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Abstract

Engineered biological systems such as genetic circuits and microbial cell factories have promised 

to solve many challenges in the modern society. However, the artisanal processes of research and 

development are slow, expensive, and inconsistent, representing a major obstacle in biotechnology 

and bioengineering. In recent years, biological foundries or biofoundries have been developed to 

automate design-build-test engineering cycles in an effort to accelerate these processes. This 

review summarizes the enabling technologies for such biofoundries as well as their early successes 

and remaining challenges.

INTRODUCTION

Many engineering endeavors involve design-build-test cycles to achieve optimal solutions. 

The execution of these cycles when engineering a biological system (i.e. a protein, a 

metabolic pathway, a genetic circuit, and a genome), however, has encountered multiple 

obstacles. One main reason is that research and development in biology is largely dependent 

on the artisanal work of skillful researchers, which is problematic in two aspects. First, low 

throughput limits the turnover rate of the design-build-test (DBT) cycles and the number of 

designs explored in parallel in each cycle. Second, manual operations are prone to human 

errors and biases making it difficult to conduct the experiments in a consistent and objective 

manner. Due to the complexity of biosystems, numerous iterations may be required to 

achieve the desirable engineering objectives. Therefore, biosystem engineering is still slow 

and expensive. For example, it took over 10 years and more than one hundred million dollar 

to develop the biosynthetic process for 1,3-propanediol (Committee on Industrialization of 

Biology, 2015).
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Examining paths from other engineering disciplines allows new insight into possible 

solutions. Mechanical engineering started as a craftsmanship in ancient times when design 

and production were also completely artisanal. It followed a slow pace with scattered 

innovations throughout history until theoretical tools such as Newton’s Laws of Motion and 

calculus laid the groundwork for more rapid innovations (Engineers, 2016). Later, precision 

manufacturing enabled standardization of parts while steam and electricity powered up the 

rapid development of machines. Nowadays, engineers can sketch and evaluate ideas with 

computer-aided-design (CAD) tools without performing tedious hand calculations. The 

designs can then be prototyped by computerized numerical controlled (CNC) machining or 

3D printing. As a result, the turnover time of the DBT cycles can be as short as a few hours, 

which previously took days or months. Likewise, electrical engineering and computer 

engineering have also advanced due to the same three factors: 1) breakthroughs in theories 

and technology, 2) standardization, and 3) rapid prototyping. Especially in software 

engineering, many DBT cycles can be executed in a timespan of minutes. As designs (code) 

are typed out in standard syntax, a program can be built (compiled) and tested in a split 

second.

Looking back to biotechnology, although a number of theories and technologies, such as the 

central dogma, DNA sequencing, and DNA synthesis have established a foundation for 

engineering applications, many properties of biosystems remain elusive. Further 

understanding of the biosystems, or learning, becomes an essential part of the engineering 

cycles (DBTL). Moreover, the lack of widely adopted standards and rapid prototyping 

capabilities still hinders the development of this field. Limitations in precision, speed, and 

cost in each step of the DBTL cycles further delays the adaptation of standards and 

acquisition of rapid prototyping capabilities. All these limitations can be partially attributed 

to unavoidable human involvement. In fact, the history of most engineering disciplines 

represents our endeavor to substitute humans with machines.

Automation has been proposed as a solution to improve consistency and speed, as well as to 

reduce labor costs and help researchers to focus more on intellectual tasks. Early automated 

practices focused on drug screening, genomic studies, and immunoassays (Chapman, 2003; 

Meldrum, 2000). While successful in performing highly defined protocols involving a 

limited number and types of operations, these early generation automation systems may be 

inadequate for emerging workflows in biological engineering with increasing complexity. 

The challenges are largely related to high variability in experimental protocols and high 

failure rates that require constant handling of exceptions. Recent advances in metabolic 

engineering, synthetic biology, and bioinformatics such as robust DNA assembly methods, 

versatile genome engineering tools, and powerful retrobiosynthesis algorithms may help to 

tackle these limitations. Based on these enabling technologies, academic institutions and 

industrial companies are starting to build industrialized biofoundries for rapid prototyping of 

biosystems for a variety of applications. These endeavors have been largely simulated by a 

recent wave of investments from government agencies such as the U.S. Defense Advanced 

Research Projects Agency (DARPA), the U.K. Biotechnology and Biological Sciences 

Research Council (BBSRC)), the Engineering and Physical Sciences Research Council, and 

private venture funds. Both technological and financial support in biofoundry development 

can potentially overcome the current barriers of biotechnology research and carry this field 
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to the exponential growth phase. We envision such biofoundries will be a platform for 

integrating tools to automate each step in the DBTL cycle (Figure 1). This review seeks to 

summarize the enabling technologies, early successes, and future challenges in developing 

and applying automated biofoundries for engineering biosystems, organized around each 

individual step of DBTL and the integration into a complete cycle.

DESIGN

The pipeline for engineering biosystems begins with a hierarchy of designs. On the abstract 

level, the objects of construction and modification need to be defined. On the practical level, 

the plans for experiment implementations need to be laid out (Figure 2). Designing for both 

the means and the ends synergistically can be a demanding task, due to the complexity of 

biosystems and lack of predictable models. Several computational tools have been developed 

to help with either abstract design such as predicting genome modification targets and 

metabolic pathway configurations, as well as design for experimental implementation such 

as determining genetic part sequences and DNA assembly strategies (Kelwick et al., 2014; 

Long et al., 2015; Medema et al., 2012; Shin et al., 2013).

Metabolic network design

To overproduce a metabolite from a living organism, the metabolic network needs to be 

optimized (Figure 2). The yield and productivity of the target molecule in the context of the 

native metabolism are first assessed using metabolic modeling on the reference (host) strain 

and/or mutant strains. Two prominent types of metabolic models are stoichiometric and 

kinetic models.

