systems outside the benchmark set might still be disappointing. This means 

the field will need to work together to develop a truly representative set of benchmarks. This 

potential problem can also be mitigated by sharing of methods to enable broader testing by 

non-developers, and by participation in blinded prediction challenges, such as SAMPL and 

D3R, which confront methods with entirely new challenge cases.

3. BENCHMARK SYSTEMS FOR BINDING PREDICTION

No molecular systems have been explicitly accepted by the field as benchmarks for free 

energy calculations, but certain host molecules (see below) and designed binding sites in the 

enzyme T4 lysozyme have emerged as particularly helpful and widely studied test cases. 

Here, we describe these artificial receptors and propose specific host-guest and T4 

lysozyme-ligand combinations as initial benchmark systems for free energy calculations. We 

also point to several additional hosts and small proteins that also have potential to generate 

useful benchmarks in the future (Section 4). The present focus is on cases where 

experimental data are available and add value, rather than ones chosen specifically to test 

conformational sampling methods, where experimental data are not required (Section 2.1).

3.1. Host-guest benchmarks

Chemical hosts are small molecules, often comprising fewer than 100 non-hydrogen atoms, 

with a cavity or cleft that allows them to bind other compounds, called guests, with 

significant affinity. Hosts bind their guests via the same basic forces that proteins used to 

bind their ligands, so they can serve as simple test systems for computational models of 

noncovalent binding. Moreover, their small size, and, in many cases, their rigidity, can make 

it feasible to sample all relevant conformations, making for “hard” benchmarks as de- fined 

above (Section 2.1). Furthermore, experiments can often be run under conditions that make 

the protonation states of the host and guest unambiguous. Under these conditions, the level 

of agreement of correctly executed calculations with experiment effectively reports on the 

validity of the force field (Section 2.1.1.3). For a number of host-guest systems, the use of 

isothermal titration calorimetry (ITC) to characterize binding provides both binding free 

energies and binding enthalpies. Binding enthalpies can often also be computed to good 

numerical precision (50), so they provide an additional check of the validity of simulations. 

A variety of curated host-guest binding data is available on BindingDB at http://

bindingdb.org/bind/HostGuest.jsp.
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Hosts fall into chemical families, such that all members of each family share a major 

chemical motif, but individuals vary in terms of localized chemical substitutions and, in 

some families, the number of characteristic monomers they comprise. For example, all 

members of the cyclodextrin family are chiral rings of glucose monomers; family members 

then differ in the number of monomers and in the presence or absence of various chemical 

substituents. For tests of computational methods ultimately aimed at predicting protein-

ligand binding affinities in aqueous solution, water soluble hosts are, arguably, most 

relevant. On the other hand, host-guest systems in organic solvents may usefully test how 

well force fields work in the nonaqueous environment within a lipid membrane. Here, we 

focus on two host families, the cucurbiturils (36, 85); and the octa-acids (more generally, 

Gibb deep cavity cavitands) (41, 52), which have already been the subject of concerted 

attention from the simulation community, due in part to their use in the SAMPL blinded 

prediction challenges (93, 91, 136).

3.1.1. Cucurbiturils—The cucurbiturils (Figure 1) are achiral rings of glycoluril 

monomers (36). The first characterized family member, cucurbit[6]uril, has six glycoluril 

units, and subsequent synthetic efforts led to the five-, seven-, eight- and ten-monomer 

versions, cucurbit[n]uril (n=5,6,7,8,10) (71), which have been characterized to different 

extents. Of note, the n=6,7,8 variants accommodate guests of progressively larger size, but 

are consistent in preferring to bind guests with a hydrophobic core sized to fit snugly into the 

relatively nonpolar binding cavity, along with at least one cationic moiety (though neutral 

compounds do bind (134, 63)) that forms stabilizing interactions with the oxygens of the 

carbonyl groups fringing both portals of the host (71). Although derivatives of these parent 

compounds have been made (64, 124, 3, 24), most of the binding data published for this 

class of hosts pertain to the non-derivatized forms. A fairly extensive set of data is available 

in BindingDB at http://bindingdb.org/bind/HostGuest.jsp.

We propose cucurbit[7]uril (CB7) as the basis of one series of host-guest benchmark 

systems (Figure 1, Tables 1 and 2). This host is convenient experimentally, because it is 

reasonably soluble in water; and computationally, because it is quite rigid and lacks acidic or 

basic groups. In addition, it has attracted particular interest because of the high binding 

affinities of some guests, exceeding even the tightest-binding protein-ligand systems (71, 

102, 86, 15). Finally, CB7 is already familiar to a number of computational chemistry 

groups, as it figured in two of the three SAMPL challenges that included host-guest 

components (93, 91), and it is currently the focus of the “hydrophobe challenge” (108).

3.1.1.1. CB7 presents several challenges: Despite the simplicity of CB7, calculations of its 

binding thermodynamics are still challenging, with several known complexities:

1. Tight exit portal: Guest molecules with bulky hydrophobic cores, such as 

adamantyl or [2.2.2]bicyclooctyl (86, 87) groups, do not fit easily through the 

constrictive portals (121). As a consequence, free energy methods which 

compute the work of binding along a physical dissociation pathway may 

encounter a high barrier as the bulky core exits the cavity, and this can lead to 

subtle convergence problems (122, 50). One way to solve this problem is to 

reversibly add restraints that open the portal, then remove the guest, and finally 
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reversibly remove the restraints (50), including all of these contributions in the 

overall work of dissociation.

2. Water binding and unbinding: If one computes the work of removing the guest 

from the host by a nonphysical pathway, in which the bound guest is gradually 

decoupled from the host and surrounding water (45), large fluctuations in the 

number of water molecules within the host’s cavity can occur when the guest is 

partly decoupled, and these fluctuations can slow convergence (105).

3. Salt concentration and buffer conditions: Binding thermodynamics are 

sensitive to the composition of dissolved salts, both experimentally (87, 86, 91) 

and computationally (94, 54). As a consequence, to be valid, a comparison of 

calculation with experiment must adequately model the experimental salt 

conditions.

4. Finite-size artifacts due to charge modification: Because many guest 

molecules carry net charge, it should be ascertained that calculations in which 

guests are decoupled from the system do not generate artifacts related to the 

treatment of long-ranged Coulombic interactions (104, 69, 100, 114).

3.1.1.2. The proposed CB7 benchmark sets comprise two compound series: For CB7, 

we have selected two sets of guests that were studied experimentally under uniform 

conditions (50 mM sodium acetate buffer, pH 4.74, 298K) by one research group (71, 15). 

Each series is based on a common chemical scaffold, making it amenable to not only 

absolute but also alchemical relative free energy calculations (Section 1.3). One set is based 

on an adamantane core (Table 1), and the other on an aromatic ring (Table 2). These systems 

can be run to convergence to allow detailed comparisons among methods and with 

experiment. Their binding free energies range from -5.99 to -17.19 kcal/mol, with the 

adamantane series spanning a particularly large range of free energies.

