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Abstract

Glutamate is the predominant excitatory neurotransmitter in the mammalian CNS. It mediates 

essentially all rapid excitatory signaling. Dysfunction of glutamatergic signaling contributes to 

developmental, neurologic, and psychiatric disease. Extracellular glutamate is cleared by a family 

of five Na+-dependent glutamate transporters. Two of these transporters (GLAST and GLT-1) are 

relatively selectively expressed in astrocytes. Other of these transporters (EAAC1) is expressed by 

neurons throughout the nervous system. Expression of the last two members of this family 

(EAAT4 and EAAT5) is almost exclusively restricted to specific populations of neurons in 

cerebellum and retina, respectively. In this review, we will discuss our current understanding of the 

mechanisms that control transcriptional regulation of the different members of this family. Over 

the last two decades our understanding of the mechanisms that regulate expression of GLT-1 and 

GLAST has advanced considerably; several specific transcription factors, cis-elements, and 

epigenetic mechanisms have been identified. For the other members of the family, little or nothing 

is known about the mechanisms that control their transcription. It is assumed that by defining the 

mechanisms involved, we will advance our understanding of the events that result in cell specific 

expression of these transporters and perhaps begin to define the mechanisms by which neurologic 

diseases are changing the biology of the cells that express these transporters. This approach might 

provide a pathway for developing new therapies for a wide-range of essentially untreatable and 

devastating diseases that kill neurons by an excitotoxic mechanism.
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1. Introduction

L-Glutamate (Glu) is the major excitatory neurotransmitter in the mammalian CNS and 

activates both ligand-gated ion channels and G-protein coupled receptors (Fagg, Mena & 

Cotman, 1983, Nakanishi, 1992, Nakanishi, 1994, Robinson & Coyle, 1987). Even before 

the receptors were cloned (Hollman & Heinemann, 1994), there was strong evidence that 
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excessive activation of Glu receptors contributes to neuronal loss in a variety of neurological 

insults. This was based on the following observations: 1) Exogenous (and non-transported) 

receptor agonists are toxic to neurons in vitro and in vivo, and the potencies closely correlate 

with that observed for receptor activation (Schwarcz & Coyle, 1977, Schwarcz, Scholz & 

Coyle, 1978). 2) The patterns of damage caused by these agonists roughly paralleled those 

observed in humans with various disorders (Beal, Kowall, Ellison, Mazurek, Swartz & 

Martin, 1986, Schwarcz, Bennett & Coyle, 1977, Schwarcz, Whetsell & Mangano, 1983, 

Spencer, Nunn, Hugon, Ludolph, Ross, Roy et al, 1987). 3) Acute insults including stroke-

like insults or traumatic brain injury were associated with increases in extracellular 

concentrations of Glu (Benveniste, Drejer, Schousboe & Diemer, 1984, Faden, Demediuk, 

Panter & Vink, 1989, Rossi, Oshima & Attwell, 2000, Rothman, 1984). 4) And finally, Glu 

receptor antagonists attenuate the damage caused by some of the acute insults (Gill, Foster 

& Woodruff, 1987). In the 1990’s, it became clear that Glu-mediated excitotoxicity involved 

an apoptotic-necrotic continuum (Cheung, Pascoe, Giardina, John & Beart, 1998). This 

process of excitotoxicity has been implicated in virtually every neurologic disorder (for 

reviews, see Choi, 1992, Coyle & Puttfarcken, 1993, Faden, Demediuk, Panter & Vink, 

1989, Fontana, 2015, Greene & Greenamyre, 1996, McDonald & Johnston, 1990). In spite 

of this strong set of complementary observations that were reproduced in several different 

laboratories, drug companies have not been successful in targeting Glu receptors in spite of 

the billions of dollars that were spent (for discussions, see Nicoletti, Bruno, Ngomba, 

Gradini & Battaglia, 2015, Wieronska, Zorn, Doller & Pilc, 2015). It appears that the side-

effects caused by blocking the N-methyl-D-aspartate subtype of Glu receptor (psychotic 

symptoms, cell death) and possibly the fact that Glu receptor activation is required for 

essentially all human actions may have limited the utility of this strategy (Olney, 1994, 

Olney, Labruyere, Wang, Wozniak, Price & Sesma, 1991).

If, in fact, excessive activation of Glu receptors contributes to neurodegeneration observed 

after acute insults and/or in chronic neurodegenerative diseases, then it becomes important to 

understand the mechanisms that control extracellular concentrations of potentially toxic 

amino acids, including Glu and aspartate. To date, there is still no evidence of extracellular 

metabolism of either amino acid (for reviews, see Danbolt, 1994, Schousboe, 1981). Instead 

extracellular Glu concentrations are maintained below those required to chronically activate 

Glu receptors (Herman & Jahr, 2007) by a family of Na+-dependent Glu transporters. This 

transport process was first identified and characterized in the early 1970s (Balcar & 

Johnston, 1972, Beart, 1976, Logan & Snyder, 1971). Then in the early 1990s, a family of 

five transporters that mediate sodium-dependent Glu uptake was cloned. The first three Glu 

transporters that were identified and cloned were named glutamate/aspartate transporter 

(GLAST), glutamate transporter 1 (GLT-1), and excitatory amino acid carrier 1 (EAAC1) 

(Kanai & Hediger, 1992, Pines, Danbolt, Bjørås, Zhang, Bendahan, Eide et al, 1992, Storck, 

Schulte, Hofmann & Stoffel, 1992). Shortly thereafter, the human homologues of these 

transporters were cloned and called excitatory amino acid transporters (EAAT1-3 

respectively) (Arriza, Fairman, Wadiche, Murdoch, Kavanaugh & Amara, 1994). Two 

additional members of the family were also cloned; there were called EAAT4 and EAAT5 

(Arriza, Eliasof, Kavanaugh & Amara, 1997, Fairman, Vandenberg, Arriza, Kavanaugh & 

Amara, 1995). The names of the genes that code for these transporters is different; they are 
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called SLC1A3, 2, 1, 6, & 7, respectively with capital letters for the human homologs and 

lower case letters for the rodent homologs. These transporters co-transport 3 molecules of 

Na+ and 1 H+ with one molecule of Glu; the countertransport 1 K+ completes the cycle. This 

stoichiometry allows these transporters to generate up to a 1-million-fold concentration 

gradient across the membrane (Levy, Warr & Attwell, 1998, Owe, Marcaggi & Attwell, 

2006, Wadiche, Arriza, Amara & Kavanaugh, 1995, Zerangue & Kavanaugh, 1996). Several 

reviews have discussed the pharmacology, localization, and biophysical properties of these 

transporters (Anderson & Swanson, 2000, Beart & O’Shea R, 2006, Danbolt, 2001, 

Gegelashvili & Schousboe, 1997, Kanner, 2006, Robinson, 1999, Robinson & Dowd, 1997, 

Ryan & Vandenberg, 2005, Seal & Amara, 1999, Shigeri, Seal & Shimamoto, 2004, Sims & 

Robinson, 1999, Tanaka, 2000, Trotti, Danbolt & Volterra, 1998, Vandenberg & Ryan, 

2013). Therefore, in this review we will focus on their transcriptional regulation.

2. Differential localization of glutamate transporters

If one assumes that transcriptional mechanisms are the strongest driver of endogenous 

expression, it is important to first understand the expression patterns of the transporter 

subtypes. All five subtypes of the Glu transporters are enriched in different brain regions and 

different cell types. GLAST and GLT-1 are mainly expressed in astrocytes, while the other 

three subtypes are enriched in neurons (Chaudhry, Lehre, Campagne, Ottersen, Danbolt & 

Storm-Mathisen, 1995, Lehre, Levy, Ottersen, Storm-Mathisen & Danbolt, 1995, Pines et al, 

1992, Regan, Huang, Kim, Dykes-Hoberg, Jin, Watkins et al, 2007, Rothstein, Martin, 

Levey, Dykes-Hoberg, Jin, Wu et al, 1994). GLAST, GLT-1 and EAAC1 are also found in 

oligodendroglia (DeSilva, Kabakov, Goldhoff, Volpe & Rosenberg, 2009, Domerq, Sánchez-

Gómez, Areso & Matute, 1999, Martinez-Lozada, Waggener, Kim, Zou, Knapp, Hayashi et 

al, 2014, Pitt, Nagelmeier, Wilson & Raine, 2003), GLT-1 has also been observed in 

activated microglia (Lopez-Redondo, Nakajima, Honda & Kohsaka, 2000). GLT-1 is also 

expressed by neurons, but at much lower levels than those observed in astrocytes (for recent 

discussion, see Furness, Dehnes, Akhtar, Rossi, Hamann, Grutle et al, 2008, Petr, Sun, 

Frederick, Zhou, Dhamne, Hameed et al, 2015). GLAST is enriched in Bergmann glial cells 

of the cerebellum (Rothstein et al, 1994, Ruiz & Ortega, 1995), in Müller glial cells of the 

retina (Bringmann, Pannicke, Biedermann, Francke, Iandiev, Grosche et al, 2009), and in 

astrocytes in the olfactory bulb (Utsumi, Ohno, Onchi, Sato & Tohyama, 2001). GLT-1 is 

enriched in astrocytes in the cerebral cortex, hippocampus, lateral septum, striatum and 

spinal cord (Regan et al, 2007, Rothstein et al, 1994, Torp, Danbolt, Babaie, Bjoras, Seeberg, 

Storm-Mathisen et al, 1994). EAAC1 is observed in neurons in the forebrain, diencephalon, 

hindbrain, dorsal root ganglia and spinal cord (Bar-Peled, Ben-Hur, Biegon, Groner, 

Dewhurts, Furata et al, 1997, Furuta, Martin, Lin, Dykes-Hoberg & Rothstein, 1997). 

