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Abstract

During development, cells of seemingly homogenous character sort themselves out into distinct 

compartments in order to generate cell types with specialized features that support tissue 

morphogenesis and function. This process is often driven by receptors at the cell membrane that 

probe the extracellular microenvironment for specific ligands and alter downstream signaling 

pathways impacting transcription, cytoskeletal organization, and cell adhesion to regulate cell 

sorting and subsequent boundary formation. This review will focus on two of these receptor 

families, Eph and Notch, both of which are intrinsically non-adhesive and are activated by a 

unique set of ligands that are asymmetrically distributed from their receptor on neighboring cells. 

Understanding the requirement of asymmetric ligand-receptor signaling at the membrane under 

homeostatic conditions gives insight into how misregulation of these pathways contributes to 

boundary disruption in diseases like cancer.
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Introduction

Identifying how cells distinguish themselves from their neighbors allowing for segregation 

and boundary formation is essential to understanding embryogenesis and organ 

morphogenesis. These mechanisms are also important in adult tissues by maintaining tissue 

compartmentalization, which can breakdown in diseases like cancer.

The first mechanistic concepts of tissue separation and boundary formation emerged from 

observations that were made during sponge death. As a sponge dies, a subset of 

undifferentiated cells are spared and able to form aggregates that possess regenerative 

capacities and differentiate to produce an entire new sponge [1]. Similar cell aggregation and 
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sorting processes have been seen throughout development, beginning as an early embryo 

transforms into a gastrula containing three germ layers. Compartmentalization is key 

throughout neurogenesis as the midbrain-hindbrain boundary (MHB) forms between the 

anterior and posterior segments of the neural tube. This is followed by the formation of 

seven or eight rhombomeres that are each separated by distinct boundaries [2]. The 

mechanisms governing boundary formation play a vital role in segmenting tissues and 

maintaining cellular compartments to support diverse organ functions [3].

During these stages of development, cells have the ability to communicate, recognize, and 

sort themselves out from their neighbors according to inherent differences in their adhesion 

properties [4, 5]. This can be caused by differences in cadherin expression, which are 

homophilic adhesion molecules. Differential expression of cadherins initiates cell sorting by 

generating compartments of like cells that segregate from neighboring cells with distinct 

cadherin subtypes [6].

As a boundary forms between two diverse populations of cells, mechanisms that help 

identify like and non-like cells in order to allow for clustering and segregation must also be 

activated [7]. An important factor found to play a role in this process is a biomechanical 

feature known as the differential adhesion hypothesis (DAH) [8]. The DAH proposes that 

cells have a liquid-like behavior that allows them to reorganize within a compartment and 

the major feature that governs their organizational pattern is mechanical force determined by 

the binding strength of the cell adhesion proteins expressed by the respective cell 

populations [9]. Consequently, increasing adhesive strength by changing the expression level 

of cadherins can directly impact cell aggregation and sorting. For example, mixing fibroblast 

cells that express different levels of N-cadherin results in aggregates with higher N-cadherin 

levels in the center and cells that have lower N-cadherin levels on the outer surface of 

colonies [10].

Since cadherins provide a link to the actin cytoskeleton, it has been suggested that adhesion 

strength works in combination with the cytoskeleton to generate changes in cell contractility 

that help compartmentalize tissues. This led to the differential interfacial tension hypothesis 

(DITH) that posits cells with similar surface tension will aggregate together [7, 11]. The 

DITH is supported by atomic force microscopy experiments quantifying differences in 

surface tension of zebrafish germ layers. These cells cluster according to their surface 

tension. Lower tension aggregates surround the higher tension aggregates, corresponding 

with the endoderm and mesoderm having a higher surface tension compared to ectoderm 

cells [12]. Interestingly, increasing the expression levels of cadherins in fibroblasts that lack 

endogenous cadherins directly increases cell surface tension, suggesting that adhesive 

strength and tension cooperate to direct cell segregation [10].

