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Abstract

Overwhelming evidence now illustrates the defining role of atomic-scale protein flexibility in 

biological events such as allostery, cell signaling, and enzyme catalysis. Over the years, spin 

relaxation nuclear magnetic resonance (NMR) has provided significant insights on the structural 

motions occurring on multiple time frames over the course of a protein life span. The present 

review article aims to illustrate to the broader community how this technique continues to shape 

many areas of protein science and engineering, in addition to being an indispensable tool for 

studying atomic-scale motions and functional characterization. Continuing developments in 

underlying NMR technology alongside software and hardware developments for complementary 

computational approaches now enable methodologies to routinely provide spatial directionality 

and structural representations traditionally harder to achieve solely using NMR spectroscopy. In 

addition to its well-established role in structural elucidation, we present recent examples that 

illustrate the combined power of selective isotope labeling, relaxation dispersion experiments, 

chemical shift analyses, and computational approaches for the characterization of conformational 

sub-states in proteins and enzymes.
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1. Introduction

Proteins are not rigid entities but flexible assemblies. Despite the broad range of growth and 

living conditions inside eukaryotic and prokaryotic cells, a number of studies have 

efficiently demonstrated that changes in molecular flexibility of proteins and enzymes on 

various time scales results in significant loss of biological function and/or phenotypic 

defects 1–4. Each protein exists as an ensemble of conformations that undergo continuous 

exchange within several spatial and temporal scales, relying on these motions to achieve 

their biological function. To fully grasp, predict, and eventually engineer efficient protein 

behavior at the molecular level, it is therefore crucial to understand the effects of 

conformational exchange and atomic-scale protein flexibility on biological function. To this 

day, nuclear magnetic resonance (NMR) spectroscopy represents one of the most powerful 

techniques available to unravel and investigate such dynamic protein behaviors on several 

time frames (Table 1). Technological developments and continuous improvements in 

processing power have recently allowed computational approaches to significantly 

complement NMR methodologies, providing spatial directionality and structural 

representations not easily or rapidly achievable by NMR. The present review article 

showcases several recent studies and methodologies characterizing protein and enzyme 

dynamics, primarily illustrating advances in NMR relaxation and computational approaches, 

coupled to other biophysical approaches. Recent examples demonstrating the combined 

power of selective isotope labeling, relaxation dispersion experiments, chemical shift 

analyses, and computational approaches are presented.

Excellent compendia have recently covered the theoretical aspects of NMR methodologies 

available for quantifying protein dynamics on a broad range of time frames, i.e. from 

picoseconds to hours 5–17. To prevent undue repetition of the same theoretical concepts, the 

present report neither aims to offer a comprehensive overview of these NMR methodologies, 

nor to fully cover the wide array of protein systems exemplifying the importance of 

conformational flexibility in protein function. Rather, the goal is to illustrate to a general 

audience how the combination of newer developments with now established methods such 

as the NMR nuclear spin and relaxation dispersion experiments have become indispensable 

tools for providing a uniquely thorough understanding of the historically elusive protein 

dynamics and allosteric processes occurring in many biological systems. Non-technical 
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readers should nevertheless be informed that most recent advancements have seen rigorous 

targeting of distinct atomic probes in protein backbone and residue side chains (HN, Hα, 

NH2, Cα, C′, CH3, etc.), in addition to effectively overcoming the classical size limitation 

of protein complexes amenable to NMR investigation 18,19. Protein relaxation still requires 

dedicated access to high-field NMR spectrometers (typically between 500 MHz and 

1GHz 1H frequencies) and for extended periods of time (hours/days). This is due to the 

relatively low signal sensitivity of the method, especially in light of long three-dimensional 

heteronuclear experiments. However, significant advances over the past 10–15 years have 

lifted many classical limitations of the NMR technique, effectively providing a more 

complete understanding of the time-dependent properties of exchange processes occurring 

during protein function and allosteric communication.

2. Selective isotope labeling: overcoming protein size limitation in 

relaxation

For a long time, protein NMR applications were limited by the size of the molecular 

complexes under investigation. This was primarily attributed to a number of experimental 

factors pertaining to physical limitations of the technique and isotope labeling 

methodologies 20. One of the most important limitations in protein NMR is the fact that 

higher molecular weight protein monomers or multimeric complexes tumble (or rotate) more 

slowly in solution than their smaller counterparts. This affects relaxation parameters and 

results in spectral broadening (or dampening) of NMR signals. Effectively, if a high 

molecular weight protein is uniformly labeled with 13C/15N isotopes throughout its primary 

structure, the relevant spectral NMR resonances are likely to be overlapped with other 

resonances, and therefore masked (or completely invisible) to the experimentalist. The 

uniform isotope labeling methodology required to achieve NMR signal presents another 

limitation for NMR of large proteins. Signal resolution for any multidimensional NMR 

experiment on a uniformly labeled large protein or protein complex results in a significant 

percentage of resonance overlaps, preventing detailed atomic-scale analyses for many of the 

overlapping residues.