3.1.1.3. Prior studies provide additional insight into CB7’s challenges: Sampling of the 

host appears relatively straightforward in CB7 as it is quite rigid and its symmetry provides 

for clever convergence checks (50, 88). Due to its top-bottom symmetry, flips of guests from 

“head-in” to “head-out” configurations are not necessary to obtain convergence (33). 

However, sampling of the guest geometry can be a challenge, with transitions between 

binding modes as slow as 0.07 flips/ns (88), and flexible guests also presenting challenges 

(88). As noted above, water sampling can also be an issue, with wetting/dewetting 

transitions occurring on the 50 ns timescale (105).

Salt and buffer conditions are also key. In addition to the strong salt-dependence of binding 

(87), acetic acid (such as in a sodium acetate buffer) can compete with guests for the binding 

site (86). This may partially explain systematic errors in some computational studies (94, 

54). Indeed, the difference between 50 mM sodium acetate buffer and 100 mM sodium 

phosphate buffer impacts measured binding free energies by 2.5–2.8 kcal/mol (94, 91). 

Cationic guests could also have substantial and differing interactions with the counterions in 

solution as well, potentially lowering affinity relative to zero-salt conditions (91). Thus, one 
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group found a 6.4–6.8 kcal/mol dependence on salt concentration (54), possibly impacting 

other studies as well (88)

Despite these issues, CB7 appears to be at the point where careful studies can probe the true 

accuracy of our force fields (50, 39, 135), and the results can be sobering, with RMS errors 

in the binding free energies as high as 8 kcal/mol (50, 88). More encouragingly, the values of 

R2 values can be as high as 0.92 (50). Some force fields appear relatively worse than others 

(54, 92). Calculated values are in many cases quite sensitive to details of force field 

parameters (88, 87, 92). For example, modest modification of some Lennard-Jones 

parameters yielded dramatic improvements in calculated values (135), and host-guest 

binding data has, accordingly, been suggested as an input for force field development (135, 

50, 39). Water structure around CB7 and calculated binding enthalpies also appear 

particularly sensitive to the choice of water model (105, 33, 39), and water is clearly 

important for modulating binding (97). The water model also impacts the number of sodium 

ions which must be displaced (in sodium-based buffer) on binding (39, 50).

Despite its apparent simplicity, CB7 is still a challenging benchmark that can put important 

issues into high relief. For example, in SAMPL4, free energy methods yielded R2 values 

from 0.1 to 0.8 and RMS errors of about 1.9 to 4.9 kcal/mol for the same set of CB7 cases. 

This spread of results across rather similar methods highlights the need for shared 

benchmarks. Potential explanations include convergence difficulties, subtle methodological 

differences, and details of how the methods were applied (91). Until the origin of such 

discrepancies is clear, it is difficult to know how accurate our methods truly are.

3.1.2. Gibb Deep Cavity Cavitands (GDCC)—The octa-acids (OA) (Figure 1) are 

synthetic hosts with deep, basket-shaped, hydrophobic binding sites (41). The eight 

carboxylic acidic groups for which they were originally named make these hosts water-

soluble, but do not interact directly with bound hosts; instead, they project outward into 

solvent. Binding data have been reported for the original form of this host (OA) (41) and for 

a derivative with four added methyl groups at equivalent locations in the entryway, where 

they can contact a bound guest (TEMOA) (38, 116). (Note that OA and TEMOA have also 

been called OAH and OAMe, respectively (136).) Additional family members with other 

substituents around the portal have been reported, as has a new series in which the eponymic 

carboxylic groups are replaced by various other groups, including a number of basic amines 

(52). However, we are not aware of binding data for these derivatives. In view of these other 

hosts, however, we propose the more general name Gibb deep cavity cavitands (GDCCs) for 

this family of hosts. The binding cavities of the GDCCs are fairly rigid, though less so than 

the cucurbiturils. Some simulators report “breathing” motions that vary the diameter of the 

entry by up to 8 Å(77); and, in some studies, the benzoic acid “aps” around the entry 

occasionally ip upward and into contact with the guest (137, 120), though this motion has 

not been verified experimentally. Additionally, the four priopionate groups protruding into 

solution from the exterior base of the cavity are all flexible.

The octa-acids tend to bind guest molecules possessing a hydrophobic moiety that fits into 

the host’s cavity and a hydrophilic moiety that projects into the aqueous solvent. Within 

these specifications, they bind a diversity of ligands, including both organic cations and 
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anions, as well as neutral compounds with varying degrees of polarity (42, 44). Compounds 

with adamantane or noradamantane groups display perhaps the highest affinities observed so 

far, with binding free energies ranging to about -8 kcal/mol (117). Much of the experimental 

binding data comes from ITC, so binding enthalpies are often available.

Two experimental aspects of binding are particularly intriguing and noteworthy. First, the 

binding thermodynamics of OA is sensitive to the type and concentration of anions in 

solution. Although NaCl produces relatively modest effects, 100 mM sodium perchlorate, 

chlorate and isothiocyanate can shift binding enthalpies by up to about 10 kcal/mol and free 

energies by around 2 kcal/mol (43). These effects are due in part to binding of anions by the 

host; indeed, trichloroacetate is reported to bind OA with a free energy of −5.2 kcal/mol 

(115), and competition of other guests with bound anions leads to entropy-enthalpy 

tradeoffs. Second, elongated guests can generate ternary complexes, in which two OA hosts 

encapsulate one guest, especially if both ends of the guest are not very polar (42).

3.1.2.1. The proposed GDCC benchmark sets are drawn from SAMPL: As a core 

benchmark series for this family, we propose two sets which formed part of the SAMPL4 

and SAMPL5 challenges, based on adamantane derivatives (Table 3) and cyclic (aromatic 

and saturated) carboxylic acids (Table 4) binding to hosts OA and TEMOA with free 

energies of −3.7 to −7.6 kcal/mol. These cases offer aqueous binding data with a reasonably 

broad range of binding free energies, frequently along with binding enthalpies; the hosts and 

many or all of their guests are small and rigid enough to allow convincing convergence of 

binding thermodynamics with readily feasible simulations; and, like the cucurbiturils, they 

are already emerging as de facto computational benchmarks, due to their use in the 

SAMPL4 and SAMPL5 challenges (91, 136).

3.1.2.2. OA introduces new challenges beyond CB7: Issues deserving attention when 

interpreting the experimental data and calculating the binding thermodynamics of these 

systems include the following:

1. Tight exit portal: The methyl groups of the TEMOA variant narrow the 

entryway and can generate a barrier to the entry or exit of guest molecules with 

bulky hydrophobic cores, though the degree of constriction is not as marked as 

for CB7 (above). The TEMOA methyls groups can additionally hinder sampling 

of guest poses in the bound state, leading to convergence problems (136) specific 

to TEMOA.