Stoichiometric models rely on the stoichiometric coefficients and steady state mass balances 

to calculate flux values at the steady state – this method is known as flux balance analysis 

(FBA). Often, multiple flux distributions are possible, and hence a cellular objective such as 

biomass growth or cofactor production is optimized in FBA to obtain a single flux solution 

(Varma and Palsson, 1993). To also include metabolic overproduction as a cellular objective, 

the algorithm OptKnock performs a bilevel optimization on a genome-scale stoichiometric 

model to highlight knockouts that will generate growth-coupled production of the target 

compound (Burgard et al., 2003). A number of subsequent algorithms expanded the scope of 

network modifications to up- and down-regulation (Pharkya and Maranas, 2006), 

introduction of non-native enzymatic reactions (Kim et al., 2011; Pharkya et al., 2004), 

elimination of competing pathways (Tepper and Shlomi, 2009), and use of faster 

optimization schemes (Xu et al., 2013). The MATLAB toolbox, COBRA, has provided a 

convenient framework to simulate and analyze the phenotypic behavior of a genome-scale 

stoichiometric model (Schellenberger et al., 2011). The strain design algorithms have been 

explored in a much more detailed manner elsewhere (Long et al., 2015).

FBA-based methods provide only steady state flux distributions. Kinetic models, on the 

other hand, employ kinetic parameters and rate law expressions to simulate the dynamic 

behavior of a metabolic network. Various metabolic design algorithms can be used in 

conjunction with these models to perform in silico optimization on the network and predict 

engineering strategies. To obtain a time-varying profile of metabolism, the dynamic Flux 
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Balance Analysis (DFBA) was introduced which operates under a quasi-steady-state 

assumption (Mahadevan, Edwards and Doyle 3rd, 2002). To facilitate the shift towards 

integration of stoichiometric models with kinetic descriptions, the k-OptForce algorithm was 

developed which predicts metabolic interventions for both reactions with kinetic as well as 

only stoichiometric information(Chowdhury, Zomorrodi and Maranas, 2014).

Furthermore, there has been a growing interest in the use of kinetic models and 

accompanying optimization schemes for strain design since kinetic models generate 

dynamic profiles of the cell’s phenotypic behavior. A mixed-integer non-linear problem 

framework has been applied to an E. coli kinetic model to identify enzyme modifications for 

achieving a pre-established objective (Nikolaev, 2010). Various studies regarding CHO cell 

engineering demonstrated the benefit of using a kinetic model framework to predict effective 

strategies involving gene expression modulation (Nolan and Lee, 2011; Nolan and Lee, 

2012; Villaverde et al., 2016). The ORACLE framework enables the construction of a large-

scale kinetic model that includes mechanistic descriptions of enzyme kinetics (Chakrabarti 

et al., 2013). With the development of predictive kinetic models, suitable optimization 

algorithms can now be developed to make use of the mechanistic detail for proposing strain 

engineering strategies. The most commonly used method for analyzing kinetic models is 

called the metabolic control analysis (MCA), which quantifies the effect of change in a 

variable (e.g. flux and concentration) on every other flux or metabolite concentration in the 

metabolic network (Fell, 1992; Kacser and Burns, 1995; Ke et al., 2015; Somvanshi and 

Venkatesh, 2013).

Heterologous pathways design

To produce a target molecule non-native to the host’s metabolism, it is necessary to 

introduce a heterologous pathway (Figure 2). Identification of such a pathway is not a trivial 

task, and software such as the retrobiosynthesis algorithm BNICE can be employed. If the 

target molecule is a known compound and the objective is to synthesize it using a 

combination of native and heterologous metabolic pathways, then several algorithms are 

available for designing metabolic pathways that connect the substrates to generate the final 

product. The algorithm BNICE (Biochemical Network Integrated Computational Explorer) 

predicts a large number of enzymatic steps that can possibly convert a given substrate to a 

desired molecule (Hatzimanikatis et al., 2005). The algorithm first formulates molecules and 

enzymatic transformations in the form of bond-electron matrices. The transformation of any 

molecule via a particular enzyme is achieved by addition of the two matrices. This process is 

performed iteratively until either the desired molecule is reached or the pre-established 

iteration limit is exceeded. The original BNICE algorithm did not account for 

thermodynamic parameters in its pathway search – this was added in later versions that 

ranked the resulting pathways according to criteria such as thermodynamic feasibility, 

pathway length, and achievable yields (Henry et al., 2010). In the context of natural product 

discovery by targeting biosynthetic gene clusters, the antiSMASH algorithm predicts regions 

on an organism’s genome that express biosynthetic enzymes with high probability (Blin et 

al., 2013; Medema et al., 2011; Weber et al., 2015). This method can be used to discover 

novel enzymes that synthesize natural products with valuable functions. Different criteria are 

followed by other predictive algorithms such as DESHARKY that is focused on employing 
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the metabolism of the host organism (Rodrigo et al., 2008). The GEM-Path algorithm also 

targets pathway prediction by employing the native metabolic network of the organism and 

adding non-native reactions to highlight novel compounds that can be produced from a 

limited number of steps (Campodonico et al., 2014). To constrain the number of possibilities 

in heterologous pathway design, the online webserver-based RetroPath presents a ranking 

function based on the molecular signatures of compounds and reactions (Carbonell et al., 

2014a; Carbonell et al., 2011). The ranking function also has the option of integrating 

different types of data such as compatibility of the heterologous genes with the host, 

metabolite toxicity etc. Once a heterologous pathway has been chosen, the OptStrain 

algorithm suggests genetic modifications in the host organism that are required to channel 

optimum flux towards the non-native pathway (Pharkya et al., 2004). M-Path enables the 

design of a synthetic metabolic pathway for producing a given chemical by utilizing an 

iterative random approach that searches through enzymatic reaction and chemical compound 

databases (Araki et al., 2015). Another novel approach known as Sensi-Path predicts 

multistep enzymatic reactions that can transform non-detectable compounds into detectable 

ones, expanding the set of biosensor-detectable compounds (Delépine et al., 2016). A 

molecular signatures-based ranking score is also utilized by the eXTended Metabolic Space 

(XTMS) webserver to predict novel pathways that can be introduced into E. coli for 

producing a given chemical (Carbonell et al., 2014b). The pathway design software and 

algorithms have been reviewed in greater detail here (Medema et al., 2012).