Recent years have seen significant improvements in selective isotope protein labeling 

methodologies, effectively eliminating some of the disadvantages of uniform labeling 20. A 

convincing example of selective labeling coupled to recent protein dynamics developments 

was illustrated by the Kay group on high molecular weight systems, particularly the 20S 

core particle (CP) proteasome 21,22. Focusing on ‘metabolic tricks’ limiting isotope labeling 

to the methyl groups of Ile, Leu, Met, and Val residues, the authors have efficiently 

characterized functionally relevant motions in this megadalton complex. The 20S core 

particle (CP) proteasome is a 670-kDa complex formed by a combination of 2 alpha and 2 

beta ring barrel structures that build a molecular machine involved in degrading cellular 

proteins that have become damaged over time. Due to massive size limitations, standard 

uniform isotope labeling prevents clear atomic-scale investigation. Using unlabeled 

(therefore invisible to NMR) beta protomers and highly deuterated, selectively 

labeled 13CH3-Methionine residues in the alpha protomers (5 of which are found in the N-

terminal pore entrance), the authors elegantly characterized the functional gating mechanism 
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of this macromolecular complex by combining mutagenesis with paramagnetic resonance 

enhancement (PRE). The authors combined their NMR analyses with spin labels inside and 

outside the proteasome lumen, taking advantage of the PRE effect to study the 

conformational changes in the molecular gating mechanism 21,22.

This example illustrates the power of combining selective protonation with mutagenesis, 

NMR relaxation, and PRE effects to investigate the dynamical behavior of high molecular 

weight protein complexes. Originally elusive, well-defined selective labeling protocols are 

now readily available to any skilled protein expression experimentalist 8,19, allowing one to 

significantly improve the investigation of conformational exchange for large protein 

complexes using NMR relaxation dispersion (see below).

3. Investigating the microsecond to millisecond time frame to probe 

biologically relevant protein sub-states involved in allostery and enzyme 

function

Arguably one of the most influential and now routinely employed methodologies of the past 

15 years in solution-state NMR is the investigation of free and ligand-bound protein 

complexes using relaxation dispersion. Relaxation dispersion NMR allows the 

characterization of low populated, ‘invisible’ sub-states sampled by proteins in solution, 

either in their free states or as they perform their catalytic function in the presence of binding 

partners. For instance, the Carr-Purcell-Meiboom-Gill (CPMG) and R1ρ rotating frame 

experiments have been collectively employed to investigate conformational exchange rates 

(kex) occurring in proteins over time frames that roughly span ~100 to ~50,000 events per 

second (s−1) 9,23 (Figure 1). In addition to their relatively simple usage and implementation 

on multiple atomic probes (most of which are now available in standard and TROSY 

versions) 19,24, relaxation dispersion experiments are especially popular in light of the 

overlapping time scale of the characterized rates of motion with the slower microsecond-

millisecond (μs-ms) time frame of relevant biological processes such as protein folding, 

enzyme catalysis, ligand binding, etc. Recent advances have emerged to improve the breadth 

of 15N-labeled protein investigation by complementing the fast time scale (fast picosecond-

nanosecond [ps-ns]) R1, R2, and heteronuclear NOE (hNOE) nuclear spin relaxation with 

CPMG and/or R1ρ. This was done by selectively targeting 13C, 1H and/or 2H dynamic spin 

probes and by improving spectral sensitivity 25–27.

More recent methodologies, such as the NMR chemical exchange saturation transfer (CEST) 

experiment 6,28,29, probe the same ms time frame and have provided improved sensitivity, in 

addition to allowing subtler conformational changes and better characterization of slower 

exchange processes (e.g. kex = 50–150 s−1). The CEST experiment can also simultaneously 

take advantage of the CEST-derived R1 and R2 data to extract S2 order parameters reporting 

on the ps-ns time scale 30. In spin-relaxation NMR, the order parameter S2 is typically 

extracted from the model-free approach using experimental R1, R2, and hNOE NMR 

data 31–33. This parameter is used to characterize the amplitude of the internal motions of 

a 1H-15N bond vector on the ps-ns time scale. S2 measures the degree of spatial restriction of 

each backbone 1H-15N vector, describing an array of atomic-site motions ranging from fully 
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unrestricted (S2 = 0) to completely restricted (S2 = 1) on this particular time frame. The 

