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Abstract

We introduce a fast information matching (FIM) method for transforming time domain data into 

spatial images through handshaking between fast and slow degrees of freedom. The analytics takes 

advantage of the detailed time series available from biomolecular computer simulations, and it 

yields spatial heat maps that can be visualized on 3D molecular structures or in the form of 

interaction networks. The speed of our efficient mutual information solver is on the order of a 

basic Pearson cross-correlation calculation. We demonstrate that the FIM method is superior to 

linear cross-correlation for the detection of nonlinear dependence in challenging situations where 

measures for the global dynamics (the “activity”) diverge. The analytics is applied to the detection 

of hinge-bending hot spots and to the prediction of pairwise contacts between residues that are 

relevant for the global activity exhibited by the molecular dynamics (MD) trajectories. Application 

examples from various MD laboratories include the millisecond bovine pancreatic trypsin inhibitor 

(BPTI) trajectory using canonical MD, a Gaussian accelerated MD folding trajectory of chignolin, 

and the heat-induced unfolding of engrailed homeodomain (EnHD). The FIM implementation will 

be freely disseminated with our open-source package, TimeScapes.
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Introduction

Molecular dynamics (MD) simulation of biomolecular structures has been termed a 

“computational microscope”1,2 the detailed imaging of the spatial domain, whereas the 

complexity of MD data mostly lies in the temporal domain, as detailed trajectories of each 

atom are recorded. What has been missing was a direct link between the detailed time 

domain data of MD and a static, spatial image that can visualize the functionally relevant 

time-dependent information contained in long trajectories. Here, we provide such a link by 

presenting a fast information matching (FIM) method that transforms time-domain 

information into spatial heat maps.

The newly developed FIM computes the mutual information between the fast, local rates of 

change of user-selected, functionally relevant variables with the slow, global rate of change 

(the “activity”) of the simulated system. The idea of fast variables enabling slow 

conformational changes has been prominently proposed for the dynamics of adenylate 

kinase by Kern et al.3 The novelty of our approach is in using the bridging between fast and 

slow modes to enable spatial imaging, where the user is free to choose a modality of interest 

for the heat-map analysis.

In this work, we have explored two heat-map modalities that were introduced with the 

Python-based TimeScapes package:4 Hinge bending of proteins and pairwise residue 

distance geometry.

• The turning.py tool performs a mapping of functionally important residues 

whose fast, local backbone-turning motion (hinge bending) exhibits a statistical 

dependence on the slow, global dynamics. The modality is based on “pivot 

residue” pseudodihedral angles defined by four consecutive α carbons,5 whose 

absolute time differentials are compared against a global activity function that 

tracks the slow time scale change in the structure (such as returned by 

agility.py or terrain.py in TimeScapes,4 see Methods).

• The tagging.py tool also performs a mapping of functionally important 

residues. However, the analysis is based on pairwise residue distances whose 

absolute time differentials exhibit a statistical dependence on the slow, global 

activity (or with a user-specified external order parameter). This approach 

originated in the analysis of the millisecond BPTI simulation, where the heat 

maps (Figure S9 in Shaw et al.6) were based on a correlation of the fast variables 

with the membership of specific conformational clusters (Table S2 in Shaw et 

al.6). In the current paper we generalize the idea to report on the importance of 

specific pairs of amino acid contacts for the global dynamics exhibited by the 

MD trajectory.

Our analytics of fast and slow time series can be performed either with the Pearson cross-

correlation or with the new FIM approach introduced in this paper. The statistical ranking of 

degrees of freedom is necessary because the raw time series in an MD trajectory exhibits 

significant noise from trajectory striding and thermal fluctuations. For example, the rate of 

change of “pivot residue” dihedral angles used in Figure 1(a,c) is on the order of π/2 (Figure 
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S1). It is therefore necessary to characterize the desired modalities with a statistical 

approach. The new FIM approach introduced here has the advantage of detecting nonlinear 

relationships due to the use of mutual information, whereas the Pearson correlation is 

restricted to linear dependence. (One of our test cases, EnHD, provides a striking example of 

the differences between the CC and MI approaches.) The statistical heat maps can then be 

projected back to residue space, yielding a localization of functional hot spots on a 3D 

atomic structure.