DNA parts design

After deciding on a network or pathway engineering strategy, the focus of the design 

pipeline moves towards its implementation at the DNA scale. Metabolic engineering 

involves introduction of heterologous enzymes/pathways and/or modifications of the native 

metabolism via genetic overexpression, down-regulation or knockout. These modulations 

can be achieved using episomal vectors, genome editing, and/or genomic integration. For 

genetic parts, software such as RBS (ribosome binding site) Calculator (Farasat et al., 2014; 

Salis et al., 2009) and Gene Designer (Villalobos et al., 2006) are useful (Figure 2). RBS 

Calculator utilizes a thermodynamic model to predict the effect of a ribosome binding site 

(RBS) on protein expression, which is used to design synthetic RBSs to precisely control 

protein expression in a synthetic context. When expressing heterologous genes or pathways 

in a host organism, the gene sequences are often codon optimized to ensure efficient 

transcription of the foreign DNA. Codon optimization is a feature of various gene design 

software packages such as Gene Designer and DNAWorks (Hoover and Lubkowski, 2002). 

Gene Designer also offers functionalities such as calculation of oligonucleotide annealing 

temperatures and design of sequencing primers. The tool Gene Design offers features for 

synthetic gene design such as codon optimization, restriction site insertion and removal, and 

oligonucleotide design (Richardson et al., 2006). An updated version of the software also 

includes tools for analysis and visualization of codon bias statistics, as well as design of 

parts and oligonucleotides for longer gene assemblies (Richardson et al., 2010). Besides the 

above software, databases such as Standard Biological Parts Knowledgebase (Galdzicki et 

al., 2011), KEGG (Kanehisa et al., 2002), and NCBI are also useful repositories for parts 

design. Recently, a Design-of-Experiments based method for the design of combinatorial 

libraries of pathway variants called Double Dutch was published, which aims to reduce 

Chao et al. Page 5

Metab Eng. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human effort as well as increase the efficiency of part design (Roehner et al., 2016). The 

XML-based data standard for representing synthetic biology designs comprised of annotated 

modular parts, known as Synthetic Biology Open Language (SBOL), has been proposed to 

facilitate ease of sharing and collaborating on synthetic biology designs across institutions 

(Galdzicki et al., 2014; Roehner et al., 2015). Further, to facilitate consistent characterization 

of the bioparts employed in such designs, a data acquisition standard for synthetic biology 

parts, known as DICOM-SB, was recently published (Sainz De Murieta et al., 2016).

DNA assembly design

Once the parts are designed and synthesized, various design questions also arise regarding 

the method of assembly of the constructs into a vector. The design of oligonucleotides for 

amplification of DNA substrates, inclusion of appropriate restriction sites, and addition of 

complementary overhangs are all design variables that need to be considered when 

performing DNA assembly using established methods such as digestion-ligation, Golden 

Gate (Engler et al., 2008), Gibson assembly (Gibson et al., 2009), and SLIC (Li and Elledge, 

2007). As the assembly process scales up to larger combinatorial libraries, the magnitude of 

variables can become difficult to handle on a case-to-case scenario and hence requires 

assembly design automation. One of such design tools, j5 enables the automated design for 

assembly of multiple DNA segments simultaneously using assembly methods such as 

Golden Gate, Gibson, and SLIC (Hillson et al., 2012). Another web based application, 

Raven, optimizes the cloning steps allowing solutions for shared parts to be reused to reduce 

the total number of steps (Appleton et al., 2014). Raven also optimizes the overhangs 

between DNA segments and automatically designs primers for the polymerase chain 

reaction (PCR) steps. Based on the successes and failures at each step, this algorithm 

updates its library entries, thus improving the efficiency of its assembly plans in an 

interactive manner. A recent publication described a publicly accessible library of modular 

DNA parts such as promoters, terminators, ribosomal binding sites etc., built using the 

MoClo assembly framework (Iverson et al., 2016). By employing assembly designs from the 

Raven algorithm, this library can be used to efficiently assemble combinatorial libraries. The 

Cello algorithm simplifies the construction of genetic circuits by borrowing from principles 

of design of semiconductor-electronics, and outputs a DNA sequence that codes for the 

circuit (Nielsen et al., 2016). DNA design algorithms have been reviewed comprehensively 

in these review articles (Garcia-Ruiz et al., 2016; Medema et al., 2012).

BUILD

Build usually refers to the process of generating the designated genotypes to prototype the 

designs through a either bottom-up or top-down approach.

Bottom-up

In the bottom-up approach, DNA parts either derived from naturally existing templates or de 
novo synthesized are used as building blocks to assemble designed constructs. Living 

organisms provide a vast source of genetic elements that can be directly amplified using 

PCR from the natural sequences. However, PCR amplification may be challenging, 

especially for long fragments or from complex templates such as high GC content genomes, 
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highly repetitive sequences, or metagenomic samples, and hence requires continuing 

technical improvement (Jiang et al., 2015). On the other hand, de novo synthesis starts from 

oligonucleotide synthesis (a few base-pairs to a couple hundred base-pairs) and then 

assembled to double-stranded fragments of a few hundred to a couple thousand bps (Chao et 

al., 2015a; Kosuri and Church, 2014), capable of writing DNA molecules of arbitrary 

sequences with few constraints. This methodology enables in silico design and optimization 

of genetic parts in a highly flexible manner, such as codon optimization of genes (Villalobos 

et al., 2006), tuning of promoter (Redden and Alper, 2015) and RBS (Salis et al., 2009) 

strengths. Although de novo synthesis is still very costly, synthetic DNA parts have already 

been applied in large-scale prototyping for high-value products (Petrone, 2016). Since 

synthesis of DNA oligos and kilo-base-pair fragments has become a more mature process, 

many parts can be prefabricated in specialized commercial facilities before further 

processing in biofoundries.