Tissue morphogenesis requires dynamic boundaries implying there must be a balance 

between pro-adhesive cadherins and repulsive signaling during this process. This 

equilibrium can be accomplished by integrating cadherin-mediated adhesion with signals 

from other membrane receptors, like erythropoietin-producing hepatoma (Eph) receptors, 

Notch, fibronectin and leucine-rich repeat proteins, and epithelial cell adhesion molecules 

[7, 13, 14]. These receptors help to form tissue boundaries by several non-mutually 
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exclusive mechanisms including altering the cytoskeleton, activating transcriptional cell fate 

pathways, and directly modulating the adhesion strength of cadherins. In addition, there is 

often crosstalk between these receptor families to maintain cell segregation and tissue 

organization events.

This review will go into the mechanisms driving boundary formation from two major cell-

cell signaling networks involved during development, tissue maintenance and disease, 

namely Eph and Notch receptors. Both of these receptor families are distinguished by their 

non-adhesive character and asymmetrical distribution of ligand and receptor in neighboring 

cells that lends well for directing cell segregation and tissue formation (Figure). These 

receptors, along with cadherins, have points of convergence when tissue boundaries are 

formed [15]. The contribution of Eph and Notch pathways in the regulation of tissue 

morphogenesis may help us better understand scenarios where physical or functional 

boundaries are compromised in adult tissues and disease.

Signaling through Eph receptors and their ephrin ligands regulate tissue 

patterning and boundary formation

Eph receptors and their ephrin ligands are the largest family of receptor tyrosine kinases 

(RTK) in mammals and are asymmetrically expressed at cell-cell contacts. The Eph 

receptors are subdivided into A and B subfamilies; EphA receptors have a higher affinity for 

glycosylphosphatidylinositol-linked ephrin-A ligands, whereas EphB receptors 

preferentially bind ephrin-B ligands that contain a transmembrane domain with a 

cytoplasmic tail containing a PDZ-domain. The Eph family is comprised of nine EphA 

receptors, five EphB receptors, five ephrin-A ligands, and three ephrin-B ligands in humans 

[16]. Ephrin interaction with an Eph receptor on a neighboring cell can activate both forward 

and reverse signaling through the receptor and ligand, respectively. Although, there is 

promiscuity in Eph receptors binding to the alternative ephrin family, each receptor-ligand 

combination is formed by distinct binding affinities for one another and depending on the 

tissue there can be a variety of receptor-ligand combinations expressed at boundaries [17, 

18]. Interestingly, this asymmetric expression pattern of receptor and ligand helps initiate 

and maintain cell segregation and boundary formation during development and once a tissue 

has reached homeostasis.

Upon activation by ephrins, Eph receptors alter their conformation resulting in receptor 

dimerization then oligomerization and can directly phosphorylate targets or act as a scaffold 

to alter downstream signaling for a variety of processes that enhance boundary formation 

[19–21]. Ephrin stability at the membrane can also modulate adhesive and transcriptional 

pathways that impact early stages of tissue morphogenesis. As early as gastrulation, the 

expression of XLerk, the Xenopus laevis ortholog of human ephrin-B1, increases and is 

important in the formation of mesoderm [22]. Initiation of ephrin-B1 signaling can activate 

RhoA and JAK2-induced STAT3 transcriptional activity, which can modulate the expression 

of genes involved in cell migration and invasion [23–25] (Figure). Concordantly, activation 

of STAT3 has been shown to be required for cell movement during gastrulation in zebrafish 

embryos [26]. These coordinated events initiated by ephrin reverse signaling result in early 
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tissue separation events that lay the path for precise morphogenetic outcomes later in 

development.

As embryonic development progresses, there is differential expression of Ephs and ephrins 

at the ectoderm-mesoderm boundary [27]. The ectoderm has high expression of EphB3, 

EphB4, and ephrin-B3, whereas the mesoderm contains EphA4 and ephrin-B2. The 

separation between the mesoderm and ectoderm relies on the asymmetry of these receptor-

ligand pairs in their distinctive compartments [28]. At this interface, there is a continuous 

cycle of cell repulsion, detachment, and attachment between receptor and ligand bearing 

cells. For example, forward signaling through EphB4 activates RhoA and Rac resulting in 

cell repulsion, but once this receptor signal decays at the membrane the boundary stabilizes 

allowing time to restore juxtamembrane presentation of receptor-ligand pairs that then set off 

another round of repulsive events [29].