We demonstrate our computational methods on three trajectories from diverse simulation 

approaches: (1) The millisecond-length bovine pancreatic trypsin inhibitor (BPTI) trajectory 

by Shaw et al.6 This groundbreaking canonical MD trajectory remains relatively stable, with 

only five essential conformations that are visited repeatedly. The limited conformational 

variability and long simulation time provide a gold standard of sampling for both hinge 

bending and pairwise-distance geometry. (2) The chignolin folding trajectory simulated by 

the McCammon group with Gaussian accelerated molecular dynamics (GaMD).7 This 300 

ns trajectory of a small peptide (10 residues) exhibits rapid folding dynamics on a modified 

energy landscape that accelerates the folding dynamics by 4–5 orders of magnitude. The 

trajectory illustrates the use of the “pivot residue” dihedral angles for detecting a key residue 

involved in the folding process. (3) A 60 ns engrailed homeodomain (EnHD) unfolding 

trajectory from the Dynameomics project of the Dagget group.8 Our pairwise-distance-

geometry analytics highlights specific contacts that are lost during the heat-induced 

unfolding of the protein.

The paper is organized as follows: In Methods, we first describe the statistical approach for 

the analysis and the existing art of using TimeScapes, in particular with respect to detection 

of the necessary slow activity functions. This introduction is followed by the development of 

the FIM methodology. In Results, we describe applications of our methods to the three 

trajectories of interest. We provide some general guidelines for the choice of parameters. In 

Conclusions, we discuss advantages and limitations of our FIM approach and topics for 

future research.

Methods

Statistical Characterization of Time Series by Handshaking between Fast and Slow 
Degrees of Freedom

Let {Xi(t)} be a family of “local” user-selected, real-valued variables that can be indexed by 

primary or tertiary location in the protein structure (e.g., the Xi(t) can be attributed to a 

residue or residue pair denoted by a suitably chosen indexing scheme i). In addition, we 

assume that the Xi(t) are “fast” variables, that is, they exhibit fluctuations on time scales on 

the order of the frame length of the discrete MD trajectory. Furthermore, let a(t) denote a 

“slow” non-negative activity function that describes the “global” rate of change of the 

simulated system over long time scales (as introduced by Wriggers et al.4 and described in 

the following). Finally, let I(f,g) denote a statistical measure of dependence of two discrete 

random variables f and g (such as Pearson cross-correlation or MI). The coefficient
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(1)

then provides an estimate of the spatial importance of local changes in the protein structure 

for global activity. The RXi,a values can be used to rank all members of the family {Xi(t)}, 

which, after appropriate mapping to spatial features i, yields a heat map of the importance of 

the fast, local variables for the slow, global activity. Our transformation of time series data to 

spatial images is generalizable to any type of user-selected imaging modality X(t). In this 

paper, however, we restrict our discussion to the pivot angles and pairwise residue distances 

mentioned above.

Existing Art: TimeScapes

TimeScapes is a Python-based program package that can be used to efficiently detect and 

characterize significant conformational changes in simulated biomolecular systems.4 

TimeScapes was originally developed by Willy Wriggers et al. while at D. E. Shaw 

Research, and following its release into the public domain, it is now disseminated on our 

academic Web site, http://timescapes.biomachina.org. The earlier paper4 provides the best 

reference for the originally intended event detection and activity monitoring applications.

We have pointed out above that the programs tagging.py and turning.py make use of 

slow, global activity rate functions to perform a mapping of residues relevant to the global 

activity. There are two types of activity functions supported, one of which is further 

subdivided into two variants: (1) The RMS fluctuation of Cartesian coordinates in a 

Gaussian-weighed sliding window are computed with agility.py. (2) The package also 

makes use of a coarse-grained model to reduce the level of detail in the spatial 

representations of long MD trajectories. TimeScapes decomposes structural changes into 

side chain contact-forming and -breaking activity using the terrain.py tool. The activity 

may be computed from changes in a cutoff-based nearest-neighbor graph or from a so-called 

Generalized Masked Delaunay graph.4 A total of three activity functions were thus available 

for comparison.

The major innovation introduced in this paper is the development of the FIM method and its 

porting to the existing TimeScapes tools. Detailed usage examples will be described in the 

Results.

Mutual Information

Let f, g be discrete, real-valued random variables defined on a probability space Ω. In our 

context, these variables will have finite sets of values, say Vf and Vg, respectively, and Ω 
itself will be a finite set, each of whose points has equal probability. The entropy of f is 

defined as
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(2)

where pf is the probability density function of f. The joint entropy of the pair (f,g) is defined 

similarly as

(3)

where pf,g is the joint probability density function. The mutual information of the variables f, 
g is defined as

(4)

which can easily be written as

(5)

and also as an expectation:

(6)

where M = |Ω| and Ω = {x1,…,xM}. Further details regarding these concepts can be found in 

the book by Cover and Thomas.9

If the random variables are not discrete, the above equations give approximations in terms of 

samples, in which case a problem arises as to the accurate estimation of the probability 

density functions involved. A second problem is how to reduce the computational 

complexity.