2. Host conformational sampling: Although the flexible propionate groups are not 

proximal to the binding cavity, they are charged and so can have long-ranged 

interactions. As a consequence, it may be important to ensure their 

conformations are well sampled, though motions may be slow (77). Similarly, 

benzoic acid flips (137, 120) could potentially be an important challenge in some 

force fields.

3. Water binding and unbinding: Water appears to undergo slow motions into and 

out of the OA host, on timescales upwards of 5 ns (32). This poses significant 

challenges for some approaches, such as metadynamics, where deliberately 

Mobley and Gilson Page 13

Annu Rev Biophys. Author manuscript; available in PMC 2017 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



restraining water to stay out of the cavity when the host is not bound (and 

computing the free energy of doing so) can help convergence (8), and perhaps for 

other methods as well.

4. Salt concentration and buffer conditions: As in the case of CB7, binding to 

GDCCs is modulated by the composition of dissolved salts, both experimentally 

(43, 115) and computationally (98, 120). As a consequence, to be valid, a 

comparison of calculation with experiment must adequately model the 

experimental salt conditions.

5. Finite-size artifacts due to charge modification: As for CB7, it should be 

ascertained that calculations in which charged guests are decoupled from the 

system do not generate artifacts related to long range Coulomb interactions. 

(104, 69, 100, 114).

6. Protonation state effects: Although experiments are typically run at pH values 

that lead to well-defined protonation states of the host and its guests, this may 

not always hold (91, 32, 120), particularly given experimental evidence for 

extreme binding-driven pKa shifts of 3-4 log units for some carboxylate 

compounds (126, 115). Thus, attention should be given to ionization states and 

their modulation by binding.

3.1.2.3. Prior studies provide additional insight into the challenges of OA: As noted, two 

different host conformational sampling issues have been observed, with dihedral transitions 

for the proprionate groups occurring on 1–2 ns timescales (77)); motions of the benzoic acid 

aps were also relatively slow (137, 120) though perhaps thermodynamically unimportant. 

Guest sampling can also be an issue, at least in TEMOA (136), and this hosts’s tight cavity 

may also have implications for binding entropy (137).

Salt concentration strongly modulates binding affinity, at least for anions, and the nature of 

the salt also plays an important role (16). Co-solvent anions can also increase or decrease 

binding depending on their identity (43). Some salts even bind to OA themselves, with 

perchlorate (43) and trichloroacetate (115) being particularly potent, and thus will compete 

with guests for binding. Computationally, including additional salt beyond that needed for 

system neutralization changed binding free energies by up to 4 kcal/mol (120).

Naively, protonation states of the guests might seem clear and unambiguous. But since OA 

can bind guests of diverse net charges, the protonation state may not always be clear. One 

study used absolute binding free energy calculations for different guest charge states, 

coupled with pKa calculations, and found that inclusion of pKa corrections and the 

possibility of alternate charge states of the guests affected calculated binding free energies 

by up to 2 kcal/mol (120). As noted above, experimental evidence also indicates major pKa 

shifts on binding so that species such as acetate, formate and others would bind in neutral 

form at neutral pH (126, 115). Even the host protonation state may be unclear; while OA is 

often assumed to have all eight carboxylic acids deprotonated at the basic pH of typical 

experiments, the four at the bottom are in close proximity, and these might make hydrogen 

bonds allowing retention of two protons (32). Thus, there are uncertainties as to the host 
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protonation state (91, 32), which perhaps also could be modulated by guest binding. Several 

groups used different methods but the same force field and water model in SAMPL5, with 

rather varied levels of success because of discrepancies in calculated free energies (136, 10, 

8). However, some of these issues were resolved in follow-up work (8), bringing the 

methods into fairly good agreement for the majority of cases (137, 10).

3.2. Protein-ligand benchmarks: the T4 lysozyme model binding sites

Although we seek ultimately to predict binding in systems of direct pharmaceutical 

relevance, simpler protein-ligand systems can represent important stepping stones in this 

direction. Two model binding sites in T4 lysozyme have been particularly useful in this 

regard (Figure 2). These two binding sites, called L99A (89, 90) and L99A/M102Q (130, 

47) for point mutations which create the cavities of interest, are created in artificial mutants 

of phage T4 lysozyme, and have been studied extensively experimentally and via modeling. 

As protein-ligand systems, they introduce additional complexities beyond those observed in 

host-guest systems, yet they share some of the same simplicity. The ligands are generally 

small, neutral, and relatively rigid, with clear protonation states. For most ligands, 

substantial protein motions are absent at room temperature and ambient pressure, allowing 

calculated binding free energies to apparently converge relatively easily. However, like host-

guest systems, these binding sites are still surprisingly challenging (80, 81, 82, 12, 56, 37, 

68). In addition, precise convergence is sometimes difficult to achieve, and it is in all cases 

essentially impossible to fully verify. As a consequence, these are “soft benchmarks” as 

defined above (Section 2.1). The importance of the lysozyme model sites is also driven by 

the relative wealth of experimental data. It is relatively easy to identify new ligands and 

obtain high quality crystal structures and affinity measurements, allowing two different 

rounds of blind predictions testing free energy calculations (82, 12).

These binding sites do exhibit some surprising experimental complexities which make them 

interesting ongoing topics of study, such as the fact that the L99A site is empty of water 

when ligands are not bound (96, 66, 22), yet the protein can undergo pressure-induced filling 

(22, 66) or denaturation (96), which can be inhibited by binding of ligand (96, 66). Pressure 

may also cause the protein to populate an excited state (73, 61) (but see (129)) which is 

already present to a very limited extent at equilibrium (11). Still, as noted below, these issues 

do not seem to dramatically impact our ability to calculate binding free energies at standard 

temperature and pressure, probably in large part because these are effects which come into 

play only at high pressures (96, 66, 73), though as we discuss below, some ligands do induce 

a protein conformational change which affects the same helix as the proposed excited state 

(74). It seems likely that the conformational hetereogeneity observed experimentally will 

make lysozyme even more of a valuable benchmark system, as test cases here can range 

from simple to challenging, depending on the ligand and the pressure.

3.2.1. The apolar and polar cavities and their ligands—The L99A site is also called 

the “apolar” cavity. It is relatively at and elongated, and binds mostly nonpolar molecules 

such as benzene, toluene, p-xylene, and n-butylbenzene: basically, a fairly broad range of 

nonpolar planar five- and six-membered rings and ring systems (such as indole). The polar 

version, L99A/M102Q, introduces an additional point mutation along one edge of the 
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binding site, providing a glutamine that introduces polarity and the potential for hydrogen 

bonding. It still binds a variety of nonpolar ligands such as toluene (though not benzene). 