EAAT4 is almost exclusively expressed in Purkinje cells of the cerebellum (Dehnes, 

Chaudhry, Ullensvang, Lehre, Storm-Mathisen & Danbolt, 1998, Yamada, Watanabe, 

Shibata, Tanaka, Wada & Inoue, 1996). EAAT5 is almost exclusively expressed by 

photoreceptors and bipolar cells in the retina (Arriza et al, 1997, Pow & Barnett, 2000). 

Expression of these transporters is also differentially controlled during development. 

GLAST is found at relatively high levels early in development, while GLT-1 levels increase 
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dramatically during development (Furuta, Rothstein & Martin, 1997). This suggests that 

GLT-1 may be a marker of astrocyte maturation.

Although many think of these transporters as molecules that clear the ‘neurotransmitter’ 

Glu, several studies show that virtually all cells express Na+-dependent Glu transporters. 

GLAST is expressed in heart, muscle, placenta, lung and liver (Gegelashvili & Schousboe, 

1998). GLT-1 is expressed in pancreas and liver, but the levels are 100-fold or more higher in 

brain (Berger & Hediger, 2006). EAAC1 is expressed in intestine, kidney, heart, lung, 

placenta and liver (Nakayama, Kawakami, Tanaka & Nakamura, 1996). Low levels of 

EAAT4 mRNA are found in placenta, and EAAT5 is expressed in liver, kidney, intestine, 

heart, lung and skeletal muscle (Gegelashvili et al, 1998, Lee, Anderson, Stevens, Beasley, 

Barnett & Pow, 2013). These differential expression patterns strongly suggest that each of 

these transporters is under specific transcriptional regulation.

3. Why study transcriptional regulation of glutamate transporters?

Glu is a neurotransmitter, a source of energy through oxidation (Dienel & McKenna, 2014), 

a building block for the anti-oxidant glutathione (Brosnan & Brosnan, 2013, Had-Aissouni, 

2012), the only precursor for the major inhibitory neurotransmitter (γ-aminobutyric acid- 

GABA), and is a building block for proteins. During development, Glutamatergic signaling 

participates in proliferation, migration, and differentiation (for reviews, see Jansson & 

Akerman, 2014, Lujan, Shigemoto & Lopez-Bendito, 2005, Nguyen, Rigo, Rocher, 

Belachew, Malgrange, Rogister et al, 2001). It also controls synapse formation and the shape 

of dendritic spines. Thus, it is critical to control extracellular Glu spatially and temporally 

during development and in the adult nervous system. In the adult nervous system, Glu 

transporters are found at such high levels (particularly GLT-1) that they function as buffers 

of the amount of Glu that is available for activation of receptors (Tong & Jahr, 1994) and/or 

they shape the excitatory post-synaptic currents at other synapses (for reviews, see Conti & 

Weinberg, 1999, Huang & Bergles, 2004, Marcaggi & Attwell, 2004, Otis, Brasnjo, Dzubay 

& Pratap, 2004, Tzingounis & Wadiche, 2007).

Decreased levels of Glu transporter proteins and/or mRNAs have been observed in animal 

models of stroke, head trauma, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, 

epilepsy, and others. In many cases, similar changes have been observed in post-mortem 

specimens from patients with these diseases (for reviews, see Dunlop, 2006, Fontana, 2015, 

Kim, Lee, Kegelman, Su, Das, Dash et al, 2011 Sattler & Rothstein, 2006, Sheldon & 

Robinson, 2007, Yi & Hazell, 2006). In fact, a loss of GLT-1 that is consistently observed in 

both animal models of ALS (for review, see Rattray & Bendotti, 2006) and humans with 

ALS, prompted Rothstein and his colleagues to screen for compounds that increase GLT-1 

expression. They identified the antibiotic ceftriaxone and showed that it delayed the onset of 

motor symptoms and death in a mouse model of ALS (Rothstein, Patel, Regan, Haenggeli, 

Huang, Bergles et al, 2005). Although ceftriaxone did not show a therapeutic benefit in a 

phase 3 clinical trial (Cudkowicz, Titus, Kearney, Yu, Sherman, Schoenfeld et al, 2014), 

several groups have shown therapeutic benefits of ceftriaxone in animal models of a wide-

range of neurologic and psychiatric conditions (Amin, Hajhashemi, Abnous & 

Hosseinzadeh, 2014, Cui, Cui, Gao, Sun, Wang, Wang et al, 2014, Fontana, 2015, Hsu, 
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Hung, Chang, Liao, Ho & Ho, 2015, Inui, Alessandri, Heimann, Nishimura, Frauenknecht, 

Sommer et al, 2013, Soni, Reddy & Kumar, 2014). Glu transporters are regulated by a 

variety of mechanisms, including transcription, mRNA maturation and stabilization, post-

translational modifications, trafficking to and from the plasma membrane (for reviews see 

Robinson, 2002, Robinson, 2006), and diffusion in the membrane (Benediktsson, Marrs, Tu, 

Worley, Rothstein, Bergles et al, 2012, Murphy-Royal, Dupuis, Varela, Panatier, Pinson, 

Baufreton et al, 2015, Shin, Nguyen, Pow, Knight, Buljan, Bennett et al, 2009).

In this review, we will focus on the mechanisms that control transcription of the transporters. 

This has mostly been approached by examining the effects of agents that activate cell surface 

receptors or by direct modulation of intracellular signals. In some cases, the effects of these 

agents have been linked to specific cis elements in the transporter genes and transcription 

factors that bind to these elements. There is some evidence to suggest that these regulatory 

events are influenced by epigenetic mechanisms (DNA methylation or histone acetylation), 

but this is still a relatively underexplored area.

One assumes that, as the field develops an understanding of the mechanisms that control 

transcription of these transporters, we will develop a better understanding of the specific 

signals and transcription factors that define populations of cells and/or subpopulations of 

cells in the brain. In some cases this information is starting to be used to define the 

mechanisms that contribute to decreases in transporter expression that accompany diverse 

neurologic insults. In spite of setbacks, it still seems appealing to consider the mechanisms 

that regulate Glu transporters as potential drug targets. It is also possible that developing an 

understanding of the transcriptional events that lead to altered expression of Glu transporters 

may lead to a broader mechanistic understanding of the pathogenesis of diverse neurologic 

and psychiatric diseases.

For the purposes of this review, we decided to simplify our discussion and include many 

studies in which steady state protein and/or mRNA levels change in response to an external 

stimulus. However there are examples of regulation of mRNA stability (Zelenaia, 

Gochenauer & Robinson, 1999), translation (Tian, Lai, Guo, Lin, Butchbach, Chang et al, 

2007), or protein degradation (Wu, Xia, Lin, Cao, Chen, Liu et al, 2013). Therefore it seems 

possible that our simplification will end up being incorrect at least in some cases.

3.1 Transcriptional Regulation of SLC1A3/GLAST/EAAT1

The mouse GLAST gene was mapped to chromosome 15A2 (Hagiwara, Tanaka, Takai, 

Maeno-Hikichi, Mukainaka & Wada, 1996). Although the human gene was originally 

mapped to 5p13 (Takai, Yamada, Kawakami, Tanaka & Nakamura, 1995), one year latter it 

was re-mapped to chromosome 5p11–12 (Stoffel, Sasse, Duker, Muller, Hofmann, Fink et 

al, 1996). With the complete sequencing of both genomes, these locations have been 

verified. As the cellular, developmental, and regional expression patterns are shared between 

mouse/rodent and human (Bar-Peled et al, 1997, Furuta et al, 1997, Regan et al, 2007, 

Schmitt, Asan, Puschel & Kugler, 1997), it seems that core promoter elements are likely to 

be conserved through evolution. The fact that transgenic mice that utilize the entire human 

SLC1A3 gene to control discosoma red fluorescent protein (dsRFP) display complete 

overlap of GLAST with dsRFP further supports the notion that similar elements control 
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GLAST expression in mice and humans (Regan et al, 2007). Therefore, evolutionarily 

conserved regions of the promoter are likely to provide insights into the cis elements that 

may be involved in transcriptional control; these are presented in Figure 1.

Almost 20 years ago, the structures of both the mouse and human GLAST promoters were 

defined (Hagiwara et al, 1996, Stoffel et al, 1996). As might be expected, the proximal 2 kb 

of the promoter are highly conserved and all studies to date have focused on this region. 