The complementary expression of Eph/ephrins is a common theme that drives tissue 

patterning and organization in the blastula, formation of stripes of the presumptive hindbrain 

in zebrafish embryos, and in patterning of the developing nervous system. For example, 

there is abundant expression of EphB4 in the presomitic mesoderm and ephrin-B2 in the 

notochord. EphB4 forward signaling results in activation of the RhoA/ROCK/MLCK 

signaling axis causing an accumulation of filamentous actin stress fibers within the 

mesoderm. This leads to the formation of contractile structures with high tension at the 

mesoderm-somite boundary interface [13] (Figure). Similarly, during neuroepithelial cell 

segregation, ephrin-B1 induces EphB2 forward signaling resulting in a ROCK-mediated 

increase in cortical actin within the EphB2 expressing cell population. This causes 

differential tension between the two cell populations based on their expression of receptor or 

ligand and resulting in cell segregation, providing a complementary molecular mechanism 

beyond cadherins that contributes to the DITH [30].

There is also a requirement of EphA4 and ephrin-B2a in opposing rhombomere-restricted 

domains allowing for the formation of asymmetric receptor-ligand pairs at these boundaries 

[31, 32]. Intermingling between EphA4 and ephrin-B2a expressing cells causes repulsion, 

however, contact among the EphA4 expressing cell cluster leads to increased cell-cell 

adhesion [32]. These differences in adhesion of cells with differential EphA4 and ephrin-

B2a expression are critical in the segregation of rhombomeres. Similarly, blocking EphA4 

activity or knocking down its ephrin-A1 ligand in the neuroectoderm causes defective 

gastrulation in Xenopus embryos and interferes with tissue separation between the 

involuting mesoderm and the non-involuting ectoderm [33]. This complementary expression 

of Eph receptors and their ephrin ligands thus guides tissue morphogenesis throughout 

embryonic development.

The topographic mapping of the visual system is largely dependent on complementary 

gradients of Eph/ephrins [34]. In the retina and superior colliculus, EphA receptors and 

ephrin-A ligands are expressed, respectively, along a gradient. Retinal neurons with the 

highest abundance of EphA receptors target regions in the superior colliculus that have the 

fewest ephrin-A ligands [35–38]. The high expression level of ephrin-A in the posterior 

colliculus repels retinal ganglion cell growth cones, particularly those from temporal retinal 
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axons that have a high expression of EphA receptors [39]. Axon repulsion for retinotectal 

patterning is dependent on Eph RTK activity [40]. This mapping is partially controlled by 

the balance between cis and trans interactions between Eph receptors and their ligands. Cis 

interactions between Eph receptors and ephrin ligands on the surface of the same cell 

dampen RTK activity causing a loss of sensitivity to trans-induced ephrin activation from 

adjacent cells [41–43]. The relative degree of trans and cis interactions leads to either 

repulsion or attraction, respectively, thereby modulating downstream signaling pathways that 

control cell connectivity and ultimately neuronal responses.

Eph-induced neuronal repulsion responses are often dependent on receptor-ligand cleavage 

and alterations in cytoskeletal signaling pathways. For example, activation of ephrin-A2 with 

clustered EphA2-Fc results in the formation of an ephrin-A2-ADAM10 complex leading to 

ligand cleavage from the surface of neuroblastoma cells (Figure). This suggests a possible 

mechanism by which cell-cell contact between neurons in the optic tectum activate ganglion 

cells in the retina causing growth cone detachment, repulsion, and collapse [44]. Ephrin-A1 

also induces retinal ganglion cell growth cone collapse through activation of EphA4. EphA4 

then targets the RhoA guanine nucleotide exchange factor (GEF) ephexin leading to growth 

cone collapse [45]. As such, the complementary expression profile of Eph/ephrins and 

downstream signaling pathways lead to guidance cues for the trajectory of neurons and the 

formation of topographic maps in the visual system.

In addition to visual mapping, Eph/ephrins play a role in the maintenance of vasculature in 

the retina [46]. Specifically, reverse signaling through ephrin-B2 acts in endothelial cells to 

direct the formation of veins and arteries [47, 48]. Activation of ephrin-B2 also controls 

vessel pruning. In particular, regressing blood vessels have low levels of phosphorylated 

ephrin-B2 limiting its interaction with the phosphatase SHP2. This leads to activation of 

STAT1 and subsequently to JNK3-mediated induction of endothelial cell death-associated 

genes [49]. These opposing outcomes of ephrin signaling on angiogenesis are likely due to 

differences in the microenvironment of the vasculature in which they operate.