Several approaches have been proposed to address these issues. Bernhard and Kubin10 

improved an earlier algorithm by Fraser,11 which is based on recursively partitioning the 

value space of the random variables as a way to obtain a histogram for the estimation of the 

joint probability density functions. This approach has the attractive feature of having a 

complexity that is linear in the dimension of the random variables (as opposed to Fraser's 

algorithm, which is exponential), but like Fraser's, its complexity in M is O(M log M). 
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Moreover, since these algorithms are based on binning of the samples for density estimation, 

their accuracy is questionable.

Another approach was proposed by Pham,12 who uses a kernel density estimation method 

(as we do) and a compactly supported kernel to simplify computations. He uses a coarse grid 

to evaluate the densities—coarse enough so that, at most, three points of the grid fall into the 

supports of the shifted kernel. This yields a complexity that is linear in M. However, the 

coarseness of the grid makes the accuracy questionable. In addition, there is no proposed 

method for selecting the bandwidth.

Heldmann13 proposed a method that is also based on kernel density estimation as well as 

expanding the kernel in Fourier series. This method achieves a linear complexity in M but 

does not provide a way to determine the appropriate bandwidth. We build on this approach 

by (1) providing a method for optimal bandwidth selection; (2) developing alternate 

formulas for cases of very small bandwidths; and (3) improving the accuracy by means of a 

modified Fourier expansion of the kernel.

Computing the Mutual Information

In order to efficiently compute the three probability density functions involved in eq 6, we 

first estimate them using the Parzen window approach, whereby each sample is replaced by 

a Gaussian function centered at the sample's value:

(7)

(and similarly for pg(t)), where Wσ is a scaled Gaussian kernel:

(8)

For the joint probability density function, a 2D Gaussian kernel is used:

(9)

where Σ is the bandwidth matrix However, empirical evidence15 suggests that using a 

diagonal matrix usually provides sufficiently accurate density estimates, and that using the 

full bandwidth matrix does not significantly or necessarily improve the accuracy. Thus, we 

shall use the following:
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(10)

hence

(11)

Substituting eqs 7 and 11 into eq 6, we obtain the following:

(12)

The accurate estimation of the bandwidths σ1 and σ2 is crucial, as the density estimators 

(eqs 7 and 11) are critically dependent on them. The existing methods for bandwidth 

determination are fairly unreliable and not very practical (see Wand and Jones16). Hence, we 

have developed a new method, based on fitting the integral of eq 7 to the cumulative 

distribution function of f. Details are given in Appendix A.

Next, we normalize signals f and g, such that their values lie in the interval . The 

reason for this will become clear soon. The bandwidths σ1 and σ2 are scaled accordingly, so 

that the mutual information, eq 12, remains unaltered. Now the differences f(xj) − f(xm) and 

g(xj) − g(xm) lie between −1 and 1. This allows us to expand Wσ1 and Wσ2 in Fourier series 

on the interval [−1,1]:

(13)

where Na is chosen in such a way that  is less than a prescribed accuracy ε. The 

 are given by the following:

(14)

Since this integral cannot be evaluated in terms of elementary functions, we approximate it 

by integrating over the whole real line:
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(15)

This approximation is good, provided that the exponential function is already small at ±1. 

We found that this condition is amply satisfied in all our application cases. (Should this 

condition not be satisfied, it would just be a matter of numerically integrating eq 14.) This 

yields the following:

(16)

We note that Heldmann et al.13 use a similar expansion, although theirs is valid only on the 

interval , which might introduce significant errors if the signals are concentrated 

toward the end points of their ranges (e.g., square waves, black-and-white images, etc.).

If either or both bandwidths σ1,σ2 are very small, the corresponding cutoff frequencies N1 or 

N2 need to be made very large in order for the Fourier expansion of the kernel (eq 13) to be 

accurate, with a consequent increase in computing time and storage requirements. In this 

case, we use an alternative approach, described in Appendix B. Otherwise, we proceed as 

follows. Using eq 13, we can now compute the sums occurring in eq 12:

(17)

where

(18)

The sums can be computed efficiently by means of the nonequispaced fast Fourier 
transform, or NFFT.17 This approach allows the fast computation of two types of sums:

(19)
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(20)

where IN denotes a d-dimensional interval of integer numbers, from −N/2 to N/2 − 1 in each 

dimension. The NFFT method generalizes the standard FFT by allowing the nodes zj ∈ ℝd 

to be any vectors, without the restriction of belonging to a regular grid, as is the case with 

the standard FFT. A technical requirement in this method is that the nodes have their 

components between −1/2 and 1/2. This is the reason for scaling the signals f and g, as 

mentioned above.