CEST approach showed remarkably good agreement with standard R1, R2, and hNOE 

nuclear spin relaxation data, in addition to considerably improving NMR acquisition time 

(hours instead of days). The CPMG method can further be extended at the other end of the 

time spectrum, allowing the investigation of systems with exchange rates as high as 6,000 

s−1 34. The combined analysis of both amide 15N and 1HN CPMG profiles and major state 

exchange-induced 15N chemical shifts measured in 1HN-15N heteronuclear multiple-

quantum coherence (HMQC) and heteronuclear single-quantum coherence (HSQC) data sets 

allows the accurate extraction of exchange parameters and chemical shift difference between 

the interconversion states of systems exchanging with rates of ~6,000 s−1.

In addition to the biological importance of the μs-ms time frame, and relative ease of 

technical implementation, recent examples of relaxation dispersion NMR have been 

employed with selective labeling and other biophysical methodologies to yield a complete 

portrait of protein allostery in various systems. A comprehensive enzymatic characterization 

also typically takes advantage of other biophysical techniques such as circular dichroism 

spectroscopy (CD) and/or isothermal titration calorimetry (ITC) 35,36. A study on the 

allosteric mechanism of the heterodimeric 51-kDa glutamine amidotransferase imidazole 

glycerol phosphate synthase (IGPS) recently exemplified a subtle yet functionally relevant 

behavior observed through long-range allosteric motional transmission upon small-molecule 

effector binding to this enzyme involved in purine and histidine biosynthetic pathways in 

bacteria 37,38. In this work, the authors combined ITC with 1H,13C-TROSY-HMQC and 

methyl-TROSY multiple-quantum CPMG dispersion — all solely permitted because of 

selective isotope labeling of Ile, Leu, and Val methyl groups — to illustrate that the IGPS 

complexes with allosteric effectors distinctively respond to long-range (>15 Å) millisecond 

dynamics. Binding of allosteric effectors, monitored using ITC, revealed favorable enthalpic 

and entropic contributions to the free energy change, suggesting a shallow binding pocket 

for the effectors, consistent with docking and MD simulations. Interestingly, the authors 

demonstrate a direct linear correlation between the number of flexible residues on the μs-ms 

time scale and the catalytic efficiency (kcat/Km) of the glutaminase activity, further 

confirming the dynamic behavior of amino acid residues that were previously shown to be 

critical for relaying allosteric information from independent biochemical studies 37,38.

These results highlight how protein-ligand complexes between IGPS and allosteric effectors 

with varying modulating efficiencies result in significantly distinct dynamic residue 

networks on the catalytic time frame of the enzyme. Further strengthening these 

observations, the authors observe that only the catalytically productive ternary complex 

between IGPS (the proper allosteric effector) and the PRFAR substrate yields a dynamic 

pathway with a shared, global exchange-rate constant (kex) for nearly all residues 

undergoing millisecond exchange in the enzyme. Although other IGPS allosteric activators 

also trigger millisecond motions, the exchange rates of individual dynamic residues are not 

concerted nor localized at selective residue positions essential for optimal allosteric 

communication. In addition to perturbing the unique profile of IGPS conformation, these 

suboptimal effectors also show concomitant gaps in their abilities to enhance glutamine 

hydrolysis 37,38.
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This work further illustrates the power of combining biophysical, computational, and new 

NMR methodologies to improve our understanding of allostery, offering the means to 

observe ‘invisible’ conformational sub-states that would have remained experimentally 

elusive just a few years ago. Performing these experiments using classical non-

TROSY 1H,15N-HSQC titrations, coupled with standard backbone 1H,15N-CPMG relaxation 

would have yielded overly crowded spectra without significant resolution to observe the 

subtle molecular and motional effects described in these studies. Also, reports have 

illustrated the lack of significant structural changes caused by effector binding to IGPS 

(root-mean-square deviation of 0.41 Å between the apo and holo forms) 37. As a result, 

previous crystal structures 39 and fluorescence quenching experiments examining solvent 

accessibility 40 were unable to provide definitive information on the intricate atomic-scale 

details underlying allosteric transmission in this enzyme system, further illustrating the 

power of the NMR methodology combination described here.