Neither the mouse nor the human promoters contain a TATA box in this region but they both 

contain a GC box and the human gene also contains an E box. As is observed with several 

housekeeping genes, the transcription factors stimulating proteins 1 and 3 (Sp1, Sp3) bind to 

the GC box and upstream stimulating factor (USF1) binds to the E box in electrophoretic 

mobility assays (EMSA) (Kim, Choi, Chao & Volsky, 2003) (see figure 2A). Mutation of 

either the GC or E box dramatically reduces promoter reporter expression in human fetal 

astrocytes, suggesting that binding to both sites is required for transcription.

While working from the gene sequence has yielded some information about the cis and trans 
factors involved in controlling GLAST expression, an alternative strategy has been to 

identify agents that regulate GLAST protein and/or mRNA levels when applied to cells 

(generally astrocytes). Using this strategy, it has been possible to identify extracellular 

stimuli that either increase or decrease GLAST expression/transcription. We will first 

discuss the pathways that have been implicated in transcriptional activation (Figure 2A) and 

then the pathways that have been implicated in transcriptional repression (Figure 2B).

Astrocytes in culture have been an important model system to study transcriptional 

regulation of GLAST and in this system neurons increase astrocytic expression of GLAST 

(Schlag, Vondrasek, Munir, Kalandadze, Zelenaia, Rothstein et al, 1998, Swanson, Liu, 

Miller, Rothstein, Farrell, Stein et al, 1997). This effect is at least in part caused by secreted 

molecules (Gegelashvili, Danbolt & Schousboe, 1997, Schlag et al, 1998, Swanson et al, 

1997). In earlier studies, it had been shown that dibutyryl-cyclic AMP (dbcAMP) increases 

glutamate uptake in astrocytes (Hertz, Bock & Schousboe, 1978) and three groups 

essentially simultaneously demonstrated that dbcAMP increases the levels of GLAST 

mRNA and protein in primary cultures of astrocytes from forebrain or retina (Eng, Lee & 

Lal, 1997, Schluter, Figiel, Rozyczka & Engele, Swanson et al, 1997). The effect of 

dbcAMP is blocked by protein-kinase A (PKA) inhibitors (Schlag et al, 1998). Shortly 

thereafter, Figuel and colleagues demonstrated that pituitary adenylate cyclase-activating 

polypeptide (PACAP) mimics the effects of neurons and that PACAP-directed antibodies 

block the effects of neuron-conditioned media (Figiel & Engele, 2000). Furthermore, 

inhibitors of a PACAP receptor (PAC1R) or PKA antagonists also blocked the effects of 

neuron-conditioned media. Together these studies are consistent with the notion that neurons 

use a PACAP, cAMP, PKA-dependent pathway to increase GLAST expression (see Figure 

2A). Although these data are consistent with the activation of the transcription factor cAMP-

response element binding protein (CREB), the transcription factor(s) or the cis element(s) of 

the promoter responsible for this effect have not been identified.

Steroids are neuroprotective in animal models of both acute insults and chronic 

neurodegenerative diseases (Baudry, Bi & Aguirre, 2013, Scott, Zhang, Wang, Vadlamudi & 

Martinez-Lozada et al. Page 6

Adv Pharmacol. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Brann, 2012). Estrogen or tamoxifen increase GLAST mRNA and protein (Karki, Webb, 

Zerguine, Choi, Son & Lee, 2014, Lee, Sidoryk, Jiang, Yin & Aschner, 2009, Pawlak, Brito, 

Kuppers & Beyer, 2005). These effects are dependent upon activation of both the G protein-

coupled receptor 30 (GPR30) and the nuclear receptors ERα and ERß (Karki et al, 2014, 

Lee, Sidoryk-Wegrzynowicz, Wang, Webb, Son, Lee et al, 2012), but there is some evidence 

that ERα may be more important for this effect (Sato, Matsuki, Ohno & Nakazawa, 2003). 

The effects of estrogen on GLAST are indirect and are mediated by estrogen-dependent 

induction of transforming growth factor – α (TGFα) (Dhandapani, Wade, Mahesh & Brann, 

2005, Karki et al, 2014, Lee et al, 2009). Steroids or tamoxifen are thought to attenuate 

manganese-dependent neurotoxicity by a mechanism that depends on up-regulation of 

GLAST (Karki, Smith, Johnson & Lee, 2014, Lee et al, 2009).

In addition to TGFα, several other growth and neurotrophic factors increase expression of 

GLAST. Epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), insulin-like 

growth factor-1 (IGF-1) and glial cell line-derived neurotrophic factor (GDNF) also increase 

GLAST mRNA and protein levels (Bonde, Sarup, Schousboe, Gegelashvili, Noraberg & 

Zimmer, 2003, Suzuki, Ikegaya, Matsuura, Kanai, Endou & Matsuki, 2001, Zelenaia, 

Schlag, Gochenauer, Ganel, Song, Beesley et al, 2000). Growth factors induce GLAST 

expression through Ras/Mitogen-extracellular signal regulated kinase (Ras/MEK), 

phosphatidylinositol-4,5-bisphosphate 3 kinase/Akt (PI3K/Akt) and PKA pathways 

(Dhandapani et al, 2005, Figiel, Maucher, Rozyczka, Bayatti & Engele, 2003, Lee et al, 

2009) with a consequent activation of nuclear factor kappa B (NFκB)(Figiel et al, 2003, 

Karki et al, 2014) (see Figure 2A). Although inhibitors of NFκB signaling block these 

effects and exogenous expression of the active subunits of NFκB (p50 and p65) mimic these 

effects, a direct interaction between NFκB and the GLAST promoter has not been described 

(Figiel et al, 2003, Karki et al, 2014, Lin, You, Wei & Gean, 2014).

The effects of growth factors on GLAST expression also seem to depend on activation of the 

Janus kinase/signal transducer activator of transcription (JAK/STAT) pathway. Using an in 
vivo model, Raymond and colleagues demonstrated that fibroblast growth factor-2 (FGF2) 

blocks the damage caused by hypoxia (Raymond, Li, Mangin, Huntsman & Gallo, 2011). 

They show that hypoxia causes decreases in GLAST, phospho-JAK, and phospho-STAT. 

They also show that these effects are blocked by FGF2 and that the effects of FGF2 are 

blocked by an inhibitor of JAK/STAT signaling. Prolonged stress also causes a decrease in 

GLAST protein and an increase in Glu in cerebrospinal fluid (Feng, Guo, Liu, Wang, Wang, 

Gao et al, 2015). These effects were also strongly linked to inhibition of JAK/STAT 

signaling. At present, it is not clear if STAT directly interacts with the GLAST promoter, but 

these studies strongly suggest that the JAK/STAT pathway contributes to maintenance of 

GLAST levels in vivo. Together these studies also suggest that several different signaling 

pathways may function downstream of growth factors to regulate transcription of GLAST; it 

will be important to learn if these pathways converge or function in parallel/independently.

As these transporters play an important role in regulating a potential toxin (Glu itself), it 

should not be surprising that Glu receptors are also linked to transcriptional regulation of 

GLAST. In fact, some of the subtypes of Glu receptors are linked to increases in GLAST, 

while others decrease GLAST. A selective group II metabotropic Glu receptor (mGluR) 
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agonist increases GLAST mRNA and protein (Aronica, Gorter, Ljlst-Keizsers, Rozemuller, 

Yankaya, Leenstra et al, 2003, Gegelashvili, Dehnes, Danbolt & Schousboe, 2000). Using 

pharmacological strategies, this effect was linked to the ERK/PI3K/NFkB signaling pathway 

(Lin et al, 2014)(Figure 2A). The in vivo relevance of this effect is supported by the 

observation that mice deleted of one of the members of the group II receptors, mGluR3, 

have lower levels of GLAST protein (Lyon, Kew, Corti, Harrison & Burnet, 2008). This 

suggests that tonic activation of mGluR3 maintains GLAST expression in vivo.

In contrast to the effects of mGluR3 activation, agonists of group I mGluRs decrease 

GLAST expression (Aronica et al, 2003, Gegelashvili et al, 2000). This effect has only been 

studied using a group I mGluRs selective agonist and an antagonist. Therefore more studies 

are needed to identify the downstream signaling pathways and transcription factors involved.