Counter gradients of Eph receptors and ephrin ligands in adult tissues also helps set 

functional boundaries within an organ system [21]. Many tissues including skin, intestine, 

and bone marrow contain a stem cell niche where the progenitor cell population is separated 

from their differentiated progeny, as well as cell types of different origins [50–52]. For 

instance, reciprocal expression pattern of ephrin-A1 in cardiomyocytes and EphA2 in 

cardiac stem cells helps create a segregated niche for the receptor bearing stem cell 

population. Upon injury, there is an increase in ephrin-A1 expression in cardiomyocytes, 

which drives the migration of EphA2 expressing progenitor cells into the infarcted area [53]. 

These differential Eph/ephrin expression patterns can be altered or misregulated under stress 

or in diseased states to disrupt cell-cell communication and tissue homeostasis [54–56].

The importance of ephrin signaling in tissue morphogenesis is also seen in diseases like 

craniofrontonasal syndrome (CFNS). CFNS is caused by mutations in the ephrin-B1 gene 

and leads to cleft palate [57] [58]. Ephrin-B1 expression is required in neural crest cells to 

form segregated ephrin-B1 and EphB compartments. At ephrin/ephrin interfaces, ephrin-B1 

interacts with the gap junction protein Connexin-43 (Cx43) to promote osteogenic 
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differentiation. However, at Eph/ephrin boundaries or when there is a loss of ephrin-B1 and 

its stabilizing influence on Cx43, bone differentiation is impaired [59]. In addition, 

decreased ephrin-B1 results in accumulation of EphB3 within these tissue compartments and 

a loss of MAPK-induced cell proliferation that is required for palatal shelf outgrowth [60]. 

Therefore, misregulation of Eph/ephrin boundaries leads to a spectrum of abnormal 

proliferation and differentiation programs that impact tissue organization and function.

Signaling pathways frequently merge during development and this type of crosstalk between 

Eph/ephrins and other cell surface receptors is important for orchestrating cellular events 

leading to boundary formation. For example, during gastrulation and mesoderm formation, 

the expression of XLerk increases under the guidance of fibroblast growth factor (FGF) 

signaling [22]. However, ectopic expression of XLerk causes cell dissociation in the blastula 

that can be normalized by overexpression of C-cadherin and FGF stimulation (Figure) [61]. 

Also, in retinal development, decreased FGF signaling causes a loss of retinal progenitor 

cells; a phenotype that can be rescued by activation of ephrin-B1. Ephrin-B1 thereby 

promotes repulsion of retinal progenitor cells that permits movement into and population of 

the eye field [62]. Alternatively, Notch1 increases the expression of ephrin-B1 while 

reducing the levels of EphB2 within the crypts of intestinal epithelium to maintain a 

boundary between progenitor cells and the more differentiated epithelium [63]. Ephrins can 

also directly modulate signaling of receptors beyond those in the Eph family as in the case of 

the PDZ domain of ephrin-B2 which interacts with the vascular endothelial growth factor 

receptors (VEGFRs) and promotes their internalization leading to filopodial extension and 

vessel sprouting [64]. In cancer, EphA2 expression is increased under the control of 

epidermal growth factor receptor (EGFR) signaling, which affects the motility of these cells 

and may lead to segregation of tumor cells from subpopulations that escape transformation 

by oncogenic Ras [65] [66]. Depending on the cell context, Eph/ephrin crosstalk with other 

cell surface receptors can therefore either modulate normal cell segregation and boundary 

formation or alter the organization of abnormal cell clusters in cancer.