4. Uncovering potential allosteric sites using the NMR chemical shift 

covariance (CHESCA) and projection (CHESPA) analyses

Recent years have also seen the development of a variety of approaches that investigate 

NMR chemical shift perturbations to identify potential allosteric networks and structural 

dynamics in proteins 41–46. The Melacini group introduced the chemical shift covariance 

analysis (CHESCA) approach 44 to identify dynamically driven intramolecular amino acid 

networks. CHESCA uses a combination of agglomerative clustering and singular value 

decomposition to identify amino acid networks that show correlated changes in chemical 

shifts due to perturbations arising from ligand binding or mutations.

The CHESCA approach involves the following steps: first, a matrix M of combined 1H 

and 15N chemical shifts of a protein in the apo and multiple perturbed states is used to 

calculate inter-residue Pearson’s correlation coefficients. The resulting symmetric matrix R 
of pairwise correlation coefficients is analyzed using the agglomerative clustering (AC) 

method 47 to identify cluster(s) of coupled amino acid residues. AC assigns the first 

intracluster link for a residue pair with the highest correlation coefficient (rij). Subsequent 

intracluster links are assigned between the first pair and nearest neighbor based on the 

highest value of correlation coefficient to either of the residues in the original pair. These 

intracluster links, which can be visualized using dendrograms, identify cluster(s) of residues 

that show concerted response to perturbations. Clusters with more than three residues are 

grouped into ‘networks’. At this point, however, it is unclear whether these networks play a 

role in allostery.

To assign a function to the identified network(s), a correlation coefficient matrix RI is 

computed using combined 1H and 15N chemical shifts for a subset of amino acid residues 

(MI) of the network(s) identified using AC, as described above. RI is analyzed again using 

AC to cluster functional states (such as active vs. inactive states) based on residues rather 

than grouping residues based on functional states. Selvaratnam et al. applied this approach to 

the cAMP binding domain of EPAC using chemical shifts of the apo and activator (analog) 

bound states.
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The authors identified two networks of amino acids, one separating active and inactive states 

of the protein, and another separating the bound and apo states. These observations indicate 

the role of these two networks in allostery. They further used singular value decomposition 

(SVD) 44,48 to validate the functional networks identified through hierarchical clustering of 

AC. By using combined chemical shift differences relative to an antagonist-bound form of 

EPAC as reference, the authors identified residue networks involved in ligand binding and 

allostery, respectively.

The Melacini group also introduced the chemical shift projection analysis (CHESPA) to 

quantify the size and direction of perturbations induced by ligand binding or point mutations 

(Figure 2) 43. In CHESPA, two residue-specific descriptors of this perturbation, i.e. the 

direction (cosθ) and magnitude (fractional shift X), are calculated based on the chemical 

shift changes observed in the perturbed system. The fractional shift X is calculated as the 

ratio of vector A along vector B and the magnitude of vector B:

The fractional shift X is a scalar quantity and is complemented by cosθ, which reports on the 

relative orientation of vectors A and B, θ being the angle between vectors A and B:

Of note is the fact that this approach is valid when the exchange in the free and ligand-bound 

conformations is fast on the NMR time scale. The presence of two or more states in the fast 

exchange regime could compromise the linear chemical shift pattern exploited by the 

CHESPA method, resulting in cosθ values below unity. Thus, cosθ values approaching unity 

suitably report on two-state equilibrium through the fractional shift X.

Much like CHESCA, the CHESPA approach was first applied on the EPAC model system by 

comparing the chemical shift changes arising from mutations and ligand binding to identify 

amino acid residues that (de)stabilize protein conformations associated with ligand 

binding 43. In this study, the fractional shift X is positive if the mutation shifts the 

equilibrium towards the active state, and negative if the displacement is in the opposite 

direction. The value of X approaches 0 if variations caused by the mutation are negligible 

relative to those caused by ligand binding and/or if vectors A and B are orthogonal. Finally, 

X ≈ 1 indicates that the magnitude of the chemical shift is identical for mutation and ligand 

binding events. The direction of movement is quantified using cosθ (Figure 2). Residues 

with cosθ ≈ 1 show displacements in the same direction for both apo-mutant and ligand-

bound states, whereas residues significantly affected by mutation display cosθ < 1. In this 

example, the L237W mutant of EPAC was shown to stabilize the inactive state, while cAMP 

binding activated wild type (WT) EPAC. The chemical shift difference between apo-WT and 

apo-mutant induced by amino acid substitution was calculated as the magnitude of vector A 
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connecting apo-WT and apo-mutant peaks in the plane of 1H and scaled 15N spectra (Figure 

2). Similarly, the chemical shift difference induced upon ligand binding was computed as the 

magnitude of vector B connecting apo-WT and cAMP-bound WT peaks. The projection of 

vector A onto vector B is a measure of the shift of the conformational equilibrium between 

protein conformations found in free and bound states. In a recent study, Selvaratnam et al. 
combined the CHESPA and CHESCA approaches to characterize the effects of mutations on 

the inactive vs. active conformational equilibria of apo EPAC 49. The CHESPA analysis was 

used to remove the false positives in the allosteric clusters obtained through the hierarchical 

clustering of residue pairs in CHESCA.