The DNA parts can then be assembled into larger DNA molecules. DNA assembly is often 

intensely time consuming and has a high failure rate. In our research group researchers are 

estimated to spend >50% of their time constructing DNA molecules. Sometimes a few 

rounds of assembly are necessary to accomplish the target size and configuration. Diversity 

is often introduced in this process by assembling different combinations of parts in parallel 

to test many possible designs (Kim et al., 2013; Xu et al., 2016). Both increased rounds and 

combinations of assemblies make the process more tedious and error-prone. Such tasks are 

better suited for machines as they can programmatically perform protocols with high speed 

and precision. However, transferring the manual operation to a robust and high-throughput 

automated process is nontrivial. It is important to avoid handling of sample-specific 

exceptions and frequent failures to unleash the advantages of machines. A number of 

innovations in assembly reactions and assembly schemes were reported in recent years. 

These methods have greatly improved the efficiency (likelihood of generating products) and 

fidelity (percentage of correctly assembled products) while simplifying the procedures. 

Furthermore, several assembly methods have made it easier to standardize the parts and 

modularize the design (Figure 3). Since these advances have been extensively reviewed 

(Chao et al., 2015a; Chao et al., 2015b; Ellis et al., 2011), this article will only elaborate on 

one example. Golden Gate method utilizes Type IIs restriction enzymes to generate 

customizable 4-bp sticky ends and to ligate the complimentary ends between fragments 

(Engler et al., 2008). In the one-pot reaction, the digestion and ligation reactions happen 

simultaneously, which forms a highly efficient irreversible cascade reaction towards the 

assembled products. By optimizing the sequences of these 4-bp junctions, multiple 

fragments can be assembled in one step with superior fidelity. The optimized set of junctions 

can also be assigned to the parts according to the position or function under a predefined 

standard so that parts can be used in different assemblies or even different projects, like 

standardized fasteners used in mechanical manufacturing (Figure 3). Taking advantage of the 

standard parts, MoClo, a scheme was developed to modularize the assembly of multi-gene 

DNA constructs (Weber et al., 2011). 11 transcription units consisting of 44 parts were 

assembled into a 33kb plasmid in three steps. The robustness and modularity make it 

possible to prototype combinatorial designs of DNA constructs in a high throughput manner. 
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Such protocols can then be converted to an automated workflow and implemented in 

biofoundries.

Most of the DNA assembly workflows only use limited number of operations, including 

pipetting, heat incubation, thermo-cycling, etc. Thus, these steps can be readily implemented 

with off-the-shelf equipment. State-of-the-art liquid handling stations can pipette as low as a 

fraction of a microliter while providing the flexibility required in combinatorial assembly. To 

further reduce the reagent costs, nanoliter-scale acoustic dispensing (Kanigowska et al., 

2016; Woodruff et al., 2017) and microfluidic devices (Linshiz et al., 2016; Patrick et al., 

2015; Shih et al., 2015) have been applied to miniaturize the reactions.

Top-down

Besides building DNA from scratch, the desired genotypes can also be derived from existing 

genomes by modifying certain loci. Traditionally, such editing harnessed either endogenous 

(Baudin et al., 1993; Stahl and Ferrari, 1984) or heterologous (Ellis et al., 2001; Fu et al., 

2012; Zhang et al., 2000) recombination machineries. Although these protocols can be 

automated by existing or custom-built instruments (Wang et al., 2009), the yield of positive 

clones in each round of experiments is low unless a selection marker is used. Due to the low 

editing efficiency, more clones need to be selected and verified, resulting in lower 

throughput and higher cost. On the other hand, the use of auxotrophic or drug selection 

markers limits the number of loci that can be edited, reduces the cell fitness, and makes it 

difficult to perform scarless modifications. Although application of the Cre-LoxP system 

(Arakawa et al., 2001; Sauer, 1987) allows iterative modification of multiple genome loci by 

recycling selection markers, the process is slow and still leaves a loxP scar.

A number of new genome editing tools became available in recent years. Zinc-finger 

nucleases (Kim et al., 1996), transcription activator-like effector nucleases (TALENs) 

(Miller et al., 2011), and Clustered regularly interspaced short palindromic repeats 

(CRISPR) - CRISPR associated proteins (Cas) (Cong et al., 2013; Jinek et al., 2012; Mali et 

al., 2013) are three classes of programmable nucleases that can induce double-stranded 

breaks (DSBs) in specific genome loci. These nucleases have greatly improved the 

efficiency of genome editing as DSBs can induce either non-homologous end joining 

(NHEJ) or homologous recombination (HR) (Haber, 2000). NHEJ can result in loss-of-

function of genetic elements while HR can be harnessed to over-write, insert, or delete 

genomic sequences. Moreover, these nucleases also act as effective selection pressures since 

the chromosomes would be constantly cleaved until the sequences were mutated. Thus 

genome modification is no longer dependent on the availability of auxotrophic or drug 

resistance markers. Among these tools, the CRISPR system is the easiest to implement as it 

is relatively simple to synthesize the DNA fragments coding for the guide RNAs. The 

CRISPR system has already been applied to create genome-wide knockout libraries (Shalem 

et al., 2014), simultaneously knocking out multiple genes (Bao et al., 2015; Cong et al., 

2013), as well as inserting genetic elements (Shi et al., 2016; Tsai et al., 2015). Due to the 

high efficiency of the CRISPR system and the simplicity of the protocols, these 

manipulations can be potentially automated by existing instruments. With the latest advances 
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in genome editing technology, a more or less complete toolkit has become available for 

biofoundries to generate desired genotypes in a high-throughput manner.