The ionotropic Glu receptors (iGluRs) also regulate GLAST expression in cerebellar 

Bergmann glia. Lopez-Bayghen and Ortega demonstrated that Glu and the Glu receptor 

agonist, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), decrease GLAST 

mRNA and protein levels (Lopez-Bayghen, Espinoza-Rojo & Ortega, 2003). This variant of 

Glu receptor is Ca2+ permeable, and the consequent increase in intracellular Ca2+ is known 

to activate protein kinase C (PKC) (Burnashev, Khodorova, Jonas, Helm, Wisden, Monyer et 

al, 1992). Inhibition of PKC blocks the effect of Glu and exogenous expression of 

constitutively active PKCα mimics the effects of Glu, strongly suggesting that activation of 

PKC is necessary and sufficient for this effect (Lopez-Bayghen et al, 2003, Lopez-Bayghen 

& Ortega, 2004). They showed that exogenous expression of c-jun or c-fos, subunits of the 

transcription factor activator protein-1 (AP1), decrease GLAST levels. They also 

demonstrated that Glu, AMPA, or a PKC activator increase AP-1 binding to a sequence in 

the proximal GLAST promoter using EMSAs (Lopez-Bayghen et al, 2004). Together these 

studies demonstrate that Glu down-regulates GLAST expression through AMPA receptors 

that are coupled to PKC and AP-1 (see figure 2B). In a subsequent study, this same group 

showed that Glu and AMPA also increases the interaction of the transcription factor Ying 

Yang 1 (YY1) with the GLAST promoter, and overexpression of this transcription factor 

decreases GLAST expression (Rosas, Vargas, Lopez-Bayghen & Ortega, 2007). These 

studies suggest that the effects of AMPA may depend on both AP-1 and YY1. Using the 

same model, Poblete-Naredo and her colleagues demonstrated that insulin increases YY1 

binding to the GLAST promoter by EMSA and decreases GLAST expression (Poblete-

Naredo, Angulo, Hernandez-Kelly, Lopez-Bayghen, Aguilera & Ortega, 2009).

The cytokine, tumor necrosis factor α (TNFα), decreases GLAST protein levels (Korn, 

Magnus & Jung, 2005). However astrocytes grown in media containing dbcAMP are 

resistant to the effects of TNFα (Tilleux & Hermans, 2008). As dbcAMP simulates some 

aspects of astrocyte maturation, these results suggest that regulation of GLAST transcription 

may vary at different stages of astrocyte maturation. This effect of TNFα does not 

generalize to all molecules that decrease GLAST expression as endothelin 1 (ET1) decreases 

GLAST protein levels even in the presence of dbcAMP, PACAP, EGF or TGFα (Rozyczka, 

Figiel & Engele, 2004). Although a role for ET1-dependent regulation of GLAST has not 

been defined in vivo, increases in ET1 are correlated with decreases in GLAST levels 

observed in Alzheimer’s disease (Luo & Grammas, 2010).
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Environmental toxins also decrease GLAST expression. For example, chronic manganese 

exposure has been associated with a Parkinsonian-like disease (Kwakye, Paoliello, 

Mukhopadhyay, Bowman & Aschner, 2015). In astrocytes in culture, Mn causes a decrease 

in GLAST expression that is associated with an increase in TNFα. The decrease is blocked 

by an inhibitor of TNFα synthesis or a receptor antagonist (Lee et al, 2009). Arsenic 

exposure has also been associated with neurological dysfunction (e.g. impaired learning and 

memory, mood disorders and diminished IQ) (for a review see Tyler & Allan, 2014). 

Arsenite decreases GLAST expression, transport activity, and increases the binding of the 

transcription factors Nrf2 and AP-1 to the GLAST promoter (Castro-Coronel, Del Razo, 

Huerta, Hernandez-Lopez, Ortega & Lopez-Bayghen, 2011).

In summary, several different extrinsic signals regulate GLAST protein and mRNA. It is 

assumed that these effects are dependent upon increased transcription, but in most cases this 

has not been formally demonstrated. Several different signaling pathways have been 

implicated in this regulation (see Figure 2), but it is not clear if these pathways function 

independently. There is also a need to carefully define the specific transcription factors 

involved and the cis promoter elements required. At least two different sets of evidence 

suggest that different populations of astrocytes employ different mechanisms to control 

expression of GLAST (Gegelashvili, Civenni, Racagni, Danbolt, Schousboe & Schousboe, 

1996, Schluter et al, 2002). Therefore it is likely that as different subpopulations of 

astrocytes are molecularly characterized (for discussion see Matyash & Kettenmann, 2010, 

Rusnakova, Honsa, Dzamba, Stahlberg, Kubista & Anderova, 2013, Schitine, Nogaroli, 

Costa & Hedin-Pereira, 2015, Walz, 2000, Zhang & Barres, 2010), it will be possible to link 

differential control of GLAST expression to these subtypes.

3.2 Transcriptional Regulation of SLC1A2/GLT-1/EAAT2

The human GLT1 gene (SLC1A2) was mapped to chromosome 11 bands p13-p12 (Li & 

Francke, 1995). The mouse GLT-1 gene (Slc1a2) was mapped to the middle region of 

chromosome 2 (Kirschner, Copeland, Gilbert, Jenkins & Amara, 1994). As is observed with 

GLAST, the gene contains 10 exons that range from 127 bp to 251 bp and there is no TATA 

box in the proximal promoter. There is a GC box with five Sp1 binding sites (Su, 

Leszczyniecka, Kang, Sarkar, Chao, Volsky et al, 2003), but it is not known if these sites are 

required for GLT-1 expression. As is true for GLAST, when a bacterial artificial 

chromosome containing the human SLCA2 gene is used to control expression of enhanced 

green fluorescent protein (eGFP), expression of reporter closely correlates with GLT-1 

expression in transgenic mice (Regan et al, 2007). This suggests that transcriptional control 

is similar between the two species, and it suggests that studies of evolutionarily conserved 

domains in the promoter region may be informative.

While GLAST and GLT-1 are both enriched in astrocytes, GLT-1 expression uniquely 

correlates with synaptogenesis (Furuta et al, 1997), suggesting that GLT-1 is a marker of 

astrocyte maturation. When astrocytes are maintained in culture they assume a polygonal 

(fibroblast-like) shape. Almost forty years ago dbcAMP was demonstrated to induce a 

dramatic change in astrocyte morphology to a more stellate shape that is somewhat similar 

to that observed with mature astrocytes in vivo (Moonen, Heinen & Goessens, 1976). Two 
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groups essentially simultaneously realized that rat astrocytes in culture express little or no 

GLT-1 protein, but co-culturing astrocytes with neurons induces expression of GLT-1 in 

astrocytes (Schlag et al, 1998, Swanson et al, 1997). In fact, several subsequent studies have 

documented low levels of GLT-1 in mouse astrocyte cultures, but neurons also increase 

GLT-1 transcription in this system (Apricó, Beart, Crawford & O’Shea, 2004, Ghosh, Lane, 

Krizman, Sattler, Rothstein & Robinson, 2015, O’Shea, Lau, Farso, Diwakarla, Zagami, 

Svendsen et al, 2006). The effect of neurons is at least in part dependent upon soluble factors 

but it may also depend on contact (Drejer, Meier & Schousboe, 1983, Gegelashvili et al, 

1997, Gegelashvili et al, 2000, Yang, Gozen, Watkins, Lorenzini, Lepore, Gao et al, 2009, 

Zelenaia et al, 2000). dbcAMP mimics this effect of neurons (Eng et al, 1997, Schlag et al, 

1998, Swanson et al, 1997). Interestingly, inducing stellation using inhibitors of Rho kinase 

inhibitors also increases GLAST and GLT-1 protein, although the effect on GLT-1 is much 

larger (Lau, O’Shea, Broberg, Bischof & Beart, 2011).

Figiel and colleagues tested PACAP as a potential mediator of the effect of neurons because 

it was known that neurons release PACAP and that PACAP activates adenylate cyclase 

(Figiel et al, 2000). They showed that anti-PACAP directed antibodies or a PACAP receptor 

(PAC1 receptor) antagonist block the effects of neuron-conditioned media (Figiel et al, 

2000). Using pharmacological approaches, they also demonstrated that blocking either PKA 

or PKC attenuate the effects of PACAP, but a PKC inhibitor had a bigger effect. Inhibitors of 

NFκB also block PACAP-dependent induction of GLT-1 (Figiel et al, 2003). Expression of 

dominant-negative inhibitors of NFκB in astrocytes blocks neuron-dependent induction of 

GLT-1 (or eGFP under the control of a bacterial artificial chromosome GLT-1 promoter) 

(Ghosh, Yang, Rothstein & Robinson, 2011). Exogenous expression of either of two 

different NFκB subunits, p65 or p50, induce expression of GLT-1 and both subunits interact 

with the GLT-1 promoter in vivo as demonstrated with ChIP. This interaction was not 

observed in a tissue that does not express GLT-1 protein. While it seems logical that 

activation of cAMP and PKA would signal through CREB there is no evidence that CREB is 

activated by PACAP in astrocytes, however, neuron-conditioned media or cAMP increase 

CREB phosphorylation (activation) in astrocytes (Gegelashvili et al, 2000, Schluter et al, 

2002). The cAMP/PKA/CREB pathway has also been linked to expression of GLT-1 in vivo. 

Using chronic unpredictable stress to create an animal model of depression, Liu and 

colleagues observe decreases in cAMP, the catalytic subunit of PKA, phospho-CREB and 

GLT-1 levels (Liu, 2015). An inhibitor of phosphodiesterase type 4, prevents all of these 

changes, strongly implicating this pathway in the regulation of GLT-1 in vivo. They also find 

that inhibition of phosphodiesterase partially corrects the ‘depression phenotype’ suggesting 

that down-regulation of GLT-1 may contribute to the pathology of this disease. Together 

these studies suggest that the cAMP/PKA/CREB signaling pathway contributes to GLT-1 

regulation in vitro and in vivo, but there is also dependence of NFκB signaling (see Figure 

3A). It is not known if these two transcription factors function together or independently.