The CHESPA approach can also be used to investigate the effect of long-range residue 

network behavior occurring upon distinct ligands binding to an enzyme, as recently 

illustrated by the binding of 3′-UMP and 5′-AMP to human angiogenin (Figure 3) 50. In this 

study, the authors highlighted the existence of two distinct, long-range clusters of residue 

networks either displaying correlated or uncorrelated chemical shift trajectories upon 

binding of each ligand to the purine- or pyrimidine-specific subsites of the angiogenin 

catalytic cleft, suggesting a structural rearrangement or allosteric response linked to ligand 

binding in this enzyme. Finally, using alanine to glycine substitutions, Axe et al. probed 

structural and dynamical changes in the α-subunit of tryptophan synthase 51. By combining 

the projection (CHESPA) and covariance (CHESCA) analyses for the free and ligand-bound 

forms of the wild-type and mutant enzymes, they identified point mutations that stabilized 

three conformational states, corresponding to the free form, glyceraldehyde-3-phosphate 

(product) bound and active (indole-bound) states. The authors further illustrated that the 

dynamical properties of the allosteric networks of amino acid residues identified from the 

covariance analysis differed in each of these states.

5. Enhancing the structural and time-evolution throughput of NMR 

spectroscopy using computational and theoretical approaches

5.1. Combining NMR observables and MD simulations to characterize protein motion

Molecular dynamics (MD) simulations provide a time-evolution ‘movie’ of atomic-level 

motions based on Newton’s laws of motions. Classical molecular mechanics describe the 

potential energy of a molecule, such as a protein, as a function of its atomic coordinates and 

dictate the interactions between atoms over the course of an MD simulation 52. The various 

force-constants associated with inter-atomic interactions are collectively referred to as a 

force-field. MD trajectories, which correspond to a collection of conformational snapshots 

sampled during the simulation, are analyzed using a variety of approaches to identify 

conformational states that are potentially important for function 53. While conformational 

motions in proteins are observed over a wide range of time scales — from the fast 

femtosecond-picosecond (fs-ps) to the slower millisecond-second (ms-s) — the range of 

time scales accessible by MD is currently limited due to the speed of central/graphical 

processing units and related computer hardware. Until recently, sampling from MD 

simulations was typically on the order of hundreds of nanoseconds. Enhanced sampling 

techniques, alongside advances in computational resources, now enable routine 

conformational sampling on the μs time scale, with specialized supercomputing facilities 
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reporting longer ms time scale simulations 54,55. MD simulations have been used in 

combination with NMR to identify allosteric networks of conformational motions that play 

an important role in enzyme function 10,56,57.

A diverse array of other sequence and structure based computational approaches have also 

been used to identify and characterize protein flexibility on the fast time scale 58,59, in 

addition to characterizing allosteric networks that display motions on the slower μs-ms time 

frame via dynamical coupling of distal residues in proteins 60–62. For example, DynaMine is 

a sequence-based approach that provides a statistical and quantitative analysis of protein 

backbone flexibility on the fast time scale (ps-ns) for each amino acid of the protein 59. 

Statistical coupling analysis is another approach that uses sequence datasets of protein 

families to identify co-evolving amino acid networks important for distinct biochemical 

functions 63,64. Using this approach, Reynolds et al. identified a co-evolving amino acid 

network in the dihydrofolate reductase family undergoing millisecond conformational 

dynamics that was strongly correlated with enzyme catalysis 61.

Accurate prediction of NMR observables such as chemical shifts, residual dipolar couplings 

(RDCs), and order parameters (S2) from protein coordinates has facilitated the 

characterization of protein dynamics through the comparison between NMR and molecular 

simulation ensembles 65. Algorithms such as SHIFTX2, SHIFTS, CamShift, SPARTA+, and 

others have been used to predict chemical shifts from structural coordinates obtained from 

MD simulations 66–69. Chemical shifts have also been used to compute order parameters 

(S2) for MD ensemble coordinates. Comparison of the predicted S2 with experimental 

observations facilitates the quantitative characterization of fast time scale dynamics of the 

protein backbone, providing a range of conformations associated with the observed order 

parameters 65,70,71. Further, MD can complement structural observations that are missing 

from NMR relaxation 72,73.