It is debatable whether the bottom-up or top-down approach represents the future of 

bioprototyping. Bottom-up approaches, especially de novo DNA synthesis, allow the largest 

freedom in design, but the cost of DNA synthesis is still high. Similarly, two strategies co-

exist in mechanical engineering, i.e. subtractive and additive manufacturing. The easier or 

more economical route is usually chosen.

It is worthwhile to mention that phenotypes can also be manipulated by regulatory 

machineries. Besides applications of naturally existing regulators such as transcription 

activators and repressors, a few synthetic regulatory tools have also been developed. A 

commonly used group of regulatory engineering tools are mediated by heterologous RNA 

(Si et al., 2015a). Derived from endogenous RNA regulation machinery, both synthetic small 

RNAs (sRNA) (Kang et al., 2012; Na et al., 2013) and RNA interference (RNAi) (Si et al., 

2015b) were applied in global tuning of gene expressions. Regulatory tools were also 

developed based on modified CRISPR systems to repress or activate gene expression 

(Dominguez et al., 2016). Overall, these methods have broadened the spectrum of 

engineering tools to facilitate the fine tuning of biosystems. Most of the RNA mediated 

regulation protocols are not too different from other top-down prototyping approaches in 

terms of operation. In fact, if an automated workflow is developed properly, different 

engineering approaches can be attempted in parallel on the biofoundries.

DNA transfer and clone selection

Both top-down and bottom-up approaches involve construction of DNA molecules encoding 

the design itself or the tool to implement the design. In most cases, these DNA molecules 

need to be introduced into cells to be expressed and tested. There is already a collection of 

well-defined protocols for transforming, transfecting, or transducing model organisms, while 

some of these operations has been automated (Ben Yehezkel et al., 2011; Si et al., 2017), 

some, however still remains challenges to be automated in high throughput. First, some 

protocols require strict experimental conditions, such as low temperature, precise timing, as 

well as quick but gentle pipetting. Second, some involve expensive consumables and 

reagents like electroporation cuvettes and mammalian lipofection kits. Lastly, certain strains 

of microorganism, especially non-model organisms still lack an efficient method to transfer 

DNA. Therefore, this step may become a bottleneck in certain prototyping processes. 

Several interdisciplinary technologies have been developed to address these issues. With the 

help of microfluidics, cells can be positioned onto micro channels, capillaries, or solid micro 

electrodes. Thus electroporation can be precisely exerted on a single cell or even a small 

patch of the cell membrane (Olofsson et al., 2003; Wang and Lee, 2013). There are also 

reports on intrusion of cells with DNA coated nano-structures merely using mechanical 

force (Cai et al., 2005; Han et al., 2008; Obataya et al., 2005). Although outstanding DNA 

transfer efficiency and cell survival rate have been reported in these works, application of 

such new methods and devices in synthetic biology and metabolic engineering is still rarely 

seen. Further development in these technologies to allow high throughput DNA transfer is 
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nontrivial, as most of them require specially fabricated consumables and sophisticated 

supporting equipment.

TEST

In the DBTL cycles, test currently remains the throughput bottleneck (Delépine et al., 2016). 

Similar to design and build, test automation should be implemented over a range of system 

scales including genetic constructs and genome, transcriptome, proteome, and metabolome 

(Figure 4). Recent advances in high-throughput analytical technologies enable multi-omics 

systems biology with improved efficiency and speed.

For genotyping, gel electrophoresis and Sanger sequencing have been instrumental in 

verification for both synthetic DNA constructs and engineered genomes, but both involve 

many manual steps. Recently, liquid handlers coupled with high-throughput capillary 

electrophoresis has resulted in the implementation of a high-throughput genotype 

verification process (Dharmadi et al., 2014). For whole-genome (re-) sequencing and 

transcriptomic analysis, next-generation sequencing (NGS) has become routine practices. 

Notably, NGS is also extended to massive analysis of small genetic constructs in a parallel 

and cost-effective manner, using new barcoding technologies that enable alignment of 

pooled reads to their source samples (Metzker, 2010).

For phenotyping, transcriptomic analysis is often used, which provides a snapshot of the 

machinery regulating gene expression inside the organism (Figure 4). Common methods for 

transcriptome analysis are microarrays (Heller, 2002) and RNA-Seq (Sharma and Vogel, 

2014). RNA-seq has been used in various studies for testing strains with refactored pathways 

(Smanski et al., 2014), or the characterization of strong promoters in different organisms 

(Creecy and Conway, 2015; Luo et al., 2015). The resulting data can also be used to ‘reverse 

engineer’ the most statistically significant regulatory interactions, using a range of methods 

such as Bayesian Networks (Heckerman, 1995) or information-theoretic approaches 

(Margolin et al., 2006). Reconstructing these networks can help identify major players that 

influence significant control over the regulatory processes, also known as ‘hubs’. In the 

context of metabolic engineering, reconstruction of regulatory networks across various 

mutant strains can be used to compare the effects of modified genotypes on the global 

transcriptional machinery of the host organism. This knowledge can, in turn, be used to 

design microorganisms with better biochemical production capabilities.

Other commonly used phenotyping tools include proteomics and metabolomics. Given the 

large number and chemical complexity of analytes in proteomes and metabolomes, mass 

spectrometry should be the method-of-choice to obtain sufficient coverage and 

identification. Currently, gas and liquid chromatography (GC and LC) is often required 

before MS analysis to reduce competition for ionization at a given time for better separation, 

at the cost of longer analysis time and more complex sample preparation. Given the ever-

increasing resolution, scanning speed, and quantification capability in MS analyzers, direct 

infusion methods may be used for higher throughput. For example, Agilent RapidFire 

platform couples solid-phase extraction with HT-ESI-MS for rapid and automated MS 

analysis (Woodruff et al., 2016). Moreover, MALDI mass spectrometry imaging has also 
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been increasingly used for high-throughput screening thanks to its rapid speed, high 

tolerance to salts, and simple sample preparation (Zhou et al., 2015). Targeted proteomics 

was successfully applied to identify bottle-necks in the mevalonate pathway, enabling an 

improvement in the production of a sesquiterpene (Redding-Johanson et al., 2011). Recently, 

studies have utilized proteomics and metabolomics in combination for analyzing engineered 

strains, resulting in improved production of target molecules (Brunk et al., 2016; George et 

al., 2014). Testing capabilities have been reviewed more comprehensively here (Petzold et 
al., 2015).