Boundary regulation by Notch signaling

Similar to Eph/ephrins, Notch signaling is asymmetrically initiated when Notch receptors 

bind to either Delta-like (Dll) or Serrate/Jagged-like ligands on adjacent cells and its 

downstream signaling can affect tissue segregation and patterning [67]. Mammals possess 

four different Notch receptors, Notch1-4, and ligand binding results in unfolding of the 

Notch extracellular juxtamembrane domain allowing for cleavage by ADAM 

metalloproteases. The Notch fragment is recognized by a γ-secretase enzyme complex, 

which cleaves the Notch intracellular domain (NICD). The cleaved fragment can then 

translocate into the nucleus where it binds to transcription factors allowing for activation of 

Notch-target genes, like Hes and Hey [68] (Figure). Direct modulation of gene expression is 

a major difference between Notch and Eph/ephrin signaling pathways. Notch ligands can 

also undergo glycan modifications within specific EGF repeats that positively and negatively 

affect signaling depending on the ligand-receptor complex [67]. Similarly, ephrin-A1 

glycosylation has been shown to play a role in binding and activating EphA2 signaling 

pathways in glioblastoma [69]. In addition to the similar juxtacrine mode of activation, 
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Notch and Eph/ephrin signaling pathways share many converging downstream signaling 

pathways to regulate boundary formation and tissue development.

A major role for Notch signaling in boundary formation is found in the formation of the 

dorsoventral (DV) compartment boundary within the Drosophila wing imaginal disc during 

the third larval stage of development. At this stage of development, Notch is expressed in a 

set of cells that juxtapose both the dorsal and ventral compartment allowing for activation 

exclusively at this interface. Activated Notch can increase the expression of genes like 

Wingless and Cut, which are both required for wing development [70] [71]. Notch gain of 

function and loss of function studies show that this receptor is exclusively required at the DV 

interface for DV boundary formation and wing development [71] [70] [72].

There is a differential expression pattern of Notch ligands in distinctive DV regions of the 

wing disc. The Serrate (Ser) ligand is expressed in the dorsal compartment allowing for 

Notch activation in the ventral cells; whereas the Delta ligand is expressed in the ventral 

cells allowing for Notch activation in the dorsal cells [71] [70]. The dorsal-specific protein 

Apterous (Ap) induces the expression of Fringe, a glycosyltransferase that can modify 

several EGF-domains in the extracellular region of Notch [73] [74]. This modification 

causes Notch to increase its Delta-dependent signaling and suppress its Ser-dependent 

signaling [75]. Similarly, in the MHB neural tube the Notch ligands Ser1 and Dll1 are 

expressed in discrete regions of the midbrain and hindbrain, respectively, whereas Notch is 

ubiquitously expressed. Modifications by another Notch regulator, lunatic fringe, produces a 

narrow band of activated Notch at the MHB increasing the expression of the secreted 

proteins Wnt1 and Fgf8 that control neural cell fate [76]. These expression profiles of Notch 

and its ligands in the wing disc and at the MHB mirror what is seen with the complementary 

expression profiles of Ephs and ephrins throughout many different developmental processes, 

like embryogenesis and neurogenesis.

Notch also controls DV boundary formation independent of transcriptional regulation. Along 

the DV boundary there is a Notch-dependent increase in mechanical tension at sites where 

adherens junctions are present. The enhanced tension causes cell re-arrangements to occur 

so that neighboring DV compartments remain separated from one another [77]. Also, Notch 

is required for increased F-actin that helps to create a barrier between the two regions at the 

DV boundary [72] (Figure). This non-canonical Notch transcription-independent signaling 

further suggests that Notch and Eph/ephrin pathways complement each other by promoting 

cytoskeletal reorganization at heterotypic cell-cell contacts.

Levels of Notch signaling are important for the formation of many other tissue boundaries. 

In the cochlea, for example, Notch signaling plays a role in the formation of the organ of 

Corti with the levels of expression needing to be tightly controlled for sensory cell fate 

determination [78]. Along with bone morphogenic protein signaling, proper localization of 

Notch signaling at the atrio-ventricular canal is necessary for cardiac valve morphogenesis. 

Changes in the distribution of Notch within this tissue compartment causes faulty valve 

development [79].