In recent years, a number of studies have combined MD and NMR chemical shift analyses to 

probe conformational dynamics in proteins. For example, Robustelli et al. compared 

dynamically averaged chemical shifts predicted from MD simulation ensembles with 

experimental NMR shifts to characterize the effect of conformational dynamics on the 

observed chemical shift pattern in proteins. Using 100 ns and 1 μs simulations of two 

homologs of ribonuclease H (RNase H), they showed that ensemble averaged chemical 

shifts calculated from MD are in better agreement with NMR observables than those 

predicted from static X-ray structures 42. By probing the dynamical properties of regions 

displaying improved chemical shift agreement with experiment, the authors showed that 

these improvements result from: 1) a population weighted sampling of multiple 

conformational states, and 2) sampling within individual conformational basins. Further, 

analysis of averaged chemical shifts from MD simulations also identified erroneous 

conformations resulting from inadequacies of the force-field. These observations highlight 

the use of dynamically averaged chemical shifts to probe conformational dynamics in 

proteins.

NMR chemical shifts have also been used as replica-averaged structural restraints for MD 

simulations to characterize the dynamics of ribonuclease A (RNase A) 31–33. Camilloni et al. 
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showed that agreement between calculated and experimental chemical shifts was improved 

in the chemical shift restrained ensembles relative to unrestrained MD ensembles. 

Comparison of the free energy landscape of RNase A for the unrestrained and restrained MD 

ensembles showed that the restrained MD simulations sample the major and minor 

conformational states reported for RNase A, with the calculated population of the minor 

state consistent with previous experimental reports. These observations highlight the 

importance of using chemical shifts to bias the conformational landscape to reproduce 

dynamical properties of a protein in molecular dynamics simulations.

A number of NMR observables other than chemical shifts have also been used as restraints 

for MD simulations, either alone or by combining several observables 11,75. Several studies 

have compared NMR residual dipolar couplings (RDCs) with predicted RDCs from MD 

ensembles to characterize backbone and side-chain dynamics over a range of time 

scales 12,13,76–79. Markwick et al. combined plain and accelerated MD (AMD) simulations 

with experimental RDCs to characterize conformational dynamics of the GB3 protein over 

the faster ns and slower ms time scales 78. In a subsequent study, the authors combined a 

novel AMD/SVD approach with extensive NMR observables to determine the time-resolved 

structural dynamics of ubiquitin over a broad time scale (ps-ms) 80. SVD allowed the 

determination of optimal scalar J-coupling and RDC alignment tensor parameters. The 

population weighted average scalar couplings were shown to be in good agreement with 

experimental observations.

Computational MD simulations and experimentally extracted NMR relaxation parameters 

are now being routinely used as complementary approaches to characterize protein dynamics 

on multiple time scales. Among recent examples, this combined method was used to uncover 

amino acid residues associated with allosteric communication in Pin1 and IGPS (as 

reviewed above and in ref. 14). Cross-correlation analyses of protein motions from MD 

trajectories have highlighted changes in correlated motions upon binding of effector 

molecules to IGPS 38,81. NMR and MD were also recently integrated to characterize the 

dynamical properties of the Streptomyces lividans xylanase B2 (XlnB2) in the free and 

ligand-bound states 82. Ligand binding was shown to induce enhanced conformational 

dynamics of residues that interact with the ligand in the thumb loop and finger regions of the 

enzyme. Finally, by comparing order parameters from MD simulations with NMR 

observables, Fisette et al. showed that better agreement is observed with structured elements 

(α-helices and β-sheets) while sampling of loop regions by MD were insufficient to 

reproduce the experimental observations for these regions 83. In a subsequent study, the 

authors characterized the dynamical properties of two β-lactamases upon substrate 

binding 84 (also reviewed in ref. 65). By comparing order parameters obtained from MD and 

NMR for the free form, they showed excellent agreement for ordered regions while 

differences were observed for the less ordered loop regions. For the substrate-bound state, 

back-calculated order parameters from MD showed localized differences upon binding near 

catalytic residues.
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5.2. Conformational fluctuations and sub-states characterization using the Quasi 
Anharmonic Analysis (QAA)

NMR techniques such as CPMG can provide the rate of exchange between distinct 

conformations constituting discrete conformational sub-states, enabled by concerted motions 

of residue networks that occur on the μs-ms time scale. For instance, many residues in a loop 

can experience similar individual exchange rates (kex), suggesting a concerted group (or 

global) motion on this particular time frame. Rates of conformational exchange of surface 

loop regions have been shown to coincide with the catalytic turnover in several enzyme 

systems 85–87. This has led to a significant interest in linking events associated with these 

dynamic exchange rates with particular molecular mechanisms involved in protein function. 