Thus, the  can be evaluated using eq 20 as

(21)

i.e., the adjoint NFFT computed with Hj = 1 and zj = −f(xj)/2. Then,  can be evaluated 

likewise, using eq 19, as

(22)

i.e., the direct NFFT computed with  and zj = −f(xj)/2. We also have the 

corresponding formulas for the second sum in the denominator in eq 12:

(23)

and

(24)

The numerator in eq 12 is computed along the same lines:
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(25)

Where

(26)

which can be evaluated by means of a 2D adjoint NFFT, using eq 20 with 

:

(27)

and then J2 can be computed as a 2D direct NFFT (eq 19):

(28)

Complexity

The naive calculation of eq 12 is quite costly: O(M2) evaluations of exponential functions. 

Instead, the complexity of the NFFT-based approach is linear in M. In fact, each NFFT 

calculation costs18 O(Nd log N + M), where d is the dimension of the problem. In the 

present context, d is either 1 (in eqs 21, 22, 23, and 24) or 2 (in eqs 27, and 28). In our 

application cases, the value of Na is fairly small, roughly between 100 and 500, while M is 

much larger, typically between 103 and 107. Figure 2 compares the actual timings for a test 

case using three methods: the naive calculation, the NFFT-based method, and the “split” 

method, which consists of directly computing the quantities , , γkl, , , 

and J2(xj) by their defining formulas instead of by means of the NFFT. This approach has a 

complexity of O(Nd M), which is intermediate between the NFFT-based approach and the 

naive approach. For comparison, we note that the complexity of the Pearson cross-

correlation calculation is O(M) as well, but with a smaller constant.

Summary of Formulas

Here we collect the main equations for mutual information calculation used in the Results 

section. We have two cases: (1) normal bandwidths and (2) small bandwidths. (The meaning 
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of “small” is defined in Appendix B, under “Threshold to Switch Between the Two 

Formulas”.)

Formulas for Normal Bandwidths—The formula in this case comes from eq 12:

(29)

where the J terms are computed using the following formulas:

(30)

(31)

(32)

(33)

(34)

(35)

Formulas for Small Bandwidths—First, we define the matrices:

(36)

(37)
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for all 1 ≤ j,m ≤ M. Also, denote

(38)

and

(39)

(40)

(41)

We have three cases:

1. σ1 is small and σ2 is normal:

(42)

2. σ2 is small and σ1 is normal:

(43)

3. Both σ1 and σ2 are small:

(44)

The derivations of the above formulas are given in Appendix B.

Results

We demonstrate the above methods on three trajectories from diverse simulation approaches. 

The goal is to identify functionally important residues by finding relations between their 
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fast, local dynamics and a slow, global “activity function.” As briefly justified in Methods, 

we considered three types of activity functions:

1. RMS fluctuation of Cartesian atomic coordinates (after least-squares fitting of 

the trajectory to the initial structure) in a Gaussian-weighed sliding window. This 

is the most conservative approach, and it works even for small peptides 

comprised of only a few amino acids.

2. The combined rate of contact-forming and -breaking events observed in a time-

dependent coarse-grained graph that consists of one representative atom per 

protein side chain. This rate can be computed using two different types of 

graphs:

a. “Cutoff”: defines contacts by means of two cutoff distances, with an in-

between buffer that suppresses trivial recrossings. This approach was 

shown to be sensitive to protein unfolding and yields a differentiated 

view of forming and breaking events.4

b. “GMD”: defines contacts by means of the “Generalized Masked 

Delaunay” tetrahedralization of the coarse-grained model. This 

approach yields global monitoring of the structural variability of the 

molecule similar to RMS fluctuation, as opposed to the cutoff method, 

which is more sensitive to local changes. Anecdotal evidence from 

earlier work suggests that the GMD graph activity provides the best 

option for monitoring protein unfolding activity.4

The coefficients RX,a (eq 1) between the fast dynamics and the slow activity functions were 

then computed in two ways: with the Pearson correlation and with the newly developed 

FIM. The results were visualized in the 2D pairwise residue space or on the 1D sequence/3D 

structure in the form of heat maps.

BPTI

The first test was based on a 1 ms simulation of the folded 58-residue protein BPTI6 using 

standard MD. The native-state BPTI trajectory was represented by 10 300 frames in 100 ns 

steps. The BPTI trajectory is very stable, and due to its length, spanning nearly 12 orders of 

magnitude in time scales relative to the integration time step, provides an excellent gold 

standard for our validation. The reliable application of both the tagging.py and 

turning.py tools is evidenced by the results shown in Figures 1 and S2. The three activity 

measures shown in the latter are very similar to one another, resulting in comparable cross-

correlation (CC) and MI profiles. This similarity demonstrates that the analysis is robust and 

that the new FIM method performs as expected (Figure S2). We have therefore selected only 

the MI results for RMS fluctuation activity for illustration purposes in Figure 1.