One small downside of these binding sites is that the range of affinities is relatively narrow: 

about −4.5 to −6.7 kcal/mol in the apolar site (89, 82), and about −4 to −5.5 kcal/mol in the 

polar site (12). Thus, even the strongest binders are not particularly strong, and the weakest 

binders tend to run up against their solubility limits. Still, these sites offer immensely useful 

tests for free energy calculations.

For both sites, fixed charge force fields seem to yield reasonably accurate free energies, with 

RMS errors between 1–2 kcal/mol, and some level of correlation with experiment, despite 

limited dynamic range (28, 82, 12, 37, 125). System composition/preparation issues also do 

not seem to be a huge factor. Instead, sampling issues predominate:

1. Ligand binding mode/orientational sampling: The binding sites are buried and 

roughly oblong, with ligands which are similar in shape. Ligands with axial 

symmetry typically have at least two reasonably likely binding modes, but 

broken symmetry can drive up the number of likely binding modes. For example, 

phenol has two plausible binding modes in the polar cavity (48, 12) but 3-

chlorophenol has at least four, three of which appear to have some population in 

simulations (37), because the chlorine could point in either direction within the 

site. Timescales for binding mode interconversion are relatively slow, with in-

plane transitions on the 1-10 nanosecond timescale, and out-of-plane transitions 

(e.g. between toluene’s two symmetry-equivalent binding modes) taking 

hundreds of nanoseconds (Mobley group, unpublished data).

2. Sidechain rearrangements: Some sidechains are known to reorganize when 

binding certain ligands. The smallest ligands tend not to induce conformational 

changes, but larger ligands may induce sidechain rearrangements – often, 

rotamer flips – around the binding site region. These can be slow in the tightly 

packed binding site. This especially occurs for Val111 in the L99A site (90, 81, 

56) and Leu118, Val11, and Val103 in L99A/M102Q (130, 131, 48, 12). These 

sidechain motions typically present sampling problems for standard MD 

simulations (81, 82, 12, 56, 127).

3. Backbone sampling: Larger ligands induce shifts of the F helix, residues 107 or 

108 to 115, adjacent to the binding site, allowing the site to enlarge. This occurs 

in both binding sites (131, 12, 74), but is best characterized for L99A (74). 

There, addition of a series of methyl groups from benzene up to n-hexylbenzene 

causes a conformational transition in the protein from closed to intermediate to 

open conformations; thisaffects the same region of helix F that undergoes a 

conformational change in the proposed excited state which is partially populated 

at equilibrium (11)

Tables 5 and 6 introduce proposed benchmark sets for the apolar and polar cavities, giving 

ligands potentially amenable to both absolute and relative free energy calculations, and 

spanning the range of available affinities. Co-crystal structures are available in most cases, 

and the PDB IDs are provided in the tables. The selected ligands span a range of challenges 

and levels of difficulty, ranging from fairly simple to including most of the challenges noted 
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above. Essentially all of them have been included in at least one prior computational study, 

and some have appeared in a variety of prior studies. Additional known ligands and non-

binders are available, with binding affinities available for 19 compounds in the L99A site 

(31, 89, 82) and 16 in L99A/M102Q (130, 47, 12). Because of the extent of the sampling 

challenges in lysozyme, binding of most ligands will currently constitute a soft benchmark, 

though long-timescale simulations to turn these into hard benchmarks may already be 

feasible.

3.2.2. Computational challenges posed by the T4 lysozyme benchmarks—Early 

work on the lysozyme sites focused on the difficulty of predicting binding modes (80, 82, 

12) because of the slow interconversions noted above. Docking methods often can generate 

reasonable poses spanning most of the important possibilities (80, 82, 12, 48) but do not 

accurately predict the binding mode of individual compounds (82, 12, 48). Thus it appears 

necessary to consider the possibility of multiple binding modes; this is also important since 

some ligands actually populate multiple binding modes (12). In a number of studies, 

candidate binding modes from docking are relaxed with MD simulations, then clustered to 

select binding modes for further study. It turns out an effective binding free energy for each 

distinct candidate binding mode can be computed separately (80) and combined to find the 

population of each binding mode and determine the overall binding free energy. However, 

this is costly since each candidate binding mode requires a full binding free energy 

calculation.

Relative binding free energy calculations do not dramatically simplify the situation. 

Introduction of a ligand modification can leave the binding mode uncertain (e.g., introducing 

a chlorine onto phenol leaves at least two possible binding modes even if the binding mode 

of phenol is known) (12). A naïve solution is to consider multiple possible binding modes in 

relative free energy calculations (12), but this generates multiple results; determining the 

true relative binding free energy requires additional information (83). Enhanced sampling 

approaches provide one possible solution to the binding mode problem. Particularly, with λ 
or Hamiltonian exchange techniques, ligands can easily switch between binding modes 

when they are non-interacting unless they are restrained, and then moves in λ space can 

allow transitions back to the interacting state. Thus, approaches employing this strategy can 

naturally sample multiple binding modes (37, 125).

While sidechain sampling has been a significant challenge, it is possible to use biased 

sampling techniques such as umbrella sampling to deliberately compute and include free 

energies of sampling slow sidechain rearrangements (81). However, this is not a general 

solution, since it requires knowing what sidechains might rearrange on binding and then 

expending substantial computational power on sampling free energy landscapes for these 

rearrangements. An apparently better general strategy is including sidechains in enhanced 

sampling regions selected for Hamiltonian exchange (56, 60) or REST (127), allowing 

sidechains to be alchemically softened or torsion barriers lowered (or both), to enhance 

sampling at alchemical intermediate states. With swaps between λ values, enhanced 

sidechain sampling at intermediate states can propagate to all states, improving convergence 

(56, 127).
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Larger protein conformational changes in lysozyme have received less attention, partly 

because until very recently they seemed to be a peculiar oddity only rarely observed; i.e., for 

ligands 4,5,6,7-tetrahydroindole and benzyl acetate in the polar site (12). However, recent 

work noted above highlighted how a helix in the apolar cavity can open to accommodate 

larger ligands (74). Timescales for this motion appear to be on the order of 50 ns, so it can 

pose sampling challenges, even for relative free energy calculations (68). Including part of 

the protein in the enhanced sampling region via REST2 provides some benefits, but 

sampling these motions will likely prove a valuable test for enhanced sampling methods.

4. THE FUTURE OF BENCHMARKS AND OF THIS REVIEW

This work has so far presented a small set of benchmark systems for binding free energy 

calculations, and has highlighted some of the ways in which they have already proven their 

utility. However, the scope of these sets is still quite limited. More, increasingly diverse, 

host-guest systems will help probe the strengths and weaknesses of force fields, and to drive 

their improvement. At the other end of the spectrum, we need more complex and 

challenging benchmark sets for proteins including simple models, like T4 lysozyme as well 

as candidate drug targets. And there may be community interest in test systems specifically 

selected to challenge sampling algorithms, without reference to experimental data.