Unfortunately, while possible, NMR is somewhat limited in its ability to provide rapid 

atomistic details on directionality and length-scales for these movements. Therefore, 

integration of computational and NMR techniques is becoming increasingly popular for the 

characterization of conformational substates and their populations. In combination with 

experimental NMR relaxation data, MD simulation techniques can be used to build a 

hierarchy of conformational states. With statistical sampling, MD can provide information 

on populations associated with each state and can also be extended to calculate the kinetic 

information about the interconversion between the states (Figure 1B). The rates and 

magnitudes of interconversion are correlated with the CPMG-based relaxation parameters. 

Once validated, the computationally obtained conformational sub-states can provide detailed 

information about the orientation and other structural (and dynamical) properties of 

individual atoms, residues, and whole proteins.

A novel computational approach, the Quasi Anharmonic Analysis (QAA), was developed to 

identify sub-states in the conformational landscape of proteins 88,89. QAA uses higher order 

statistics of positional variations associated with sampling of conformational states from MD 

simulations and provides insights into the role of conformational fluctuations on longer time 

scales. It permits the identification of conformational sub-states along a reaction pathway 

that exhibit structural and dynamical properties important for function. Although a number 

of alternate approaches exist, the advantage of QAA lies in its ability to correctly identify 

energetically homogeneous conformational sub-states that correlate well with experimental 

information. Using T4 lysozyme and ubiquitin as model systems, Ramanathan et al. applied 

QAA to identify and characterize the hierarchical organization of conformational sub-states 

in these proteins 88. The authors also characterized conformational sub-states associated 

with the cis/trans isomerization of proline peptide bonds catalyzed by the enzyme 

cyclophilin A (CypA)88. They identified a separate conformational sub-state corresponding 

to the transition state of the reaction pathway in CypA, where motions of clusters of residues 

were shown to adopt conformations that promote the transition state.

In combination with NMR relaxation dispersion experiments, QAA was recently used to 

identify the conformational sub-states associated with the substrate and product bound states 

of wild-type (WT) and a single point mutant form of RNase A 90. MD simulation 

trajectories of the apo, reactant, and product-bound states were used for QAA. Analysis of 

the top QAA modes revealed reduced global conformational motions in the mutant, 

corresponding to the interconversion between the reactant to product states, relative to the 
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WT enzyme. Further, enhanced conformational dynamics of the surface loop 4 was observed 

in the apo and ligand-bound states of the mutant form. These enhanced loop motions were 

shown to be consistent with significant changes observed in the ligand binding and catalytic 

properties of the enzyme. Further analysis revealed a lack of correlated motions of two 

surface loop regions (loops 1 and 4) in the mutant, suggesting a role of this correlated 

motion for optimal catalysis in the WT enzyme 90.

Further illustrating the power of this combined experimental-theoretical method, Gagné et 
al. used 15N-CPMG, microsecond time-scale MD simulations, and QAA to investigate the 

conformational fluctuations associated with the binding of substrates in xylanase B2 from 

Streptomyces lividans (XlnB2) 82. Using simulations of the apo enzyme and 6- and 9-unit 

xylan substrates bound to the enzyme as input for QAA, they characterized the dynamic 

modes and structural interactions of the enzyme that facilitate substrate binding (Figure 4). 

Details of the role of structural interactions of protein residues with ligand during the 

binding process and the range of motions (amplitude) that each residue undergoes were 

identified. It was discovered that the apo protein also samples the subset of conformations 

required for ligand binding. Quantitative characterization of these states would help in 

identifying the relationship between the rate of conformational exchange and the rate of 

ligand binding.

6. Conclusion

Technological advancements remain critical for improving NMR resolution and 

spectroscopic data acquisition when studying atomic-scale protein flexibility. The present 

review nevertheless illustrates that recent developments stem from the combination of clever 

isotope labeling schemes and carefully selected relaxation methods that either selectively 

target specific spin probes and/or improve spectral sensitivity, in addition to taking 

advantage of other biophysical techniques such as circular dichroism spectroscopy and/or 

isothermal titration calorimetry to characterize protein motions on multiple time frames. 