We can observe in Figure 1 that the most important residues for pivot angle and contact 

distance analysis are both located in a relatively unstructured loop region, which was 

described earlier to be very flexible, allowing four internal water molecules to exchange with 

the bulk.6 This flexibility is graphically depicted by the heat maps in Figure 1a,b. The pivot 

angle analysis in Figure 1a provides an illustration of the most active backbone-twisting and 
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turning residues. These residues had earlier been shown to have the most dynamic content 

(as measured by the P2 internal correlation functions6). The found amino acids are among 

the most discriminative residues identified in Table S2 of the paper by Shaw et al.:6 Cys14, 

Ala16, Gly37, Arg39, and Lys41 stabilized three of five essential conformations representing 

the trajectory. Tyr10 featured an unusually mobile aromatic ring.6 The forming and breaking 

of contacts of this residue and of its neighbor Tyr11 are also identified in Figure 1b,d to be 

most important for the global dynamics.

It is important to note that the data in Figure 1b,d is a projection. The original data in 

pairwise residue space is plotted in Figure 3. Let Xi,j(t) denote the time series of the distance 

between residue i and residue j (we use the distance between the representative side-chain 

atom of each residue, as defined by Wriggers et al.4). In Figure 3 we construct the positive 

symmetric matrix RX,a(i,j) of ranking coefficients between the time series Xi,j(t) and a(t). 
This matrix describes the statistical relationship of every residue pair (i,j) with the activity 

function a(t). We found empirically that the matrices RX,a(i,j) display a banded structure, 

with certain columns (or rows) having large values for most of the rows (or columns). These 

bands of uniformly large values in the matrix RX,a(i,j), which are prominent in Figure 3, are 

due to the global nature of the statistical relationship between the activity and “the 

concomitant change of distances from a particular residue to multiple parts of the BPTI 

structure”.6 The particular structure of this matrix implies that we can compress the columns 

of RX,a(i,j) to their average RX,a(i), as shown in Figure 1b,d. In the following, we will also 

perform such compression of the contact matrices in the chignolin and EnHD cases.

In addition, we performed analyses on two abridged trajectories: one comprising the initial 

0.1 ms and one comprising the initial 0.32 ms. A comparison with results from the full 

trajectory showed that the heat maps are robust under changes in simulation length, at least 

for the well-sampled BPTI trajectory (see Figures S3 and S4 for more details).

Chignolin

The second case study was the folding of the 10-residue chignolin peptide, which was 

recently simulated by Miao, Feher, and McCammon using GaMD to 300 ns.7 (The particular 

trajectory we analyzed is the one labeled “sim1” in Figures S1 and S2 of their paper, 

exhibiting 3000 frames in 100 ps steps.) GaMD performs MD on a flattened energy 

landscape that accelerates barrier crossing. The chignolin trajectory was chosen for two 

reasons. First, we wanted to explore whether our analysis, involving temporal smoothing 

parameters,4 could be applied to accelerated MD simulations with noncanonical chemical 

time. Second, we were interested in a suitable test system for our pivot angle analysis. In the 

above case of BPTI, the ends of the flexible loops were restrained by the stable structure, 

and the observed pivot regions were spread out over multiple residues. We hoped that the 

unrestrained termini of a short peptide in a folding simulation would provide a clearer 

example of localized hinge bending or pivoting.

Since chignolin is a very small molecule, the activity measures based on the coarse-grained 

cutoff or GMD graphs were poorly sampled: There was no noticeable (graph) activity 

present for the majority of the simulation time after about 20 ns, when the peptide settled in 

the native conformation (data not shown). The RMS fluctuation, however, gave a more 
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nuanced representation of the folded state after convergence, so we chose it as the sole 

activity measure for our analysis. Figure 4 illustrates the detection of key residues involved 

in the folding trajectory.

The pivot angle analysis in Figure 4d reports a single dominant pivot point in the structure, 

defined by the (pseudo-) dihedral centered on α carbons 6 and 7. Figure 4a,b,c shows three 

folding events that are associated with large changes in this pivot angle, with the profile of 

Figure 4d superimposed on them as heat maps. The folding process is complete when the 

important residues in the C and N-termini make contact, as shown in Figure 4e. The residues 

at the ends of the chain are significantly more active than those in the central region in 

regard to contact forming, due to their importance in stabilizing the folded state (more 

details are shown in Figure S5). In both the contact and pivot angle analysis, we see a high 

degree of similarity between the results obtained by the CC approach and those from MI.