Several candidate hosts and proteins are worth mentioning in this regard. Among host-guest 

systems, there is a particularly extensive experimental literature on cyclodextrins (46, 101), 

and they are tractable computationally (50, 132). As to artificial protein binding sites, the 

two variants of the CCP protein model binding site (34, 4, 5, 103, 95, 106) offer a modest 

increase in difficulty relative to the T4 lysozyme sites discussed above. And thrombin and 

the bromodomains appear to be promising examples of candidate drug targets for inclusion 

in a growing set of benchmark systems. Thrombin is a serine protease that has received prior 

attention from free energy studies (127, 128, 14). Experimental data exhibits interesting 

trends (7) that can partly be explained by simulations (14); but challenges remain (13). 

Bromodomains may also be interesting, especially given that relatively high accuracies have 

been reported, relative to experiment. At the same time, binding modes may be non-obvious 

and the diversity of ligands could pose problems for relative free energy calculations (1). 

Other systems will undoubtedly emerge as promising benchmarks as well, and we seek 

community input to help identify these.

In order to provide for updates of this material as new benchmark systems are defined, and 

to enable community input into the process of choosing them, we have made the LaTeX 

source for this article on GitHub at http://www.github.com/mobleylab/benchmarksets. We 

encourage use of the issue tracker for discussion, comments, and proposed updates. We plan 

to incorporate new material via GitHub as one would for a coding project, then make it 

available as preprints via bioRxiv. Given substantial changes to this initial version of the 

paper, it may ultimately be appropriate to make it available as a “perpetual review” (84) via 

another forum allowing versioned updates of publications.
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5. CONCLUSIONS AND OUTLOOK

Binding free energy calculations are a promising tool for predicting and understanding 

molecular interactions and appear to have enough accuracy to provide substantial benefits in 

a pharmaceutical drug discovery context. However, progress is needed to improve these 

tools so that they can achieve their potential. To achieve steady progress, and to avoid 

potentially damaging cycles of enthusiasm and disillusionment, we need to understand and 

be open and honest about key challenges. Benchmarks are vital for this, as they allow 

researchers in the field to rigorously test their methods, arrive at a shared understanding of 

problems, and measure progress on well-characterized yet challenging systems. It is also 

worth emphasizing the importance of sharing information about apparently well thought-out 

and even promising methods that do not work, rather than sharing only what does appear to 

work. Identifying and addressing failure cases and problems is critically important to 

advancing this technology, but failures can be harder to publish, and may even go 

unpublished, even though they serve a unique role in advancing the field. We therefore 

strongly encourage that such results be shared and welcomed by the research community.

Here, we proposed several benchmark systems for binding free energy calculations. These 

embody a subset of the key challenges facing the field, and we plan to expand the set as 

consensus emerges. Hopefully, these systems will serve as challenging standard test cases 

for new methods, force fields, protocols, and workflows. Our desire is that these benchmarks 

will advance the science and technology of modeling and predicting molecular interactions, 

and that other researchers in the field will contribute to identifying new benchmark sets and 

updating the information provided about these informative systems.
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Glossary

alchemical Nonphysical or nonchemical; here, usually used in the 

context of calculations involving transitions between 

physical thermodynamic states via a nonphysical, 

“alchemical” pathway

test system A system (here, often a binding system) employed for the 

purposes of testing methods, force fields, and other aspects 

of simulations

benchmark system A standard test system used to evaluate, assess, compare, or 

explore the performance of methods, often quantitatively
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Figure 1. 
OA, TEMOA, and CB7 hosts. Shown are the hosts which are the focus of our host-guest 

benchmark sets – two variants of the octa-acid GDCC, and CB7, a cucurbituril. Guest 

structures are available in the supplemental material.
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Figure 2. 
Benzene and hexylbenzene in the lysozyme L99A site, and phenol and 4,5,6,7-

tetrahydroindole in the L99A/M102Q site (PDBs 4W52, 4W59, 1LI2, and 3HUA, 

respectively). The binding site shape is shown as a semi-transparent surface, and the protein 

shown with cartoons. In both cases, the structure with the smaller ligand is shown in green 

and that with the larger ligand is shown in blue, and the larger ligand induces a motion of 

helix F bordering the binding site. Phenol and 4,5,6,7-tetrahydroindole both also bind with 

an ordered water, though this does not occur for all ligands in the polar L99A/M102Q site.
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Table 1

Proposed CB7 Set 1 benchmark data

IDa name PC CIDb SMILES ΔGc
(kcal/mol)

1 Memantine 4054 CC12CC3CC(C1)(CC(C3)(C2)N)C −5.99 ± 0.05 d

3 1,3-Bis(trimethylaminio)adamantine 101379195 C[N+](C)(C)C12CC3CC(C1)CC(C3)(C2)[N+](C)(C)C −6.55 ± 0.05 d

5 N-(1-Adamantyl)ethylenediamine 303798 C1C2CC3CC1CC(C2)(C3)NCCN −18.22 ± 0.09 e

17 Adamantane-1,3-diamine 213512 C1C2CC3(CC1CC(C2)(C3)N)N −11.33 ± 0.05 d

18 1-Adamantanecarboxylic acid 13235 C1C2CC3CC1CC(C2)(C3)C(=O)O −11.59 ± 0.06 d

22 1-Adamantyltrimethylaminium 3010127 C[N+](C)(C)C12CC3CC(C1)CC(C3)C2 −16.66 ± 0.08 d

23 amantadine 2130 C1C2CC3CC1CC(C2)(C3)N −17.19 ± 0.08 d

24 N-(1-Adamantyl)pyridinium 3848257 C1C2CC3CC1CC(C2)(C3)[N+]4=CC=CC=C4 −16.75 ± 0.07 d

a
Compound ID from original paper;

b
PubChem Compound ID (structures in supporting info);

c
Standard binding free energy, where all measurements were done via NMR in 50mM sodium acetate buffer in D2O at pH 4.74 and 298 K. 

Uncertainties are obtained by taking the reported standard deviations across triplicate measurements (55) and dividing by ;

d
drawn from (71);

e
drawn from (15).
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Table 2

Proposed CB7 Set 2 benchmark data

IDa name PC CIDb SMILES ΔGc,d
(kcal/mol)

2 Dopamine 681 C1=CC(=C(C=C1CCN)O)O −6.31 ± 0.05

4 O-phenylenediamine 7243 C1=CC=C(C(=C1)N)N −6.68 ± 0.05

5 m-Phenylenediamine 7935 C1=CC(=CC(=C1)N)N −6.69 ± 0.02

7 4-(Aminomethyl)pyridine 77317 C1=CN=CC=C1CN −7.56 ± 0.06

8 p-Phenylenediamine 7814 C1=CC(=CC=C1N)N −8.60 ± 0.06

9 P-toluidine 7813 CC1=CC=C(C=C1)N −9.43 ± 0.05

20 P-Xylylenediamine 68315 C1=CC(=CC=C1CN)CN −12.62 ± 0.06

a
Compound ID from original paper;

b
PubChem Compound ID (structures in supporting info);

c
Standard binding free energy, where all measurements were done via NMR in 50mM sodium acetate buffer in D2O at pH 4.74 and 298 K. 