As is observed with GLAST, growth factors also increase GLT-1 expression. EGF or TGFα 
increase GLT-1 mRNA, protein levels, and GLT-1-mediated uptake in cultured cortical 

astrocytes. These effects are blocked by inhibitors of receptor tyrosine kinase, PI3K, or 

NFκB (Zelenaia et al, 2000). In a later study, we demonstrated that expression of a 

dominant-negative variant of Akt kinase blocks the effect of EGF and expression of a 
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constitutively active form of Akt mimics the effect of EGF (Li, Toan, Zelenaia, Watson, 

Wolfe, Rothstein et al, 2006). These studies are consistent with a growth factor receptor/

PI3K/Akt/NFκB pathway regulating transcription of GLT-1 (see Figure 3A). The effects of 

EGF and TGFα on GLT-1 expression have been replicated by others (Figiel et al, 2003). We 

initially found that platelet-derived growth factor (PDGF) increases GLT-1 protein levels in 

astrocyte-enriched cultures, but these effects were associated with an increase in the number 

of A2B5+ oligodendroglial precursor cells that express GLT-1 (Zelenaia et al, 2000). We 

observed no effect of PDGF on GLT-1 expression in astrocyte cultures devoid of these cells 

(Zelenaia et al, 2000), but others have reported that PDGF increases GLT-1 protein levels 

(Figiel et al, 2003). There are also differences in the effects of GDNF and brain-derived 

neurotrophic factor (BDNF). While neither GDNF nor BDNF have an effect on GLT-1 in 

one study (Figiel et al, 2003), other groups have shown that GDNF (Bonde et al, 2003) or 

BDNF (Rodriguez-Kern, Gegelashvili, Schousboe, Zhang, Sung & Gegelashvili, 2003) 

increase expression of GLT-1. The effects of BDNF are blocked by pharmacological 

inhibition of the ERK/NFκB signaling pathway (Rodriguez-Kern et al, 2003). In addition, 

the work from Lau and colleagues shows that in stellated astrocytes GLT-1 and BDNF are 

co-regulated (Lau, Kovacevic, Tingleff, Forsythe, Cate, Merlo et al, 2014, Lau, Perreau, 

Chen, Cate, Merlo, Cheung et al, 2012). These differences may reflect differential regulation 

of GLT-1 in different populations of astrocytes. It is also possible that the presence of 

neurons changes the response of astrocytes to these stimuli. Cortical astrocytes were used in 

our studies and those of Rodriguez-Kern, while Figiel and colleagues used forebrain 

astrocytes. Bonde and colleagues used organotypic slice cultures (Bonde et al, 2003, Figiel 

et al, 2003, Rodriguez-Kern et al, 2003, Zelenaia et al, 2000). It is not clear if all of the 

effects of PDGF are related to increased proliferation of the A2B5+ cells or if PDGF also has 

a direct effect on GLT-1 expression in astrocytes.

Estrogen also increases GLT-1 expression (Pawlak et al, 2005). The effects of estrogen are 

mediated through both nuclear receptors (ERα, ERß) and G-protein coupled receptor, 

GPR30. Activation of estrogen receptors increases binding of the transcription factors CREB 

and NFκB to GLT-1 promoter in EMSA and chromatin immunoprecipitation (ChIP) assays 

(Karki, Webb, Smith, Lee, Son, Aschner et al, 2013, Karki et al, 2014). Mutation of the 

putative binding site for CREB (−308), or mutation of all three NFκB binding sites (−251, 

−272 and −583) in the GLT-1 promoter block estrogen- or dbcAMP-dependent activation of 

promoter reporter constructs (Lee et al, 2012). The effects of estrogen are, at least in part 

dependent on estrogen-dependent up-regulation of TGFα that in turn serves as an autocrine 

factor to regulate GLT-1 expression by the MEK/ERK and PI3K/Akt signaling pathways 

(Karki et al, 2014, Lee et al, 2012). Other selective estrogen receptor modulators (tamoxifen 

and raloxifene) also increase TGFα mRNA and protein levels (Karki et al, 2013). 

Exogenous/over-expression of CREB, p65, or p50 activate the TGFα and the GLT-1 

promoters in promoter-reporter assays. Together these studies suggest that estrogen regulates 

GLT-1 expression through two mechanisms. First, it up-regulates expression of TGFα which 

in turn activates PI3K/Akt/NFκB and MEK/ERK/NFκB signaling pathways. It also appears 

that estrogen activates GLT-1 expression through GPR30/cAMP/PKA/CREB signaling 

pathway (see Figure 3A). Several neuroprotective roles had been attributed to estrogen (for 

discussions see Karki et al, 2014, Simpkins, Singh, Brock & Etgen, 2012), the previous 
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results suggest that some of these neuroprotective roles may be associated with the induction 

of GLT-1 expression.

Glucocorticoids also increase GLT-1 mRNA and protein levels (Autry, Grillo, Piroli, 

Rothstein, McEwen & Reagan, 2006, Zschocke, Bayatti, Clement, Witan, Figiel, Engele et 

al, 2005). The effect of the synthetic glucocorticoid, dexamethasone is blocked by 

antagonists of either the glucocorticoid or the mineralocorticoid receptors (GR and MR, 

respectively)(Figure 3A). The downstream signals or transcription factors involved in the 

regulation have not been identified, but it is thought that chronic stress results in 

glucocorticoid-dependent up-regulation of GLT-1 (Autry et al, 2006, Reagan, Rosell, Wood, 

Spedding, Munoz, Rothstein et al, 2004).

Both ATP (Frizzo, Frizzo, Amadio, Rodrigues, Perry, Bernardi et al, 2007) and adenosine 

(Wu, Lee, Kim, Johng, Rohrback, Kang et al, 2011) increase GLT-1 expression. 

Pharmacological approaches demonstrated that P2Y (ATP receptors) and A1 (adenosine 

receptors) mediate these effects. An inhibitor of ERK signaling blocks the effects of ATP. As 

described above, the effects of ERK activation are blocked by inhibitors of NFκB. This 

suggests that the effects of ATP depend upon NFκB, but this has not been examined.

As an alternate approach to identifying substances that activate cell surface receptors or 

manipulate intracellular signaling molecules, we and others have identified evolutionarily 

conserved domains with the 5’ non-coding region of Slc1a2 and used this information to 

identify cis-elements or transcription factors that control transcription. As indicated above, 

this strategy has been validated with bacterial artificial chromosome mice. For example, we 

identified sequences within the proximal promoter region (which is highly conserved, see 

Figure 1) that are required for neuron-dependent expression of reporter in astrocytes (Yang 

et al, 2009). Through sequential deletion and site-directed mutagenesis a region (−688 to 

−679) that contains cis-elements essential for GLT-1 promoter activity was identified in the 

proximal promoter. Using this sequence as ‘bait’, mass spectrometry was used to identify 

kappa B-motif binding phosphoprotein (KBBP) as a transcription factor that binds to this 

region. Knock down of KBBP was shown to reduce GLT-1 or reporter activity in mice 

engineered to express eGFP under the control of the complete human GLT-1 gene. 

Decreased expression of KBBP correlates with the loss of eGFP observed in ricin-induced 

lesions or in an animal model of ALS.

Allritz and colleagues examined basal promoter activity upon transduction of rat or fetal 

human astrocytes (Allritz, Bette, Figiel & Engele, 2010). They found that deletions of 

nucleotides -216 through -502 in human promoter or -399 through -557 of the rat promoter 

sequence dramatically reduce reporter activity (Allritz et al, 2010). It is somewhat unclear 

how to interpret these results because cultured rat astrocytes, unlike cultured mice 

astrocytes, don’t normally express much GLT-1. Therefore, these elements may or may not 

be important for the increase in GLT-1 that is observed upon astrocyte maturation.

While the proximal 2.5kb promoter of GLT-1 gene is highly conserved and has been well 

characterized, there are several additional evolutionary conserved domains distal to this 

region out to ~12.5kb from the translation start site (Figure 1) (Ghosh et al, 2015). Analyses 
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of promoter reporter mice generated by Rothstein and his colleagues have revealed that the 

proximal 7.9 kb of the promoter is not sufficient to direct astrocytic expression of reporter 

protein, reporter is observed mostly in neurons (Rothstein unpublished observations; for 

discussion, see Ghosh et al, 2015). When 8.3 kb of promoter is used to control expression, 

reporter protein is essentially exclusively found in astrocytes, but not all astrocytes express 

the reporter (Yang, Vidensky, Jin, Jie, Lorenzini, Frankl et al, 2011). These studies have 

three implications. First, they suggest that the region between 7.9 and 8.3 kb is required to 

direct astrocytic expression. In fact, we recently showed that Pax6 interacts with this region 

in vitro (EMSA) and in vivo (ChIP). ShRNA directed knockdown of Pax6 attenuates 

neuron-dependent induction of GLT-1 and exogenous expression of Pax6 increases GLT-1 

expression (Ghosh et al, 2015). Secondly, these data suggest that different subtypes of 

astrocytes engage different mechanisms to control expression of GLT-1 in vivo. A similar 

conclusion has been drawn from in vitro analyses (Drejer et al, 1983, Gegelashvili et al, 

1996, Schluter et al, 2002). Finally, these studies suggest that the evolutionarily conserved 

domains that are distal to 8.3 kb are important for expression of GLT-1 in a subtype of 

astrocytes. This has not been explored.