EnHD

The third and final application of our method was to a single unfolding trajectory of the 

Engrailed homeodomain (EnHD), which was originally simulated to 42 ns as a single 

molecule,19 and later extended to the full 60 ns length that we analyze here,8 with a 

trajectory frame rate of 10 ps. (It is interesting to note that McCully et al.20 simulated a 

multi-molecular system consisting of 32 copies of this protein. They compared this with 10 

single-molecule simulations, the one we are using here being the #2 among those 10.) 

Following the well-known Dynameomics approach of the Daggett lab,21 the unfolding was 

induced here by heating the system to 225 °C, which was selected because the heat-induced 

unfolding reproduces data from experiments and lower-temperature simulations.8

The EnHD trajectory was chosen because we wanted to test the behavior of our new FIM 

approach under elevated temperature conditions, where the Pearson cross-correlation failed 

to give consistent results when used with diverse activity functions. Figure 5a shows that, in 

this case, the activity measures are quite different from one another. The reason is that the 

heat-induced swelling and unfolding of the initial structure leads to a downward trend in the 

graph activities as the structure unfolds. In contrast, the RMS fluctuation exhibits an upward 

trend because the unfolded protein is less constrained by packing interactions. Thus, the 

RMS curve emphasizes pivot angles that are important in the later part of the trajectory, 

while the other two activity measures are sensitive to pivot angles that are relevant at earlier 

stages. Hence the complementarity of the CC curves in Figure 5b, whereas the MI will 

detect anticorrelated patterns as well, resulting in highly consistent curves, as shown in 

Figure 5d. Likewise, there is a dramatic difference between the CC and MI in the contact 

analysis. In Figure 5c, the CC essentially fails to detect any significant contacts based on the 

graph-based activities. The CC plots for the graph-based activities are also very dissimilar 

from those for the RMS fluctuation (CC coefficient −0.44 and −0.12 for cutoff and GMD, 

respectively), while for the MI plots in Figure 5e, there is good agreement with the RMS 

fluctuation-based plot (CC coefficient 0.80 and 0.60 for cutoff and GMD, respectively). 

Clearly, the use of MI rescues the performance of the challenging graph activities. This is 

presumably due to the fact that MI captures any type of functional dependency between two 

signals while the CC only detects linear relations.
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Figure 6 shows again in (a,b,c) the three EnHD contact residue heat-map projections 

computed with MI to demonstrate their similarity. The analysis in (d,e,f) highlights 

dominant residues that are responsible for contacts between helices I, II, and III.20 After 

0.31 ns, there is some initial contact loss between helices I and II, and helix II starts to melt. 

After 2.38 ns, the contact between helix I and III at Lys52 is lost, and helix II melts further. 

After 6.84 ns, the helices are separated, and the tertiary structure starts to unravel. 

Incidentally, the Lys52 residue detected by our analysis can be mutated to Ala to increase 

the folding rate of the protein by about double.8

Conclusions

We have developed a novel FIM method for transforming time domain data into spatial 

images through handshaking between fast and slow degrees of freedom. The method was 

applied to three distinct MD trajectories to demonstrate its usefulness. The BPTI 

observations were robust under changes of activity function or statistical characterization, 

and thus provide confidence in the new FIM analysis. The BPTI results also agree well with 

earlier analysis results6 while providing a new way to attribute functional relevance to 

specific amino acids. The chignolin analysis confirms that the pivot residue and contact 

residue modalities can be complementary tools in the study of folding simulations. The 

results suggest that our theory is agnostic of chemical time scales and that long-time scale 

simulations are not required, as long as conformational changes are adequately sampled. The 

EnHD case not only provides an example of mapping the contact loss during the unfolding; 

it also demonstrates the higher robustness of the MI approach over the earlier cross-

correlation.

In our tests, FIM was only about a factor of 5 slower than the earlier Pearson correlation 

approach. Since FIM provides superior results, we recommend using it in conjunction with 

the RMS fluctuation activity. The only potential weakness of our FIM approach is due to the 

uniform Parzen window approach, which at present does not adapt well to activities that are 

zero-valued. This problem requires an adaptive bandwidth allocation in future work. 

Meanwhile, the RMS fluctuation activity (or a large system size) avoids the issue. For the 

heat-map analysis, the RMS fluctuation appears to be the more robust choice among the 

activity measures, so we recommend it in general, unless a user has a specific reason to pick 

one of the graph-based activities.

This paper is the first to describe the FIM approach in detail, but more work could be done. 

Ideas for future work include:

1. The advantages and limitations of the tools should be tested further in an 

exhaustive exploration of the parameter space. We have provided examples of 

parameters that worked for us in this paper.