Uncertainties are obtained by taking the reported standard deviations across triplicate measurements (55) and dividing by ;

d
drawn from (71).

Annu Rev Biophys. Author manuscript; available in PMC 2017 August 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mobley and Gilson Page 31

Ta
b

le
 3

Pr
op

os
ed

 G
D

C
C

 S
et

 1
 b

en
ch

m
ar

k 
da

ta

ID
a

na
m

e
P

C
 C

ID
b

SM
IL

E
S

Δ
G

c
(k

ca
l/m

ol
)

Δ
H

d
(k

ca
l/m

ol
)

O
ct

a 
A

ci
d 

bi
nd

er
s

3 
/ O

A
-G

1
5-

H
ex

yn
oi

c 
ac

id
14

30
36

C
#C

C
C

C
C

(=
O

)O
−

5.
40

 ±
 0

.0
03

−
7.

71
 ±

 0
.0

5

4 
/ O

A
-G

6
3-

ni
tr

ob
en

zo
ic

 a
ci

d
84

97
C

1=
C

C
(=

C
C

(=
C

1)
[N

+
](

=
O

)[
O

-]
)C

(=
O

)O
−

5.
34

 ±
 0

.0
05

−
5.

67
 ±

 0
.0

1

5 
/ O

A
-G

2
4-

cy
an

ob
en

zo
ic

 a
ci

d
12

08
7

C
1=

C
C

(=
C

C
=

C
1C

#N
)C

(=
O

)O
−

4.
73

 ±
 0

.0
1

−
4.

45
 ±

 0
.0

8

6 
/ O

A
-G

4
4-

br
om

oa
da

m
an

ta
ne

-1
-c

ar
bo

xy
lic

 a
ci

d
12

59
87

66
C

1C
2C

C
3C

C
(C

2)
(C

C
1C

3B
r)

C
(=

O
)O

−
9.

37
 ±

 0
.0

1
−

14
.7

8 
±

 0
.0

2

7 
/ O

A
-G

3
N

,N
,N

-t
ri

m
et

hy
lh

ex
an

-1
-a

m
in

iu
m

84
77

4
C

C
C

C
C

C
[N

+
](

C
)(

C
)C

−
4.

49
 ±

 0
.0

1
−

5.
91

 ±
 0

.1
0

8 
/ O

A
-G

5
tr

im
et

hy
lp

he
ne

th
yl

am
in

iu
m

14
10

8
C

[N
+

](
C

)(
C

)C
C

C
1=

C
C

=
C

C
=

C
1

−
3.

72
 ±

 0
.0

1
−

9.
96

 ±
 0

.1
1

T
E

M
O

A
/O

A
M

e 
bi

nd
er

s

3 
/ O

A
-G

1
5-

H
ex

yn
oi

c 
ac

id
14

30
36

C
#C

C
C

C
C

(=
O

)O
−

5.
47

6 
±

 0
.0

06
−

9.
96

1 
±

 0
.0

06

4 
/ O

A
-G

6
3-

ni
tr

ob
en

zo
ic

 a
ci

d
84

97
C

1=
C

C
(=

C
C

(=
C

1)
[N

+
](

=
O

)[
O

-]
)C

(=
O

)O
−

4.
52

 ±
 0

.0
2

−
9.

1 
±

 0
.1

5 
/ O

A
-G

2
4-

cy
an

ob
en

zo
ic

 a
ci

d
12

08
7

C
1=

C
C

(=
C

C
=

C
1C

#N
)C

(=
O

)O
−

5.
26

 ±
 0

.0
1

−
7.

6 
±

 0
.1

6 
/ O

A
-G

4
4-

br
om

oa
da

m
an

ta
ne

-1
-c

ar
bo

xy
lic

 a
ci

d
12

59
87

66
C

1C
2C

C
3C

C
(C

2)
(C

C
1C

3B
r)

C
(=

O
)O

N
D

e
N

D
e

7 
/ O

A
-G

3
N

,N
,N

-t
ri

m
et

hy
lh

ex
an

-1
-a

m
in

iu
m

84
77

4
C

C
C

C
C

C
[N

+
](

C
)(

C
)C

−
5.

73
 ±

 0
.0

6
−

6.
62

 ±
 0

.2

8 
/ O

A
-G

5
tr

im
et

hy
lp

he
ne

th
yl

am
in

iu
m

14
10

8
C

[N
+

](
C

)(
C

)C
C

C
1=

C
C

=
C

C
=

C
1

N
D

e
N

D
e

a C
om

po
un

d 
ID

 f
ro

m
 (

11
6)

 a
nd

 S
A

M
PL

5 
ID

 f
ro

m
 (

13
6)

;

b Pu
bC

he
m

 C
om

po
un

d 
ID

 (
st

ru
ct

ur
es

 in
 s

up
po

rt
in

g 
in

fo
);

c St
an

da
rd

 b
in

di
ng

 f
re

e 
en

er
gy

 f
ro

m
 (

11
6)

, w
he

re
 a

ll 
m

ea
su

re
m

en
ts

 w
er

e 
do

ne
 v

ia
 I

T
C

 in
 5

0 
m

M
 s

od
iu

m
 p

ho
sp

ha
te

 b
uf

fe
r 

at
 p

H
 1

1.
5 

an
d 

29
8 

K
. U

nc
er

ta
in

tie
s,

 d
ra

w
n 

fr
om

 th
e 

ex
pe

ri
m

en
ta

l p
ap

er
, w

er
e 

co
m

pu
te

d 
fr

om
 tr

ip
lic

at
e 

m
ea

su
re

m
en

ts
 ta

ke
n 

w
ith

 f
re

sh
ly

 m
ad

e 
so

lu
tio

ns
 o

f 
ho

st
 a

nd
 g

ue
st

. H
ow

ev
er

, b
as

ed
 o

n 
pe

rs
on

al
 c

om
m

un
ic

at
io

n 
w

ith
 th

e 
au

th
or

s,
 it

 m
ay

 b
e 

ad
vi

sa
bl

e 
to

 r
eg

ar
d 

th
e 

ac
cu

ra
cy

 m
or

e 
co

ns
er

va
tiv

el
y,

 a
t ~

2%
 f

or
 Δ

G
 a

nd
 ~

6%
 f

or
 Δ

H
;

d m
ea

su
re

d 
bi

nd
in

g 
en

th
al

py
 (

11
6)

, s
ub

je
ct

 to
 th

e 
sa

m
e 

co
nd

iti
on

s/
ca

ve
at

s 
as

 c
.

e no
t d

on
e.