Ventrella et al. Page 7

Exp Cell Res. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Similar to Eph/ephrins, Notch activation has been shown to play a variety of roles in 

angiogenesis. For example, loss of Dll4/Notch signaling leads to upregulation of the 

vasodilator genes, adrenomedullin and neurotensin, and downregulation of the 

vasoconstrictor gene, angiotensin II, independent of VEGFR [80]. Interestingly, inhibition of 

Notch signaling can downregulate the expression of proangiogenic genes ephrin-B1 and 

Sox17 at the transcriptional and post-transcriptional levels, respectively [81] [82] (Figure). 

Also, Notch activity has been shown to be crucial for transmitting differentiation, 

proliferation, survival, and angiogenesis signals to endothelial cells [83] [81] [84]. Thus, it is 

not surprising that homozygous mutations in Notch show embryonic lethality in mice in 

combination with vascular remodeling defects [85] [86].

Collectively, these examples highlight Notch as a major regulator of tissue morphogenesis. 

Reminiscent of Eph/ephrin signaling, asymmetric expression of Notch receptors and ligands 

help set a spatial distribution pattern that guides tissue morphogenesis via mechanisms 

directly or indirectly impacting transcriptional pathways and at key times involving Eph/

ephrin signaling crosstalk [63].

Conclusions and future perspectives

Eph/ephrin and Notch signaling pathways provide a mechanism by which cells sense their 

cellular microenvironment to distinguish like from non-like cells that can then organize into 

discretely defined regions within a tissue or as distinct boundaries between tissue layers. 

Reliance on an asymmetric mode of activation makes these signaling molecules uniquely 

poised for directing morphogenetic processes at the level of cell-cell contact, and is 

enhanced by their diverse ligand/receptor combinations yielding distinct signaling outputs 

that further distinguish cells within a tissue. These same cell-cell communication pathways 

that govern developmental tissue formation and organization events by keeping cells in 

defined compartments also operate the boundary between tumors and the surrounding tissue 

making them attractive targets for restraining tumor growth and invasion in a variety of 

cancers [55] [87].

Epithelial-derived tumors need to breach through a basement membrane (BM) in order to 

invade into the surrounding tissue microenvironment. Interestingly, altered Eph and Notch 

signaling facilitates this escape from the epithelium by engaging proteolytic machinery 

mechanisms. For example, overexpression of EphA2 promotes invasion through the BM by 

increasing the expression of matrix-metalloprotease 9 (MMP), which subsequently cleaves 

type-IV collagen allowing for metastasis [88]. A number of studies have shown that delivery 

of ephrin ligand mimetics inhibit tumor invasion at least in part by limiting protease activity. 

This includes pancreatic adenocarcinoma cell lines treated with an ephrin-A1-Fc chimeric 

protein suggesting a possible path forward for limiting tumor cell invasion in cancer patients 

[89]. However, this strategy is likely to be specific for the Eph subtype being targeted as 

activation of EphB2 by ephrin-B2-Fc enhances the production of MMP1 and MMP13 [90]. 

Similarly, activation of Notch1 in human breast cancer cells can upregulate gene expression 

levels of MMP2, MMP9 and VEGF therefore promoting tumor cell migration and invasion 

[91]. Thus, careful consideration of tumor cell type and molecular characteristics will need 
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to be taken when attempting to target Eph and Notch receptor signaling for mitigating 

metastatic cancer progression.

Loss of signals between stem cells and differentiated cell populations within a tissue layer 

can also impact tissue homeostasis. For example, EphA2 and ephrin-A1 have 

complementary expression profiles in mammalian epidermis. EphA2 expression is increased 

in a basal to suprabasal gradient whereas ephrin-A1 is restricted to the basal layer. Deletion 

of EphA2 leads to increased basal cell proliferation and enhanced tumor susceptibility 

suggesting that this interface between progenitor and differentiated cells of the epidermis 

relies on Eph/ephrin signaling to maintain homeostasis [92]. While EphA2 appears to have 

tumor suppressive roles in skin, EphB2 positively regulates proliferation and vascularization 

of cutaneous squamous cell carcinomas (SCCs) in mouse xenograft models [90]. In breast 

tissue, ephrin-B2 and EphB4 are both expressed in mammary epithelial cells, but EphB4 is 

only expressed during proliferative phases of development. Overexpression of EphB4 causes 

hyperproliferation and invasion of mouse mammary tumors providing another example of 

the regulation of this pathway for maintaining tissue homeostasis [93]. Notch also plays a 