Rothstein and colleagues used a screen of 1,040 FDA-approved drugs, to identify β-lactam 

antibiotics that increase GLT-1 levels. To understand the mechanism, they used reporter 

promoter assays in-vitro and in-vivo, and found that this promoter was activated by the β-

lactam antibiotics ceftriaxone and amoxicillin (Rothstein, Patel, Regan, Haenggeli, Huang, 

Bergles et al, 2005). They also demonstrated that ceftriaxone induces neuroprotection in 

mouse models of oxygen glucose deprivation, threo-hydroxyaspartate-induced motor neuron 

loss, and in a mouse model of ALS with the gene of superoxide dismutase 1 mutated 

(Rothstein et al, 2005). Since this time over 100 papers have been published most of them 

demonstrate a neuroprotective role of ceftriaxone and other β-lactam antibiotics (for review 

see Fontana, 2015, Soni et al, 2014). However the molecular mechanism responsible the 

effect are not well understood. Lee and colleagues demonstrated that NFκB inhibitors block 

ceftriaxone-dependent GLT-1 expression (Lee, Su, Emdad, Gupta, Sarkar, Borjabad et al, 

2008). They showed that ceftriaxone increases the binding of NFκB to GLT-1 promoter 

using EMSA. They demonstrated that mutation of GLT-1 promoter at −272 blocks the effect 

of ceftriaxone but is also reduces basal activity. Finally, they demonstrated that ceftriaxone 

induces translocation of p65 to the nucleus and the degradation of IkBa (Lee et al, 2008). 

These results strongly suggest that NFκB is responsible for the effect of ceftriaxone, 

however it is still not known how ceftriaxone activates NFκB.

Besides ceftriaxone, several other drugs that increase GLT-1 expression are also 

neuroprotective. A similar screening assay was used to identify harmine, a β -carboline 

alkaloid, which increases GLT-1 protein and mRNA levels (Li, Sattler, Yang, Nunes, 

Ayukawa, Akhtar et al, 2011). Riluzole, an anti-convulsant agent, also increases GLT-1 

protein and Glu uptake (Azbill, Mu & Springer, 2000, Carbone, Duty & Rattray, 2012). 

Together these data suggest that increasing the expression of GLT-1 may be neuroprotective, 

but there is evidence that over-expression of GLT-1 can also exacerbate the damage observed 

with certain acute insults (Li, Hala, Seetharam, Poulsen, Wright & Lepore, 2015, Poulsen, 

Schousboe, Sarup, White & Schousboe, 2006).
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Not surprisingly, GLT-1 transcription is also regulated in other subtypes of glia. In some 

cases the regulation appears to parallel that observed in astrocytes. For example, neuron 

conditioned medium increases Glu uptake and GLT-1 protein in primary cultures of 

microglia (Nakajima, Yamamoto, Kohsaka & Kurihara, 2008). In other cases, the regulation 

is opposite to that observed in astrocytes at least in vitro. While TNFα decreases GLT-1 

expression in most experiments using astrocytes (Boycott, Wilkinson, Boyle, Pearson & 

Peers, 2008, Sitcheran, Gupta, Fisher & Baldwin, 2005, Su et al, 2003), it increases 

expression of GLT-1 in activated microglia (Persson, Brantefjord, Hansson & Ronnback, 

2005). In oligodendroglia, TNFα decreases GLT-1 expression (Pitt et al, 2003). In patients, 

with multiple sclerosis, the levels of GLT-1 in oligodendrocytes are decreased in areas of 

active lesions (Pitt et al, 2003). The fact that TNFα levels are increased in these same lesions 

suggests that TNFα may contribute to the loss of GLT-1 in these patients.

Some of the transcription factor(s) that underlie suppression of GLT-1 expression in 

astrocytes have been identified. Although NFκB binding to the promoter contributes to 

activation (see above), Sitcheran and colleagues used both EMSA and DNA-based affinity 

purification to demonstrate that TNFα increases NFκB binding to GLT-1 promoter 

(Sitcheran et al, 2005). These results support a bidirectional regulation of GLT-1 by NFκB. 

When it is activated by EGF/TGFα (or presumably neurons), it increases GLT-1 expression, 

however when activated by TNFα, it decreases GLT-1 expression. Sitcheran and colleagues 

found that TNFα increases the binding of N-myc to the GLT-1 promoter. This transcription 

factor also contributes to GLT-1 repression, as its overexpression decreases basal and NFκB-

induced activation of GLT-1 (Sitcheran et al, 2005). Together these studies suggest that the 

interaction of NFκB with other transcription factors may regulate the direction of the effect 

of NFκB. The TNFα-dependent repression of GLT-1 has been associated with the decrease 

in GLT-1 expression observed after hypoxia (Boycott et al, 2008). The interaction of N-myc 

with the promoter is high at post-natal day 0 and decreases as GLT-1 expression increases 

during development (Gupta & Prasad, 2014). Thus, it is possible that repression of the 

GLT-1 promoter may contribute to the low expression observed early in development.

In addition to NFκB and N-myc, TNFα also increases the binding of the transcription factor 

YY1 to the GLT-1 promoter. Exogenous expression of YY1 decreases GLT-1 promoter 

activity. Furthermore, mutation of the ‘putative’ YY1 binding site in the GLT-1 promoter or 

expression of siRNA directed against YY1 increases GLT-1 promoter activity, suggesting 

that YY1 represses basal GLT-1 expression (Karki, Webb, Smith, Johnson, Lee, Son et al, 

2014). Interestingly NFκB is itself a regulator of YY1 expression as exogenous expression 

of p65 activates the promoter of YY1 (Karki et al, 2014)(Figure 3B). Exogenous expression 

of p65 increases GLT-1 promoter activity, however when p65 is expressed with YY1 there is 

a decrease in GLT-1 promoter activity (Karki et al, 2014). Thus as is observed with N-myc, 

binding of YY1 to the GLT-1 promoter switches the effect of NFκB from activation to 

suppression.

TNFα also increases the expression of the chemokine, macrophage inflammatory protein-2γ 
(MIP2γ) in astrocytes (Fang, Han, Hong, Tan & Tian, 2012). Exogenous expression of 

MIP2γ decreases GLT-1 mRNA and protein, localization of GLT-1 in raft domains and Glu 

uptake. In fact, inhibition of signaling pathways that normally activate the GLT-1 promotor 
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(e.g. NFκB, PI3K, PKA, MEK/ERK), block MIP2γ-dependent suppression of the promoter 

(Fang et al, 2012)(see Figure 3). This suggests that the ability of TNFα to switch activation 

to repression may extend to other signals.

Other extracellular stimuli also seem to switch signals that normally result in promoter 

activation to signals that suppress the GLT-1 promoter. For example, endothelins decrease 

GLT-1 protein levels and this effect is blocked by an inhibitor of PKA (Rozyczka et al, 

2004). Dopamine also decreases GLT-1 protein and mRNA in astrocytes isolated from 

striatum (Brito, Rozanski, Beyer & Kuppers, 2009). Using pharmacological tools the authors 

demonstrate that D1 receptors mediate this effect. Although the downstream signaling 

components responsible for GLT-1 repression have not been identified, D1 receptors are 

normally coupled to increased cAMP and might be expected to activate the PKA signaling 

pathway (Figure 3B).

Several signals suppress GLT-1 expression. For example, retinoic acid or a specific retinoid 

× receptor (RXR) agonist decrease GLT-1 levels (Chan, Her, Liaw, Chen & Tzeng, 2012). 

The authors demonstrate that retinoic acid increases the binding of RXR to the retinoic acid 

response element (RARE) at −632 to −612 of GLT-1 promoter using EMSA (Chan et al, 

2012). Aronica and colleagues demonstrated that DHPG, a specific agonist of group 1 

mGluRs, decreases GLT-1 protein levels (Aronica et al, 2003). Antagonists of mGluR1 

block the loss of GLT-1 observed after transient global ischemia, suggesting the mGluR1 

activation may stimulate the loss of GLT-1 observed with these insults (Chen, Hsu-Chou, Lu, 

Chiang, Huang, Wang et al, 2005).