Annu Rev Biophys. Author manuscript; available in PMC 2017 August 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mobley and Gilson Page 32

Ta
b

le
 4

Pr
op

os
ed

 G
D

C
C

 S
et

 2
 b

en
ch

m
ar

k 
da

ta

ID
a

na
m

e
P

C
 C

ID
b

SM
IL

E
S

M
et

ho
d

Δ
G

c
(k

ca
l/m

ol
)

1
B

en
zo

ic
 a

ci
d

24
3

C
1=

C
C

=
C

(C
=

C
1)

C
(=

O
)O

N
M

R
−

3.
72

 ±
 0

.0
3

2
4-

M
et

hy
lb

en
zo

ic
 a

ci
d

74
70

C
C

1=
C

C
=

C
(C

=
C

1)
C

(=
O

)O
N

M
R

−
5.

85
 ±

 0
.0

6

3
4-

et
hy

lb
en

zo
ic

 a
ci

d
12

08
6

C
C

C
1=

C
C

=
C

(C
=

C
1)

C
(=

O
)O

IT
C

−
6.

27
 ±

 0
.0

1

4
4-

C
hl

or
ob

en
zo

ic
 a

ci
d

63
18

C
1=

C
C

(=
C

C
=

C
1C

(=
O

)O
)C

l
IT

C
−

6.
72

 ±
 0

.0
1

5
3-

ch
lo

ro
be

nz
oi

c 
ac

id
44

7
C

1=
C

C
(=

C
C

(=
C

1)
C

l)
C

(=
O

)O
N

M
R

−
5.

24
 ±

 0
.0

2

6
cy

cl
oh

ex
an

ec
ar

bo
xy

lic
 a

ci
d

74
13

C
1C

C
C

(C
C

1)
C

(=
O

)O
N

M
R

−
5.

62
 ±

 0
.0

4

7
tr

an
s-

4-
M

et
hy

lc
yc

lo
he

xa
ne

ca
rb

ox
yl

ic
 a

ci
d

20
33

0
[C

@
@

H
]1

(C
C

[C
@

@
H

](
C

C
1)

C
(=

O
)O

[H
])

C
IT

C
−

7.
61

 ±
 0

.0
4

a C
om

po
un

d 
ID

 f
ro

m
 o

ri
gi

na
l p

ap
er

 (
44

);

b Pu
bC

he
m

 C
om

po
un

d 
ID

 (
st

ru
ct

ur
es

 in
 s

up
po

rt
in

g 
in

fo
);

c St
an

da
rd

 b
in

di
ng

 f
re

e 
en

er
gy

 f
ro

m
 (

44
),

 w
he

re
 a

ll 
m

ea
su

re
m

en
ts

 w
er

e 
do

ne
 in

 1
0 

m
M

 s
od

iu
m

 te
tr

ab
or

at
e 

bu
ff

er
 a

t p
H

 9
.2

 a
nd

 2
98

 K
. A

 q
ui

rk
 is

 th
at

 f
or

 th
e 

N
M

R
 m

ea
su

re
m

en
ts

, t
he

 g
ue

st
 w

as
 ti

tr
at

ed
 in

 
fr

om
 5

0 
m

M
 s

od
iu

m
 te

tr
ab

or
at

e 
bu

ff
er

, s
o 

th
e 

bu
ff

er
 c

on
ce

nt
ra

tio
n 

ch
an

ge
d 

du
ri

ng
 th

e 
tit

ra
tio

n.
 U

nc
er

ta
in

ty
 is

 th
e 

st
an

da
rd

 e
rr

or
 o

f 
th

e 
m

ea
n 

in
 f

re
e 

en
er

gy
, c

om
pu

te
d 

fr
om

 th
e 

re
po

rt
ed

 s
ta

nd
ar

d 
de

vi
at

io
ns

 
in

 K
a.

 A
ga

in
, b

as
ed

 o
n 

co
m

m
un

ic
at

io
n 

w
ith

 th
e 

au
th

or
s,

 u
nc

er
ta

in
tie

s 
of

 p
er

ha
ps

 1
0%

 m
ay

 b
e 

m
or

e 
ap

pr
op

ri
at

e.

Annu Rev Biophys. Author manuscript; available in PMC 2017 August 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mobley and Gilson Page 33

Ta
b

le
 5

Pr
op

os
ed

 L
ys

oz
ym

e 
L

99
A

 S
et

 b
en

ch
m

ar
k 

da
ta

na
m

e
ID

h
SM

IL
E

S
Δ

G
a

(k
ca

l/m
ol

)
P

D
B

 c
od

e
re

fe
re

nc
e

be
nz

en
eb

24
1

c1
cc

cc
c1

−
5.

19
 ±

 0
.1

6
18

1L
 (

90
),

 4
W

52
 (

74
)

(8
9)

to
lu

en
eb

11
40

C
c1

cc
cc

c1
−

5.
52

 ±
 0

.0
4

4W
53

 (
74

)
(8

9)

et
hy

lb
en

ze
ne

b
75

00
C

C
c1

cc
cc

c1
−

5.
76

 ±
 0

.0
7

1N
H

B
 (

90
),

 4
W

54
 (

74
)

(8
9)

pr
op

yl
be

nz
en

eb
76

68
C

C
C

c1
cc

cc
c1

−
6.

55
 ±

 0
.0

2
4W

55
 (

74
)

(8
9)

bu
ty

lb
en

ze
ne

b
77

05
C

C
C

C
c1

cc
cc

c1
−

6.
70

 ±
 0

.0
2

18
6L

 (
90

),
 4

W
57

 (
74

)
(8

9)

he
xy

lb
en

ze
ne

b
14

10
9

C
C

C
C

C
C

c1
cc

cc
c1

U
N

K
c

4W
59

 (
74

)
(8

9)

p-
xy

le
ne

d
78

09
C

c1
cc

c(
cc

1)
C

−
4.

67
 ±

 0
.0

6
18

7L
 (

90
)

(8
9)

be
nz

of
ur

an
92

23
c1

cc
c2

c(
c1

)c
co

2
−

5.
46

 ±
 0

.0
3

18
2L

 (
90

)
(8

9)

th
ie

no
[2

,3
-c

]p
yr

id
in

e
92

24
c1

cn
cc

2c
1c

cs
2

N
B

e
N

D
f

(8
2)

ph
en

ol
g

99
6

c1
cc

c(
cc

1)
O

N
B

e
N

D
f

(8
9,

 8
2)

a T
=

30
2K

, w
ith

 c
om

po
un

ds
 f

ro
m

 (
89

) 
m

ea
su

re
d 

in
 5

0m
M

 s
od

iu
m

 a
ce

ta
te

 a
t p

H
 5

.5
 a

nd
 th

ie
no

[2
,3

-c
]p

yr
id

in
e 

m
ea

su
re

d 
at

 p
H

 6
.8

 in
 5

0 
m

M
 p

ot
as

si
um

 c
hl

or
id

e 
an

d 
38

%
 (

v/
v)

 e
th

yl
en

e 
gl

yc
ol

;

b pa
rt

 o
f 

th
e 

se
ri

es
 o

f 
(7

4)
, s

o 
la

rg
er

 li
ga

nd
s 

in
 th

e 
se

ri
es

 in
du

ce
 c

on
fo

rm
at

io
na

l c
ha

ng
e;

c un
kn

ow
n 

du
e 

to
 s

ol
ub

ili
ty

 li
m

ita
tio

ns
, b

ut
 li

ke
ly

 b
in

ds
 s

tr
on

gl
y;

d L
99

A
 s

id
ec

ha
in

 u
nd

er
go

es
 r

ot
at

io
n;

e no
nb

in
de

r;

f no
t d

on
e;

g in
cl

ud
ed

 s
in

ce
 it

 is
 a

 b
in

de
r 

in
 th

e 
po

la
r 

ca
vi

ty
;

h Pu
bC

he
m

 I
D

 (
st

ru
ct

ur
es

 in
 s

up
po

rt
in

g 
in

fo
).