Difficulty in automating the above-mentioned analytical techniques has resulted in test 

capabilities still posing a significant bottleneck in the turnover cycles of strain engineering. 

A review paper on metabolomics pre-treatment techniques highlighted Liquid-Liquid-

Extraction based methods as amenable to automation (Raterink et al., 2014). Focused 

technology development in this field is anticipated to lead towards greater levels of test 

automation, enabling even higher throughputs in turnover cycles.

LEARN

The essential goal of most biosystems engineering is to understand the mechanism or 

discover a statistical pattern. Learning through DBT cycles is crucial for both fundamental 

science and practical applications. Biofoundries have demonstrated their capability of 

substantially accelerating and parallelizing the DBT cycles. Although the learning tasks are 

still mainly performed by human brains, with high dimension of the systems of interests 

today and the complexity of experiments, the data generated from biofoundries can quickly 

expand beyond the processing power of human minds. Assistance from computer algorithms 

will become a necessity when analyzing or at least preprocessing these data. Since the 

number of samples to be built and tested grows geometrically with the dimensions, 

exhaustive approaches will quickly fail after adding more variables. Thus, more efficient 

research algorithms are needed to reduce the time and complexity when exploring large 

variant spaces, which will rely on learning as well.

Data science has demonstrated its potential in many disciplines (Dhar, 2013). A wide range 

of data mining tools, statistical models, and machine learning algorithms have become 

available to extract patterns from data and to solve prediction problems. With appropriate 

abstraction, these tools can be readily used to guide the design and engineering of 

biosystems. Some early applications have already been reported. Lee et al. and Xu et al. 
trained regression models for violacein production as a function of gene expression levels 

(Lee et al., 2013; Xu et al., 2016) and predicted the optimal combination of promoter 

strength. Xu and colleagues implemented a Design-of-Experiment (DOE) approach to 

identify enzymes in a 5-gene pathway that exercised the most significant control, and 

subsequently used to identify promoter combinations that resulted in optimal expression of 

the pathway. The final strain has a 3.2-fold increase in violacein titer compared to the 

baseline strain. A study to improve taxol production employed the use of a multivariate 

search method that changed the expression of smaller modules of the pathway 

simultaneously (Ajikumar et al., 2010). This enabled an efficient scheme to sample the 

parameter space of the pathway flux, obviating the need for a high-throughput screen. A 
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DOE-based approach was also adopted in a study exploring the combined role of genetic 

and environmental factors to bring down the sampling size from a library size of 29 to just 

32 sampled combinations (Zhou et al., 2015). Application of modeling in these works has 

resulted in significant reduction of the amount of experiments to identify the improved 

producers, if not optimum.

INTEGRATION

As more enabling tools emerge for design, build, and test, it has become important to 

integrate these steps to form industrialized pipelines. Only by automating time-consuming 

operations, the overall cost of the DBT cycles in time and labor has been greatly decreased. 

As a result, the paradigm of research starts to change. In conventional biological 

engineering, heuristic approaches are usually adopted since the cost of each turnover is high. 

When the cost drops down to a critical point, exhaustive approaches can be adopted, i.e. 

many design variants can be automatically generated, prototyped, and tested. Likewise, the 

invention of modern computers changed the way we solve many problems. For example, 

ordinary differential equations no longer have to be solved by tedious algebraic 

transformations. Instead, numerical solutions can be obtained by more generally applicable 

but more computation-intensive methods like Runge-Kutta. Intrigued by this new paradigm, 

a few academic institutions have attempted to build integrated research facilities with a goal 

of studying and engineering biological systems with industrial efficiency. These facilities has 

adopted the name “foundry”, a term from the semiconductor industry. Early foundry 

adopters include MIT-Broad Foundry (http://web.mit.edu/foundry/), Edinburgh Genome 

Foundry (Fletcher et al., 2016), Manchester Foundry (Ra et al., 2016), DNA synthesis and 

construction foundry at the Imperial College London (Chambers et al., 2016), GeneMill at 

the University of Liverpool (https://genemill.liv.ac.uk/), DNA Foundry at Earlham Institute 

(http://www.earlham.ac.uk/automated-dna-assembly), NUS Synthetic Biology Foundry 

(http://syncti.org/research/synthetic-biology-foundry/), and Illinois Biological Foundry for 

Advanced Biomanufacturing (iBioFAB) (Chao et al., 2017). A number of venture capital 

backed companies are also trying to capitalize on these advanced research tools (Benjamin 

et al., 2016; Check Hayden, 2015; Davison and Lievense, 2016; Zanghellini, 2016).

Semi-automated integration

Among the academic and industrial biofoundries, many researchers have adopted a partially 

automated system, i.e. using machines to replace humans in certain steps while humans are 

still in control of the workflows. In the early stages of biofoundry development, partially 

automated systems have clear advantages: a) The system can be quickly setup with off-the-

shelf equipment and software; b) the human researcher gets instant feedback; c) Equipment 

can be used in different workflows as long as the operators fully understand the different 

tasks in these workflows; d) Systems can easily recover from interruptions due to hardware 

or software malfunction. With the current state of the art, there are also procedures such as 

next generation sequencing that are difficult to operate without manual operation. However, 

human interventions are still time-consuming and error-prone. There are also fully 

automated systems developed to run complete workflows (Dorr et al., 2016; King et al., 
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2009; King et al., 2004; Wang et al., 2009), but they are extensively customized towards 

specific applications, and hence are difficult to reconfigure for other tasks.