Amyloid-β (Aβ) peptides, the major component of amyloid plaques observed in 

Alzheimer’s disease, decrease Glu uptake and GLT-1 protein levels. Aβ increases the 

phosphorylation/activation of ERK, JNK and p38 MAPK. p38 MAPK is activated by 

oxidative stress, accordingly trolox, an antioxidant, blocks the Aβ-dependent decrease in 

Glu uptake (Matos, Augusto, Oliveira & Agostinho, 2008). Human cytomegalovirus 

infection can result in birth defects that affect primarily the CNS. Infection of astrocytes 

with this virus decreases expression of GLT-1, GLAST and glutamine synthetase. Except for 

the fact that inhibition of PKC blocks these effects, nothing is known about the mechanisms 

involved (Zhang, Li, Wang, Qian, Song & Hu, 2014). Down-regulation of GLT-1 also has 

been implicated in human immunodeficiency virus (HIV)-associated dementia (Wang, 

Pekarskaya, Bencheikh, Chao, Gelbard, Ghorpade et al, 2003). An HIV-inducible gene, 

astrocyte-elevated gene (AEG), decreases GLT-1 promoter activity. The phosphatase and 

tensin homolog (PTEN), a negative regulator of PI3K/Akt signaling, mimics the effect of 

AEG (Kang, Su, Sarkar, Emdad, Volsky & Fisher, 2005).

From these analyses, it has become clear that many different signals can increase 

transcription of GLT-1 and under certain circumstances these signals can switch from 

induction to suppression. Many of these signals have been implicated in the loss of GLT-1 

that is observed in various neurologic insults. Although no unifying concepts have emerged, 

it seems likely that these studies will provide mechanistic insights into the pathogenesis of 

various disease processes. Several groups are also focused on therapeutically targeting 

GLT-1 expression (for recent review, see Takahashi, Foster & Lin, 2015).

Martinez-Lozada et al. Page 15

Adv Pharmacol. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3 Transcriptional Regulation of SLC1A1/EAAC1/EAAT3

The gene that encodes human EAAC1 (SLC1A1) was localized to chromosome 9 band p24 

using fluorescence in situ hybridization (Smith, Weremowicz, Kanai, Stelzner, Morton & 

Hediger, 1994). The mouse homolog is located in chromosome 19 at the centromere (http://

www.ncbi.nlm.nih.gov/gene). In comparison to GLAST and GLT-1, there is much less 

evolutionarily conserved sequence in the 5’ non-coding region for the EAAC1 gene (Figure 

1). To date, no bacterial artificial chromosome EAAC1 reporter mice have been generated. 

Therefore, it is possible that the elements required for in vivo expression are relatively small. 

It is also possible that the control of EAAC1 expression is different in mice and humans. In 

fact, there is one example of differential expression (see below).

Several studies have suggested that EAAC1 may be more important for the synthesis of the 

anti-oxidant glutathione than for the clearance of neurotransmitter pools of Glu by importing 

cysteine (and possibly Glu) (Aoyama & Nakaki, 2013). For example, in mice deleted of 

EAAC1 there is a delayed neuronal degeneration that is associated with decreased 

glutathione; this damage is blocked by N-acetylcysteine (Aoyama, Suh, Hamby, Liu, Chan, 

Chen et al, 2006, Berman, Chan, Brennan, Reyes, Adler, Suh et al, 2011). Consistent with 

this general role of EAAC1, evolutionarily conserved antioxidant responsive elements 

(ARE) are found in the promoter (Escartin, Won, Malgorn, Auregan, Berman, Chen et al, 

2011). One of the transcription factors that bind to these elements is nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2). In fact, activators of Nrf2 or exogenous expression of 

Nrf2 increase EAAC1 expression in C6 glioma cells that endogenously express EAAC1 and 

not the other transporters (Escartin et al, 2011). They also demonstrated that Nrf2 binds to 

the ARE sequence in the EAAC1 promoter in vivo (Figure 4). Selective expression of Nrf2 

in neurons in vivo increases both EAAC1 and glutathione levels (Escartin et al, 2011).

Ma and colleagues identified a binding site for the regulatory factor X1 (RFX1) in human 

EAAC1 promoter. Using C6 and SH-SY5Y cell lines, the authors demonstrated that 

transfection of RFX1 increases both EAAC1 protein levels and activates a promoter reporter. 

In addition knockdown of RFX1 decreases EAAC1 expression in cultured rat cortical 

neurons (Ma, Zheng & Zuo, 2006).

Bianchi and colleagues demonstrated that all trans retinoic acid (ATRA) treatment increases 

EAAC1 mRNA and protein levels in C6 glioma (Bianchi, Gazzola, Tognazzi & Bussolati, 

2008)(Figure 4). An agonist for the retinoic acid receptor β (RARβ) or exogenous 

expression of this receptor mimics the effect of ATRA. It appears that this effect is 

dependent on synthesis of an intermediary protein as a protein synthesis inhibitor blocks the 

ATRA-dependent increase in mRNA. RARβ expression increases after ATRA treatment, 

suggesting that RARβ may be the intermediate of ATRA-dependent EAAC1 increase. 

Accordingly they identified two putative-binding sites for RARβ (at −191 and −2696) in 

EAAC1 rat promoter (Bianchi, Gazzola, Cagnin, Kagechika & Bussolati, 2009). This site is 

not evolutionarily conserved; therefore it is not clear if these effects will extend to humans.

As mentioned above, neurons regulate expression of the astrocytic transporters. Although 

essentially nothing is known about the mechanism, there is a reciprocal interaction; 

astrocyte-conditioned media increases expression EAAC1 (Canolle, Masmejean, Melon, 
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Nieoullon, Pisano & Lortet, 2004). It is also interesting to note that the circadian rhythm 

changes EAAC1 expression in a region-dependent fashion (Cagampang, Rattray, Powell, 

Chong, Campbell & Coen, 1996). The signaling pathway (s), transcription factor(s) or cis-

elements responsible of this regulation have not been identified. Finally, EAAC1 levels are 

decreased in mice deleted of mGluR2, suggesting that mGluR may regulate basal expression 

of EAAC1 (Lyon et al, 2008).

3.4 Transcriptional Regulation of SLC1A6/EAAT4 and SLC1A7/EAAT5

The human EAAT4 gene (SLC1A6) localizes to chromosome 19 band 13.12. The mouse 

gene (Slc1a6) is mapped in chromosome 10 in the centromeric region (http://

www.ncbi.nlm.nih.gov/gene). Gincel and colleagues generated promoter reporter mice using 

a bacterial artificial chromosome containing the human EAAT4 gene plus 107kb of upstream 

sequence and 54kb downstream of the last exon (Gincel, Regan, Jin, Watkins, Bergles & 

Rothstein, 2007). The expression of reporter protein correlates with EAAT4 protein, 

suggesting that there is evolutionary conservation of transcriptional regulation. Essentially 

nothing is known about the transcriptional regulation of EAAT4, except that subjecting rats 

to chronic restraint stress lowers EAAT4 protein levels (Zink, Vollmayr, Gebicke-Haerter & 

Henn, 2010).

The human EAAT5 gene (SLC1A7) localizes to chromosome 1 band 32.3, and the mouse 

gene (Slc1a7) is mapped in the centromere of chromosome 4 (http://www.ncbi.nlm.nih.gov/

gene). Nothing is known about the events that control transcriptional regulation of EAAT5.

3.5 Epigenetic Regulation

As is true for transcriptional regulation, most studies of epigenetic regulation have focused 

on just two transporters, GLAST and GLT-1. There is evidence that methylation contributes 

to the different expression patterns and localization during brain development (Danbolt, 

2001, Freeman, 2010, Furuta et al, 1997, Perisic, Holsboer, Rein & Zschocke, 2012).

DNA methylation is mediated by a family of DNA methyltransferases (DNMT), these 

enzymes transfer a methyl group from S-adenosyl-L-methionine to the carbon 5 of cytosine. 

Normally this methylation occurs in CpG islands which are defined by repeats of the 

nucleotides cytosine and guanine that occur 10–20 times more frequently than would be 

expected to occur by chance (e.g. 1 in 16). Generally it is thought that hyper-methylation 

reduces transcription and hypo-methylation increases transcription (Robertson & Wolffe, 

2000); methylation may preclude binding of transcription factors (Perisic et al, 2012).

The GLT-1 promoter has several CpG islands (−1473 to −1146, −685 to −491, −247 to −20, 

etc) that are methylated (Yang, Gozen, Vidensky, Robinson & Rothstein, 2010, Zschocke, 

Allritz, Engele & Rein, 2007), and as expected there are several evolutionarily conserved 

putative transcription factor binding sites in these regions (Su et al, 2003). There are a 

couple of studies to suggest that demethylation of the GLT-1 promoter is required for 

transcriptional activation. First, co-culturing neurons with astrocytes reduces methylation of 

the GLT-1 promoter and differential methylation is associated with different gel shifts by 

EMSA (Yang et al, 2010). Second, differential methylation of the GLT-1 promoter also 

contributes to the region-specific effects of glucocorticoids; in forebrain, where the promoter 
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is hypo-methylated, they up-regulate GLT-1 expression and in brainstem/cerebellum, where 

the region is hyper-methylated, they have no effect (Zschocke et al, 2005)(Figure 3).