Annu Rev Biophys. Author manuscript; available in PMC 2017 August 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mobley and Gilson Page 34

Ta
b

le
 6

Pr
op

os
ed

 L
ys

oz
ym

e 
L

99
A

/M
10

2Q
 S

et
 b

en
ch

m
ar

k 
da

ta

lig
an

d
ID

k
SM

IL
E

S
Δ

G
a

(k
ca

l/m
ol

)
P

D
B

 c
od

e
re

fe
re

nc
e

to
lu

en
eb

11
40

C
c1

cc
cc

c1
−

4.
93

N
D

c
(1

30
)

ph
en

ol
99

6
c1

cc
c(

cc
1)

O
−

5.
24

1L
I2

 (
13

0)
(1

30
)

ca
te

ch
ol

h
28

9
c1

cc
c(

c(
c1

)O
)O

−
4.

16
 ±

 0
.0

3
1X

E
P 

(4
7)

(1
30

)

2-
et

ho
xy

ph
en

ol
d

66
75

5
C

C
O

c1
cc

cc
c1

O
−

4.
02

 ±
 0

.0
3

3H
U

8 
(1

2)
(1

2)

be
nz

yl
 a

ce
ta

te
e,

f
87

85
C

C
(=

O
)O

C
c1

cc
cc

c1
−

4.
48

 ±
 0

.1
6

3H
U

K
 (

12
)

(1
2)

4,
5,

6,
7-

te
tr

ah
yd

ro
in

do
le

f
57

45
25

36
c1

c[
nH

]c
2c

1C
C

C
C

2
−

4.
61

 ±
 0

.0
9

3H
U

A
 (

12
)

(1
2)

n-
ph

en
yl

gl
yc

in
on

itr
ile

g
76

37
2

c1
cc

cc
c1

N
C

C
#N

−
5.

52
 ±

 0
.1

8
2R

B
N

 (
12

)
(1

2)

3-
ch

lo
ro

ph
en

ol
79

33
c1

cc
(c

c(
c1

)C
l)

O
−

5.
51

1L
I3

 (
13

0)
(1

30
)

2-
m

et
ho

xy
ph

en
ol

46
0

C
O

c1
cc

cc
c1

O
N

B
i

N
D

c
(1

2)

4-
vi

ny
lp

yr
id

in
e

75
02

C
=

C
c1

cc
nc

c1
s

N
B

i
N

D
c

(1
30

)

a T
=

28
3K

, w
ith

 m
ea

su
re

m
en

ts
 d

on
e 

at
 p

H
 6

.8
 in

 5
0 

m
M

 p
ot

as
si

um
 p

ho
sp

ha
te

, 2
00

 m
M

 p
ot

as
si

um
 c

hl
or

id
e 

bu
ff

er
 in

 th
e 

ca
se

 o
f 

(1
2)

;

b in
cl

ud
ed

 f
or

 s
ym

m
et

ry
 w

ith
 th

e 
L

99
A

 s
ite

 s
in

ce
 th

is
 (

un
lik

e 
ph

en
ol

 a
nd

 b
en

ze
ne

) 
bi

nd
s 

in
 b

ot
h;

c no
t d

et
er

m
in

ed
;

d fa
ils

 to
 m

ak
e 

cr
ys

ta
llo

gr
ap

hi
c 

hy
dr

og
en

 b
on

d 
(1

2)
;

e m
ul

tip
le

 b
in

di
ng

 m
od

es
;

f in
du

ce
s 

he
lix

 F
 m

ot
io

n;

g in
du

ce
s 

fl
ip

 o
f 

V
al

11
1 

si
de

ch
ai

n;

h in
du

ce
s 

fl
ip

 o
f 

L
eu

11
8 

si
de

ch
ai

n;

j no
nb

in
de

r;

k Pu
bC

he
m

 I
D

 (
st

ru
ct

ur
es

 in
 s

up
po

rt
in

g 
in

fo
).

Annu Rev Biophys. Author manuscript; available in PMC 2017 August 04.


	Abstract
	1. INTRODUCTION
	1.1. Imagining a tool for drug discovery
	1.2. Increasing accuracy will yield increasing payoffs
	1.3. Overview of free energy calculations
	1.4. Challenges and the domain of applicability
	1.5. Improving modeling by cycles of testing, prediction, and improvement

	2. THE NEED FOR WELL-CHOSEN BENCHMARK SYSTEMS
	2.1. Benchmark types and applications
	2.1.1. Hard benchmarks
	2.1.1.1. Systems to test software implementations and usage
	2.1.1.2. Systems to check sampling completeness and efficiency
	2.1.1.3. Systems to assess force field accuracy

	2.1.2. Soft benchmarks
	2.1.2.1. Systems to challenge conformational sampling techniques
	2.1.2.2. Direct tests of protein-ligand binding calculations
	2.1.2.3. Progression of soft benchmarks


	2.2. Applications and limitations of benchmark systems

	3. BENCHMARK SYSTEMS FOR BINDING PREDICTION
	3.1. Host-guest benchmarks
	3.1.1. Cucurbiturils
	3.1.1.1. CB7 presents several challenges
	3.1.1.2. The proposed CB7 benchmark sets comprise two compound series
	3.1.1.3. Prior studies provide additional insight into CB7’s challenges

	3.1.2. Gibb Deep Cavity Cavitands (GDCC)
	3.1.2.1. The proposed GDCC benchmark sets are drawn from SAMPL
	3.1.2.2. OA introduces new challenges beyond CB7
	3.1.2.3. Prior studies provide additional insight into the challenges of OA


	3.2. Protein-ligand benchmarks: the T4 lysozyme model binding sites
	3.2.1. The apolar and polar cavities and their ligands
	3.2.2. Computational challenges posed by the T4 lysozyme benchmarks


	4. THE FUTURE OF BENCHMARKS AND OF THIS REVIEW
	5. CONCLUSIONS AND OUTLOOK
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