Finally, the combination of experimental NMR with computational methods aimed at 

predicting NMR chemical shifts, order parameters, and/or conformational sub-state 

populations (e.g. the quasi-anharmonic analysis, or QAA approach) now pave the way to an 

ever-increasing understanding of functionally relevant time-dependent motional events 

essential to biological function at the atomic level.
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Highlights

• Atomic flexibility on multiple time scales plays a defining role in protein 

function

• NMR relaxation allows the characterization of protein conformational sub-

states

• Computational and biophysical applications further expand the range of NMR 

methods

• This review presents recent application progress to a general biochemical 

audience
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Figure 1. Schematic depiction of exchange between two protein conformational substates on the 
μs-ms time scale
A) Schematic representation of a backbone residue HN vector experiencing conformational 

exchange between ground state A and excited state B on the μs-ms time scale. The popular 

Carr-Purcell-Meiboom-Gill (CPMG) and R1ρ rotating frame relaxation dispersion 

experiments have been collectively employed to investigate conformational exchange rates 

(kex) for residues experiencing conformational exchange in proteins over time frames that 

roughly span ~100 to ~50,000 events per second (s−1), overlapping the time scale of relevant 

biological events. B) Energetic representation of the two-site exchange between ground state 

A (higher population, pA), and excited state B (lower population pB, often invisible on fast 

and intermediate NMR time scales) 23,53,100. NMR relaxation dispersion experiments can 

provide rates of exchange (kex), populations (pApB), and chemical shifts between 

interconverting species (Δω). C) Representative experimental 15N-CPMG NMR curves at 

500 MHz (circles) and 800 MHz (squares) for a backbone HN vector experiencing 

conformational exchange on the μs-ms time scale in a protein. D) Flat experimental 15N-

CPMG NMR profiles at 500 MHz (circles) and 800 MHz (squares) for a backbone HN 

vector that does not experience conformational exchange on the μs-ms time scale. The 

somewhat limited atomistic details on directionality and length-scales provided by NMR for 

these movements can readily be complemented by MD simulations, which offer full 

atomistic details of the conformational populations.
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Figure 2. Illustration of the CHESPA approach
1H-15N resonance assignments for apo, mutant and cAMP-bound forms of EPAC are 

represented as grey, green, and red circles, respectively. The compounded chemical shift 

upon mutation and ligand binding is calculated as the magnitude of vectors A and B, 

respectively (see text for details). θ represents the angle between vector A and B. Figure 

adapted from ref. 43.
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Figure 3. Application of CHESPA to human angiogenin
Projection analysis describing independent and coordinated residue variations upon 5′-AMP 

and 3′-UMP binding to human angiogenin subsites. (A) Graphical representation of the 

CHESPA approach described in ref. 43. The 1H-15N position of the peak is represented for 

the free (red) and bound forms (5′-AMP in blue and 3′-UMP in green) of the enzyme. 

Arrows indicate the movement of the 1H-15N chemical shift (length and direction) for each 

peak from its origin (in red) to its saturated position (blue and green). Projection analysis of 

eight selected residues responding in (B) independent or (C) coordinated manner in human 

angiogenin. (D) Direction cosθ and magnitude (fractional shift X) of the chemical shift 

perturbation of a subset of residues of angiogenin upon binding to saturation of the 5′-AMP 

and 3′-UMP. The cosθ quantifies the angle between vectors A (3′-UMP) and B (5′-AMP) 

from its initial position in the free form of the enzyme. The fractional shift X represents the 

fractional composite of vectors A and B induced by the ligand-induced chemical shift 

change. Collectiveness was observed for residues with a cosθ ~ 1, as previously 

described 43. (E) Residues showing coordinated displacements (cosθ ~ 1) are represented in 

red on the three-dimensional structure of human angiogenin, while residues showing 

uncoordinated displacements (cosθ ≠ 1) are shown in blue. Reprinted with permission from 

ref. 50. Copyright 2015 Wiley.
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Figure 4. Conformational sub-states of xylanase B2 (XlnB2) from Streptomyces lividans 
determined using computational simulations and QAA
Representative conformations along the top three modes for the interconversion between 

free and (A–B) X6-bound and (C–D) X9-bound XlnB2 binary complexes. A total of 

200,000 conformational snapshots obtained from the MD simulations were used as input for 

QAA to identify the top QAA-independent component vectors for characterizing the 

primary dynamics associated with the substrate binding process in XlnB2. Reprinted with 

permission from ref. 82. Copyright 2016 American Chemical Society.
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