2. Our design of eq 1 was optimized for non-negative activities, but alternative 

functional forms could also be implemented. We have already proposed a variant 

of the tagging.py tool in earlier work, where instead of an activity an external 

time series was used, and instead of the rate of change, the direct correlation with 

pairwise distances was computed.6 The use of filters and different types of 
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activity functions could also be explored. The absolute value for the (discrete) 

time differentials in eq 1 is required for linear measures I, as a(t) is non-negative. 

This absolute could be dropped when using the nonlinear FIM method (at a 

slight loss in sampling precision), but clearly this idea is most promising when 

signed activity functions are used.

3. The theory of eq 1 could be easily generalized to alternative modalities X(t). At 

present, this would require a user to write a new Python routine for every desired 

variable, similar to tagging.py and turning.py. It would be desirable in 

future work to develop a selection language on top of Python that enables the 

exploration of additional relevant degrees of freedom.

All software described in this paper will be freely disseminated with version 1.4 of our open-

source package TimeScapes at http://timescapes.biomachina.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank John Heumann for his comments on mutual information. We thank Yinglong Miao and J. Andrew 
McCammon for providing the chignolin trajectory and for discussions. We also thank Michelle McCully and 
Valerie Daggett for providing the EnHD trajectory and for their biological interpretation. This work was supported 
by National Institutes of Health Grant R01GM62968.

Appendix A: Optimal Bandwidth Determination

As pointed out earlier, since the existing methods for bandwidth selection have 

unsatisfactory performance,14 we developed our own approach to solve this problem. We are 

after the value of σ that makes the Parzen approximation (eq 7)

(45)

as close as possible to the actual probability density function pf(s) of f.

The method we propose is as follows. Let F: ℝ → [0, 1] be the cumulative distribution 

function of f:

(46)

The first step is to obtain a continuous, piecewise-linear version of this step function. 

Basically, this is done by connecting the midpoints of adjacent “steps” (horizontal segments) 

of F. This initial polygonal is modified at points where the resulting slope would exceed a 
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prescribed threshold (1000 by default) by replacing those points with the midpoint between 

the previous point and the first succeeding point of the polygonal that makes the slope less 

than the threshold. A second refinement is to smooth the resulting polygonal by convolving 

it with a Gaussian kernel whose standard deviation is 10% of that of f. These steps virtually 

eliminate the spurious oscillation in the slope of the polygonal that results from the 

unevenness of the sampling. Let us call the final piecewise-linear approximation FPL.

The next step is to fit the integral of eq 45 to FPL, the best fit yielding the desired σ. For this, 

we need an approximation of the normal cumulative distribution function. A very good 

tradeoff between simplicity and accuracy is given by the 1-parameter logistic 
approximation:22,23

(47)

Then, the integral of eq 45 can be approximated by the following:

(48)

The sought-after bandwidth is the value of σ that minimizes the L2 norm of the difference:

(49)

This minimization is efficiently carried out by the golden subdivision method, using as a 

starting point the “quick and simple” bandwidth selector:24

(50)

where σf is the standard deviation of f, as estimated from the sample.

To test this approach, we used some common density functions and visually verified the 

quality of the fitting. A shortcoming of this approach is that the bandwidths are constant 

rather than dependent on the sample point. This is noticeable in cases in which the 

probability density function has peaks of greatly different widths. However, this limitation 

exists in all methods that assume constant bandwidth.
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Appendix B: Special Formulas for Small Bandwidths

When either or both bandwidths σ1, σ2 are very small, the cutoff frequency N needs to be 

made very large in order for the Fourier expansion of the kernel (eq 13) to be accurate. In 

this case, the efficiency of the method degrades, and the storage requirements increase. 

Hence, it is necessary to use an alternative approach to handle these cases.

The main MI equation (eq 12) can be written in a more compact form:

(51)

Where

(52)

(53)

with

(54)

(55)

Let us consider first the case in which σ1 is small but σ2 is not. Then, the problematic 

quantities to be computed are Σmajm and Σmajmbjm. The former can be estimated as the 

following:

(56)

where . This yields the estimate
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(57)

where

(58)

As described below, the “small” threshold that we use is σmin = 0.002. Since the fjm range 

between 0 and 1, the exponential function acts effectively as a step function, which justifies 

the validity of the estimate in eq 57.

The numerator Σmajmbjm can be estimated along the same lines:

(59)

Hence, the MI equation becomes

(60)

In this equation, the sum in the denominator can be computed efficiently as before, using the 

NFFT. The sum in the numerator, however, is not amenable to such an approach, but since 

the number of terms is usually very small, its computation is also efficient.