Several diseases that result in lower transporter expression are associated with changes in 

methylation. For example, hypermethylation of the GLT-1 promoter is observed in brain 

tumors. It has been suggested that this contributes to the decreased expression of GLT-1 

observed with some of these tumors and that this decrease allows for excitotoxic expansion 

of the tumor (Groot, Liu, Fuller & Yung, 2005). Abnormal control of methylation underlies 

the basis of Rett syndrome, a neurodevelopmental disorder caused by mutations in the 

DNMT methyl-CpG-binding protein 2 (MeCP2), that results in dysregulation of both 

GLAST and GLT-1 (Amir, Van den Veyver, Wan, Tran, Francke & Zoghbi, 1999, Dunn & 

MacLeod, 2001, Guy, Hendrich, Holmes, Martin & Bird, 2001, Okabe, Takahashi, 

Mitsumasu, Kosai, Tanaka & Matsuishi, 2012). In patients who have died of ALS, there is 

evidence that hypermethylation of the GLT-1 promoter correlates with the decrease of GLT-1 

expression (Yang et al, 2010).

Histone modifications also play an important role in epigenetic regulation. Two enzymes 

carry out histone modifications: histone acetyltransferases (HATs) and histone deacetylases 

(HDACs). HATs acetylate the ε-amino group of lysine residues in histones, and HDACs 

remove this acetyl group (for review see Kuo & Allis, 1998).

HDAC inhibitors like trichostatin A and valproic acid (VPA) increase the expression of 

EAATs. For example, VPA increases the levels of GLAST, GLT-1 and EAAC1 mRNA and 

protein in astrocytes and oligodendrocytes (Bianchi, Franchi-Gazzola, Reia, Allegri, Uggeri, 

Chiu et al, 2012, Hassel, Iversen, Gjerstad & Tauboll, 2001, Rosas et al, 2007). The fact that 

only 1 to 7% of all genes are thought to be regulated by HDACs (Butler & Bates, 2006) and 

that all the EAATs that had been studied to date are regulated by HDACs suggest that 

epigenetic regulation of this family of transporters may be important.

In addition to modification of histones, HATs and HDAC also acetylate and de-acetylate 

transcription factors. VPA decreases binding of the transcription factor YY1 to the GLAST 

promoter (Aguirre, Rosas, Lopez-Bayghen & Ortega, 2008) and increases GLAST mRNA 

and protein levels in cerebellum and hippocampus (Hassel et al, 2001, Rosas et al, 2007, 

Ueda & Willmore, 2000)(Figure 2A). There is also evidence that the HATs, p300 or 

p300/CBP associated factor, acetylate YY1, while HDACs de-acetylate YY1 (Yao, Yang & 

Seto, 2001). Although VPA is not a particularly selective drug, it is tempting to speculate 

that VPA regulates GLAST expression by modulating acetylation of YY1. This has not been 

directly tested.

VPA also regulates the expression of GLT-1, but the direction of the effect is region 

dependent. It increases expression in cortex and hippocampus and decreases expression in 

cerebellum (Perisic et al, 2012). There is evidence that this effect is influenced by 

methylation of the promoter; thus interactions between methylation and acetylation likely 

regulate GLT-1 expression.
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4. Conclusions and summary

During the last 15 years, several groups examined the signals that regulate expression of the 

two astroglial Glu transporters. Together these studies identify a complex web of signals that 

either up- or down-regulate expression of these transporters. In some cases, these signals 

converge on seemingly common transcription factors. In other cases, the direction of an 

effect caused by one signal can be switched by the presence of a second signal. While many 

of the signals regulate both transporters, there are differences that may underlie the unique 

maturation-associated increases in GLT-1. Although it has not been the topic of extensive 

analysis, it seems likely that different populations of astrocytes engage different mechanisms 

to control expression of these transporters. Developing an understanding of the mechanisms 

involved may lead to new insights into the mechanisms that generate astrocyte heterogeneity. 

Epigenetic modifications seem likely to contribute to this differential control but this is still 

relatively unexplored. Virtually every neurologic disease is associated with altered 

expression of one or both of these transporters. Several recent studies have implicated 

specific pathways in the loss of transporters observed in various models of disease. While 

there is hope that this approach will lead to new therapies, it will certainly help define 

pathways that are dysregulated and thereby presumably lead to a better mechanistic 

understanding of the pathogenesis of disease. Remarkably, there have been relatively few 

analyses of the other three transporters. It is somewhat surprising that there have been so few 

analyses of EAAC1. This might be an ideal target given its known role in limiting oxidant-

mediated damage, however the low evolutionary conservation in the promoter region may be 

hindering the identification of cis and trans elements involved in the regulation of 

transcription. This low conservation may also have implications for extensions to humans.
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Aβ Amyloid beta

AEG Astrocyte elevated gene-1

ALS Amyotrophic Lateral Sclerosis
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AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AP-1 Activating protein-1

ARE Antioxidant response element

ATRA All trans retinoic acid

BDNF Brain derived neurotrophic factor

bFGF Basic fibroblast growth factor

ChIP Chromatin immunoprecipitation

CREB cAMP response element binding protein

dbcAMP dibutyryl-cyclic AMP

DNMT DNA methyltransferase

dsRFP Discosoma red fluorescent protein

EAAC1 excitatory amino acid carrier-1

EAATs excitatory amino acid transporters

EGF Epidermal growth factor

eGFP enhanced green fluorescent protein

EMSA Electrophoretic mobility shift assay

ERK Extracellular signal-regulated kinase

ET1 Endothelin 1

FGF Fibroblast growth factor

GDNF Glial cell line-derived neurotrophic factor

GLAST Glutamate/aspartate transporter

GLT1 Glutamate transporter 1

Glu L-Glutamate

GPR30 G protein-coupled receptor 30

HAT Histone acetyltransferase enzyme

HDAC Histone deacetylases

HIV Human immunodeficiency virus

IGF-1 Insulin-like growth factor-1

iGluRs Ionotropic glutamate receptors
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JAK Janus kinase

KBBP kappa-B motif-binding phosphoprotein

LPS lipopolysaccharide

MeCP2 Methyl CpG binding protein 2

mGluRs Metabotropic glutamate receptors

NFκB Nuclear factor kappa-B

Nrf2 Nuclear factor (erythroid-derived)-like 2

MEK Mitogen-extracellular signal regulated kinase

PACAP Pituitary adenylate cyclase-activating polypeptide

PDGF Platelet-derived growth factor

PI3K Phosphatidylinositol-4,5-bisphosphate 3 kinase

PKA Protein kinase A

PKC Protein kinase C

PTEN Phosphatase and tensin homolog

RARβ Retinoic acid receptor β

RARE Retinoic acid response element

RFX1 Regulatory factor X 1

RXR Receptor X retinoide

Sp1,Sp3 Stimulating protein 1 and 3

STAT Signal Transducer and Activator of Transcription

TGFα Transforming growth factor – α

TNFα Tumor necrosis factor α

USF1 Upstream stimulating factor

VPA Valproic acid

YY1 Ying Yang 1
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Figure 1. Schematic representation of evolutionary conserved domains in the promoter regions of 
Glu transporters
The mouse and human homologs of the genes encoding GLAST, GLT-1, EAAC1, EAAT4 or 

EAAT5 were aligned using an online resources (DCODE database; http://

ecrbase.dcode.org). Rectangular boxes represent evolutionary conserved domains, defined as 

regions of ≥70% homology for at least 100 nucleotides. It is important to remember that 

enhancer elements can be outside the regions aligned and that some of the distal conserved 

regions may not be involved in transport regulation and may instead, regulate the 

neighboring gene.
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Figure 2. Schematic representation of the signaling pathways that regulate transcription of 
GLAST/EAAT1/SLC1A3
Several signaling pathways activated in response to extracellular molecules regulate the 

expression of GLAST by activating transcription factors that interact with cis elements in the 

promoter. The pathways that increase or decrease GLAST transcription are depicted in 

different schematics (Panel A & B, respectively). For a detailed description see the text. TX: 

Tamoxifen, E2: Estrogen, Glu: Glu, AC: adenylate cyclase, ET1: endothelin-1, ETA, ETB: 

Endothelin receptors A and B.
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Figure 3. Schematic representation of the signaling pathways that regulate transcription of 
GLT-1/EAAT2/SLC1A2
Several signaling pathways activated in response to extracellular molecules regulate the 

expression of GLT-1 by activating transcription factors that interact with cis elements in the 

promoter. The pathways that increase or decrease GLT-1 transcription are depicted in 

different schematics (Panel A & B, respectively). For a detail description see the text. TX: 

tamoxifen, E2: estrogen, AC: adenylate cyclase, GR: glucocorticoid receptor, MR: 

mineralocorticoid receptor.
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Figure 4. Schematic representation of the signaling pathways that regulate transcription of 
EAAC1/EAAT3/SLC1A1
Extracellular signals and transcription factors that have been associated with an increase in 

EAAC1 expression are shown. For a detail description see the text. ACM: astrocyte 

conditioned media, ROS: reactive oxygen species.
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