Fully automated integration

In today’s biological engineering practice, designs at different levels are implemented and 

tested by a continuously advancing collection of methods in a variety of biosystems. 

Therefore, an integrated biofoundry needs to be a highly reconfigurable flexible 

manufacturing system (FMS). On the other hand, such an FMS should be highly automated 

to improve efficiency and reduce human influence. Establishing a biofoundry that can 

handle long, complex, and highly diversified workflows with minimal human intervention is 

very challenging. To decompose the problem, some fundamental principles of chemical 

engineering can be adopted. To facilitate design and analysis, various chemical processes are 

usually broken up into basic types of unit operations. If we break up the routine biological 

engineering workflows into a series of shared process modules and unit operations, many 

workflows can be found to share finite number of process modules and unit operations. 

During the hardware design process, the unit operations can be matched with appropriate 

instruments. In principle, any workflow can be performed by linking available unit 

operations in customized sequences. To facilitate such linkage, the input and output sample 

format for each unit operation should be standardized. Society for Biomolecular Sciences 

(SBS) multi-well plate format is a widely adopted standard in this industry and most of the 

high-throughput instruments are SBS compliant. Integrating microfluidic devices with SBS 

standard will require certain sample format conversion mechanisms. To allow 

reconfiguration, a high degree-of-freedom central robotic system controlled by a 

computational framework can be integrated to form and manage a virtual network of unit 

operations. Notably, in a biological foundry, N unit operations are linked by high-degree-of-

freedom robotics, forming NP theoretical configurations in a workflow of P steps. In 

biofoundries based on this architecture, a roadmap for workflow implementation may 

generally apply to various projects. First, all necessary biological transformations are listed 

for producing target constructs. Then, individual steps and the overall scheme are optimized 

for modularity, standardization, and robustness to facilitate automated and high-throughput 

operations. Finally, the optimized workflow is converted into a sequence of unit operations 

for implementation in the foundry (Figure 1). This way, the versatility of the biological 

foundry is only limited by its collection of automatable unit operations, which can be readily 

expanded by modifying existing instruments or introducing new ones. In case of unit 

operations that cannot be automated, human interventions can still be added. With the 

current technologies, it is already feasible to automate the majority of the commonly used 

unit operations and compose a variety of workflows for engineering biosystems.

The iBioFAB platform followed the architecture referred to previously (Chao et al., 2017) 

(Figure 1). A 6-degree-of-freedom robotic arm and a 4-degree-of-freedom robotic arm 

interlink unit operations into various process modules and workflows by transporting 

samples and consumables between 20 instruments of 12 types. To manage virtual networks 

of unit operations, we developed iScheduler, a high-level modular programming 

environment. Although off-the-shelf automation graphical user interfaces were available to 

control the automation hardware, programs were scripted by joining individual device 
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commands. This flat programming practice was capable of handling simple repetitive jobs, 

but became chaotic and incompetent when implementing complex workflows that involved 

hundreds of steps. Using iScheduler, instead, commonly used process modules such as DNA 

assembly and cell density measurements were first scripted and validated, and then logically 

orchestrated at a high level. This modular and hierarchical approach has several merits: a) 

Programming and debugging were performed for each module separately without engaging 

the entire workflow. Since modules were tested individually, little debugging is needed at the 

workflow level. b) The system could recover from errors in situ and resume the program. c) 

Programming was expedited by reusing existing modules or building on prior workflows. In 

theory, such a biofoundry is capable of fully automating various workflows yet match up the 

advantages of the semi-automated biofoundries.

Preliminary applications

There are few published applications of biofoundries so far. Although industrial engineering 

progresses are often not well publicized, this new biological engineering methodology has 

already been shown to generate commercial values. Amyris is one of the pioneers in 

streamlining the DBTL cycles for engineering industrial microbes. A few technologies have 

been developed to improve the robustness and lower the cost of DNA assembly (de Kok et 

al., 2014) and construct verification (Dharmadi et al., 2014; Shapland et al., 2015). In the 

same space, startup companies such as Ginkgo Bioworks and Zymergen are also growing 

rapidly. Due to differences in funding structure, some academic institutions have started 

taking more risks to develop fully automated and flexible systems, including the iBioFAB 

and Edinburgh Genome Foundry. Two proof-of-concept studies on the iBioFAB have been 

published. A generalized DNA assembly workflow based on the Golden Gate method 

(Engler et al., 2008) has been developed (Chao et al., 2017). Following the roadmap 

mentioned earlier, the robustness of the Golden Gate assembly protocol was improved by 

optimizing reaction formulations and introducing a clean-up step to degrade residual linear 

fragments. A pretested set of 4-bp junctions was used to standardize the parts. Then the 

protocol was converted to an automatable process and a sequence of executable unit 

operations. As a demonstration, this workflow can assemble up to 400 pairs of TALENs per 

day with a success rate of 96.2% at a material cost of $2.1/pair. Each assembly involves 16 

DNA fragments encoding 28 highly repetitive protein domains, which is known to be 

tedious to synthesize. This DNA assembly workflow was also applied to pathway 

engineering in different organisms for various products. In addition to bottom-up assembly 

of synthetic DNA constructs, a genome engineering workflow for Saccharomyces cerevisiae 
was also implemented on the iBioFAB (Si et al., 2017). According to the above-mentioned 

roadmap, two bottlenecks were identified as lack of standardized and modular methods to 

introduce genetic modulations, and low genome modification efficiency during each 

engineering cycle. To solve the first obstacle, a collection of modulation parts cloned from 

full-length cDNA libraries were created to up- and down-regulate each gene. These parts 

were constructed as standardized integration donors into repetitive sequences in the yeast 

genome, so that genetic modifications can be accumulated in a scalable manner. On the other 

hand, low integration efficiency was improved using CRISPR-Cas9, allowing genome-wide 

coverage and multiplex modifications to be introduced at the population level and the 

protocol became much more robust. These genetic and process designs enable us to devise 
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an automated workflow on the iBioFAB to iteratively create and screen yeast strain libraries. 