The case in which σ2 is small but σ1 is not follows in the same way:

(61)

where  and

(62)

Finally, if both σ1 and σ2 are small, we can further the calculation from eq 60:
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(63)

and

(64)

where

(65)

Hence, the final formula for this case is

(66)

Threshold to Switch Between the Two Formulas

As mentioned after eq 13, the value of Na is derived so the coefficients  (eq 16) 

become less than a prescribed accuracy . This inverse relation between N 
and σ provides us with a value σmin corresponding to the maximum value of N that is 

practical. In our computations, we took ε = 10−9 and Nmax = 1000, which yield σmin = 

0.002. Values of σ lower than this are considered small, and the formulas above are used in 

this case.
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Figure 1. 
BPTI heat maps (backbone “new cartoon” representation of the initial structure used in the 

simulation) and the corresponding MI residue profiles. Molecular graphics figures of heat 

maps and 3D conformations in the present paper were created with the program VMD,25 

using a linear red-white-blue color scale (from high to low values). (a,c) MI between the 

RMS fluctuation and pivot angle absolute rate of change as a function of the BPTI residue 

number. (Pivot dihedral angles were attributed to the half-points between the residue indices 

of the center atoms.) (b,d) MI values for all contacts, after projection onto the residue chain 

(see text). The RMS fluctuation was computed with the TimeScapes agility.py program 

using a sliding window of length δ = 5 μs.4 Default parameters were used for the 

turning.py and tagging.py programs to compute the MI profiles. The complete results 

of the BPTI analysis are provided in supplementary Figure S2.
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Figure 2. 
Performance comparison between various mutual information methods (eq 12). The test data 

set consisted of two identical cosine signals sampled at M points. The “fast” method, based 

on the NFFT, has a complexity that is asymptotically linear in the data size M, which is the 

same order as the classical Pearson cross-correlation, but with a larger constant.
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Figure 3. 
BPTI. Two-dimensional pairwise interaction heat map between residues. The banded 

structure of the symmetric matrix is clearly visible. Averaging along rows (or columns) 

yields the heat map shown in Figure 1b,d. For coloring and parameter information, see the 

caption of Figure 1.
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Figure 4. 
Chignolin heat maps and residue profiles. (a,b,c) Snapshots of folding events along the 

trajectory with the heat map from (d) superimposed. The backbone is shown as an α-carbon 

trace with α carbons highlighted as small spheres (except numbers 5, 6, 7, and 8, which are 

shown as large spheres). The dominant pivot angle (dihedral formed by α carbons 5, 6, 7, 

and 8) is labeled in degrees. Side chains are indicated in “licorice” representation. (d,e) 

Comparison between CC and MI, as functions of residue number, when using the RMS 

fluctuation curve as the activity measure. The sliding window length in the agility.py 

program was δ = 1 ns.4 Default parameters were used for the turning.py and 

tagging.py programs for the pivot angle analysis (d) and for the contact analysis (e). Pivot 

dihedral angles in (d) were attributed to the half-points between the residue indices of the 

center atoms. The full pairwise contact matrix for the MI data in (e) is shown in the “TOC” 

figure of the abstract (where diameter or color of circles encode the projected MI, and height 

or color of arcs encode the pairwise MI) and also (in matrix form) in supplementary Figure 

S5.

Kovacs and Wriggers Page 26

J Phys Chem B. Author manuscript; available in PMC 2017 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
EnHD activity and residue profiles. (a) Three activity measures (see main text; arbitrary 

amplitudes and offsets) as functions of the simulation time in ns. The RMS fluctuation was 

computed with the TimeScapes agility.py program using a sliding window of length δ = 

500 ps.4 The parameters used by terrain.py were cut1 = 6 Å, cut2 = 7 Å, δ = 500 ps for 

the cutoff graph activity and cut1 = 2, cut2 = 3, δ = 500 ps for the GMD graph activity.4 

(b,d) Pivot angle CC and MI profiles as functions of residue number. (Pivot dihedral angles 

were attributed to the half-points between the residue indices of the center atoms.) (c,e) 

Contact residue CC and MI values projected on the residue chain. The three curves in each 

plot (b, c, d, and e) correspond to the activity measures in (a). Default parameters were used 

for the tagging.py and turning.py programs.
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Figure 6. 
EnHD heat maps computed from activities in Figure 5(a) (color and rendering scheme as in 

Figure 1; Roman numerals label the three helices HI, HII, and HIII). (a) Contact residue MI 

heat map for RMS fluctuation activity (superimposed on the initial crystal structure). (b) 

Contact residue MI heat map for cutoff graph activity. (c) Contact residue MI heat map for 

GMD graph activity. The heat maps in (a), (b), and (c) correspond to the residue profiles in 

Figure 5e. (d,e,f) Snapshots of unfolding events along the trajectory with the heat map from 

(a) superimposed.
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