major role in the formation of skin tumors. Similar to EphA2 and ephrin-A1, Notch 

receptors are localized to the suprabasal layers of the epidermis whereas Dll1 is expressed in 

the basal cells [94]. Epidermal deletion of Notch-1 in mice results in increased susceptibility 

to basal cell carcinoma and SCC suggesting that Notch-1 functions as a tumor suppressor in 

the skin [95, 96]. In the mammary gland, Notch signaling is normally repressed in stem cells 

compared to luminal progenitor cells. Notch reactivation in stem cells promotes luminal cell 

differentiation at the expense of myoepithelial lineage commitment resulting in progenitor 

cell expansion and the development of tumors [97]. These studies emphasize how altered 

Eph/ephrin and Notch signaling within tissues can lead to a loss of homeostasis and 

ultimately tumor progression.

Given their important roles in cellular organization within tissues, it is not surprising that 

Eph and Notch pathways operate during the self-assembly of organoid cultures in vitro [98, 

99]. As an example, inhibition of Eph/ephrin signaling causes mislocalization of Paneth 

stem cells in intestinal organoids mimicking its well-studied role in the process of the mouse 

gastrointestinal tract [100] [101]. Similarly, Notch signaling has been shown to be required 

for stem cell maintenance and differentiation in organoid cultures of the retina and fallopian 

tubes [102] [103]. Elucidating fundamental mechanisms utilized at the cell surface to 

modulate adhesive, cytoskeletal, and transcriptional changes in human organoid formation 

may provide important clues about how to normalize tissue form and function in diseased 

states on a personalized medicine level.

Boundary formation and tissue morphogenesis are largely dependent on differential 

adhesion and cytoskeletal tension. Eph/ephrin and Notch signaling are two major signaling 

pathways that have been shown to regulate these processes to induce cell segregation. 

Understanding how these receptors and ligands operate under homeostatic conditions can 

give insight into novel mechanisms that may normalize aberrant signaling in diseases like 

cancer, where there is a breakdown in boundary formation.
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Abbreviation

ADAM A disintegrin and metalloproteinase

Ap Apterous

BM Basement membrane

Cx43 Connexin-43

CFNS Craniofrontonasal syndrome

Dll Delta-like ligand

DAH Differential adhesion hypothesis

DITH Differential interfacial tension hypothesis

DV Dorsoventral

EGFR Epidermal growth factor receptor

Eph Erythropoietin-producing hepatoma

FGF Fibroblast growth factor

GEF Guanine nucleotide exchange factor

MMP Matrix-metalloprotease

MHB Midbrain-hindbrain boundary

NICD Notch intracellular domain

RTK Receptor tyrosine kinase

Ser Serrate

SCC Squamous cell carcinoma

SHP2 Tyrosine-protein phosphatase non-receptor type 11

VEGFR Vascular endothelial growth factor receptor
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Highlights

• Cell segregation and boundary formation are required for tissue 

compartmentalization.

• Eph/ephrin and Notch signaling are two pathways that regulate boundary 

formation.

• Distinct expression patterns of Eph and Notch receptors initiate and maintain 

cell segregation.

• Breakdown of boundaries can lead to developmental diseases and cancer.

Ventrella et al. Page 16

Exp Cell Res. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure. Eph/ephrin and Notch signaling drives boundary formation
Eph and Notch receptors are asymmetrically distributed from their ligands at cell-cell 

contacts. Activation of both of these receptors can promote actin reorganization generating 

the tension needed to form separate clusters as suggested by the DITH. Also, ADAM 

metalloproteases can modulate these signaling pathways by cleaving ephrin and Notch 

extracellular domains. Reverse signaling through ephrin-Bs activate a JAK2/STAT/JNK 

pathway and inhibit cadherin-dependent adhesion strength resulting in tissue separation as 

proposed by the DAH. Initiation of Notch signaling causes cleavage of the intracellular 

domain by γ-secretase allowing for it to translocate to the nucleus and act as a transcription 

factor for cell fate pathways. Notch can directly affect Eph/ephrin signaling by modifying 

ephrin-B1 protein expression, initiating crosstalk between these receptor families in the 

regulation of cell segregation and boundary formation.
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