In the course of 3 rounds of evolution, 10100 theoretical genetic variants were explored, 

resulting in a strain that has the highest acetate tolerance reported.

Algorithm-driven DBTL cycles

With the unprecedented prototyping efficiency in biofoundries, orders of magnitude more 

data can be generated at a reasonable cost and better consistency, which will further improve 

the fidelity of modeling. Furthermore, it becomes possible to apply some advanced learning 

strategies. Up to date, we have preliminary success on automating complex workflows in 

each round of DBT as well as modeling certain traits of biosystems. These proceedings 

make it possible for the design of subsequent rounds of experiments to be driven by 

algorithms based on analysis of the preceding rounds of data. A complete integration of the 

design-build-test-learn cycles will open the door to active learning (Settles, 2012) (Figure 1). 

By allowing the modeling algorithm to directly drive the biofoundries, the total amount of 

experiments required to make a prediction can be greatly reduced when compared to random 

sampling. Such algorithms were applied in functional genomics research (King et al., 2009; 

King et al., 2004) while no biosystems engineering work driven by active learning has been 

reported yet.

CONCLUSIONS

With the recent technology advances, it has become feasible to establish automated and 

versatile engineering platforms to accelerate both fundamental and applied research and 

development of biosystems. A number of biofoundries have been established around the 

world and have accomplished some proof-of-concept studies.

Several challenges need to be addressed for future biofoundry development. The success rate 

of DNA assembly is still largely sequence dependent with no reliable modeling. Many of 

them also impose certain constraints onto the design step. Most automation instruments and 

corresponding software are not well developed due to the small served market, exhibiting 

suboptimal performance and reliability compared with consumer products or more common 

industrial processes. No ready-to-integrate instruments are currently available off-the-shelf 

for a few unit operations, which limits the development of fully automated workflows. In 

addition, new technology may be integrated. For example, a wide application of 

microfluidics and nanoliter scale liquid handling is anticipated to greatly reduce reagent cost 

and increase throughput. For system integration, more powerful dynamic and multiplex 

scheduling algorithms need to be developed to maximize throughput and resolve resource 

conflicts without human intervention. Last but not least, more rapid and parallelized 

analytical technologies are highly desirable because testing can easily become a throughput 

bottleneck when involving chromatography and DNA sequencing.

We envision an ideal biological foundry should not only be able to parallelize and automate 

the steps in the design-build-test cycles, but can also autonomously learn about the 

biosystems. This will allow scientists to focus on conceptual innovations and implement 

their ideas rapidly. Furthermore, it can extend human intelligence or even intuition when 

handling complex data. On the other hand, security and ethics of such a machine capable of 
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“creating” lives should not be neglected, as it will most likely become a concern in the near 

future.
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Highlights

• This review summarizes the enabling technologies, early successes, and 

existing challenges in developing and applying automated biofoundries for 

engineering biosystems.

• Iterative rounds of the Design, Build and Test cycle are implemented in the 

biofoundries for biosystems engineering.

• Various Design tools at parts-, pathway-, and network-levels and for DNA 

assembly have been developed.

• Both bottom-up and top-down automated strategies are used for the Build 

step.

• Test automation should be implemented over a range of system scales 

including genetic constructs and genome, transcriptome, proteome, and 

metabolome.

• As more enabling tools emerge for Design, Build, and Test, it has become 

important to integrate these steps to form industrialized pipelines.

• Learning through DBT cycles is crucial for both fundamental science and 

practical applications.
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Figure 1. The architecture of a typical biofoundry
A biofoundry platform is an integration of biology with software and hardware systems. The 

protocols, parts, and biological entities used as engineering tools should be optimized first to 

facilitate automated high-throughput manipulations. The software system orchestrates the 

automation processes and assists design as well as data processing. The hardware system 

conducts the build and test tasks. Through iterations of design-build-test, learning algorithms 

can potentially be integrated to help extend the understanding of the biosystems beyond 

human cognition.
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Figure 2. Biosystems design at multi-scales
Design algorithms can be implemented at the scale of network design, pathway design and 

genetic construct design. At the level of network modifications, optimization algorithms 

such as OptKnock or OptReg (for stoichiometric models) and MCA or MILP (for kinetic 

models) are used to design engineering strategies for the metabolic network (Okuda et al., 

2008). At the pathway level, algorithms such as BNICE are used to suggest native or 

heterologous pathways that can be used for synthesis of a target molecule. Having decided a 

specific network and/or pathway strategy, algorithms such as RBS Calculator suggest 

specific RBS designs for controlling expression whereas algorithms such as j5 and Raven 

aid in designing the method of construction of genetic elements from the user-defined parts.
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Figure 3. A typical one-pot modular DNA assembly scheme
DNA parts are mixed and ligated to form the final constructs based on the designs. The order 

of parts in each assembly is designated by the linkers flanking the parts. The DNA fragments 

can be inserted to donor plasmids as an intermediate step. Golden Gate assembly is used as 

an example.
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Figure 4. Biosystems testing at different levels
The strategies for testing a biosystem are implemented at various levels, depending on the 

engineering strategy being implemented. Genetic modifications to the host genome or 

assembly of DNA parts usually require sequencing methods such as Sanger or NGS for 

verification of the end product. If inquiry is focused on studying global changes on gene 

expression levels, influenced by either genetic or environmental modifications, then mRNA 

transcript levels are measured using methods such as microarray analysis and RNA-Seq. 

Modification strategies targeted at changing protein numbers in the biosystem are monitored 

using proteomics-based tools such as MALDI-TOF and LC-MS. However, if protein 

numbers are not solely indicative of the modified phenotype, the end-effect of the 

engineering strategy on the metabolic profiles is typically analyzed using LC-MS or GC-MS 

based metabolomics tools. Testing capabilities can also be performed for in a targeted 

manner for specific mRNA, protein or metabolite species.
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