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Abstract

Datasets examining periodontal disease records current (disease) status information of tooth-sites, 

whose stochastic behavior can be attributed to a multistate system with state occupation 

determined at a single inspection time. In addition, the tooth-sites remain clustered within a 

subject, and the number of available tooth-sites may be representative of the true PD status of that 

subject, leading to an ‘informative cluster size’ scenario. To provide insulation against incorrect 

model assumptions, we propose a nonparametric regression framework to estimate state 

occupation probabilities at a given time and state exit/entry distributions, utilizing weighted 

monotonic regression and smoothing techniques. We demonstrate the superior performance of our 

proposed weighted estimators over the un-weighted counterparts via. a simulation study, and 

illustrate the methodology using a dataset on periodontal disease.
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1 Introduction

Multistate models (Hougaard, 1999; Kneib & Hennerfeind, 2008) are popularly used in 

biomedical research to model complex time-continuous disease evolution based on 

multivariate time-to-event data, allowing the study units to move reversibly or irreversibly 

through a succession of discrete states before entering an absorbing state (Lan & Datta, 

2010b). Each state corresponds to a health condition of a study unit over the course of the 

disease, such as alive and disease free, alive with disease, dead, etc. Multistate models are 

often quantified by state occupation probabilities as functions of time (similar to the survival 

function in traditional survival analysis), and these are often related to the distributions 

function of state entry and exit times in any event history settings. However, the actual 

transition times can be subjected to current status censoring, when the study unit is observed 
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only once at a random inspection time. Thus, we observe only the state occupied at 

inspection (not failed or censored as in usual survival analysis), and the time of inspection in 

a multistate current status framework, which represents a more severe form of censoring.

The evolution of periodontal disease (PD), like any other complex disease, can be 

characterised via. a multistate model, where the outcome of interest is the disease status 

measured per tooth site at an inspection time, clustered within a subject. In addition, the 

cluster sizes are informative (Williamson et al., 2003), i.e., the number of available tooth-

sites within a cluster (subject) is inversely correlated to the (overall) PD status of the subject, 

and overlooking this would lead to study units contributing equally to the data likelihood 

leading to overweighing the larger clusters, and bias in parameter estimates. For analyzing 

traditional clustered (correlated) survival data, various marginal approaches have been 

proposed under the proportional hazards framework (Wei et al., 1989; Spiekerman & Lin, 

1998; Clegg et al., 1999), or considering the accelerated failure type model, additive hazards 

model and linear transformations model (Lin & Wei, 1992; Cai et al., 2000; Yin & Cai, 

2004). Extensions to incorporate the informative cluster size (ICS) scenario (Cong et al., 
2007; Hoffman et al., 2001) include adapting the ICS methodology developed for clustered 

binary data via within-cluster resampling (Hoffman et al., 2001), weighted generalized 

estimating equations (Williamson et al., 2003), etc. However, such a framework for 

multistate current status data (as in our case) has not yet been explored.

The current literature is inundated with various parametric and semi-parametric approaches 

to direct estimation of state occupation probabilities (Gray, 1992,9) and cumulative 

incidence curves (Scheike et al., 2008), modeling transition hazards (Satten et al., 1998), and 

multistate models (Andersen & Keiding, 2002; Kneib & Hennerfeind, 2008; Andersen & 

Perme, 2008) Inarguably, these methods produce relatively precise inference for estimation 

of covariate effects under the correct model; however, in reality, a practitioner is often 

confronted with the difficulty to determine the most suitable model for a particular dataset. 

Hence, to insulate against incorrect model assumptions, a fully nonparametric approach 

might be viable, although one would necessarily require a larger sample size to enjoy the full 

benefits of going nonparametric. Although our current clustered multistate framework poses 

more challenges than the traditional survival analysis setup, only the nonparametric 

estimators can serve as the benchmark (Doksum & Yandell, 1983) to the shape of the 

regression functions on the various marginal quantities discussed above, and can be the 

starting block for further parametric and semi-parametric analysis.

The literature on nonparametric estimation in multistate models is rather limited, and mostly 

tackles the usual survival setup (Aalen, 1980; Dabrowska, 1987,9; McKeague & Utikal, 

1990; Li & Datta, 2001). An interesting hybrid approach (Andersen et al., 2003; Andersen & 

Klein, 2007) is to study the effect of covariates in a multistate model by starting from a 

nonparametric marginal estimator followed by a semi-parametric modeling of the 

corresponding jackknife based pseudo-values. Nonparametric estimation for multistate 

current status (Datta & Sundaram, 2006; Lan & Datta, 2010b) considers product-limit 

estimators of state occupation probabilities and state entry/exit time distributions; the special 

case of competing risk models was investigated by Jewell et al. (2003) and Groeneboom et 
al. (2008). Lan & Datta (2010a) develop nonparametric bootstrap tests comparing the 
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occupation probabilities, entry, exit and waiting times in the current status multistate setup. 

Nonparametric regression for multistate current status data remains vastly absent in the 

literature, except for an unpublished manuscript by Burr & Gomatam (2002). Motivated by a 

real dataset on PD (Reich & Bandyopadhyay, 2010), we propose a nonparametric multistate 

regression model to evaluate dental disease progression, incorporating informative cluster 

sizes and clinical risk factors. Our estimators are obtained conditional given a single 

(continuous or discrete) covariate, and are based on similar re-weighting principles (Datta & 

Satten, 2001,0) and kernel-smoothed estimates of the component counting and number-at-

risk process. The underlying premise is free of the usual structural assumptions (Markov, or 

semi-Markov) of a multistate model, but have a directed tracking structure such as: State 1 

→ State 2 → State 3. The main contribution of this paper is to provide a non-parametric 

regression estimator given the value of a continuous covariate, based on multistate current 

status data and to extend it to clustered data in an informative cluster size (ICS) setting.

The rest of the paper is organized as follows. Section 2 introduces notation, and develops the 

methodology for the nonparametric regression estimators with adjustments for the 

informative cluster size. The global performance of the estimators is evaluated via. a finite 

sample simulation study, and presented in Section 3. Section 4 applies the methodology 

developed to the motivating dataset on PD. Finally, Section 5 presents some concluding 

remarks. Additional results and a theoretical justification are placed in an appendix.

2 Nonparametric Regression Estimators for Multistate Model

2.1 Notation and Convention

We assume ℜ = {0, …, M} is the finite state space for our underlying multistate model with 

a directed tracking topology, where each state j ∈ ℜ can be reached from an initial state 0 

following a unique path π(j): 0 = s1 → s2 ··· → sj+1 = j. We still allow the possibility that 

not all individuals need to be at the root state 0 at time 0. The current status data for each 

individual l can be represented as {Cl, Sl(Cl), Xl}, where the inspection time Cl is 

independent of the multistate process {Sl(t), t ≥ 0} given the continuous Xl. We further 

assume that all transition times and censoring variables are continuous, and the data for the 

individuals l = 1, …, n are independent, and identically distributed. Additional notations and 

assumptions will be needed when the data are clustered.

2.2 Regression estimators for unclustered data

2.2.1 State occupation probabilities—We begin by reviewing the non-parametric 

estimation for the state occupation probabilities for unclustered (i.e., independent) current 

status data (Datta & Sundaram, 2006). We note that in Datta & Sundaram (2006), only 

marginal (i.e., not conditional on a covariate) estimators were obtained. The two key 

ingredients were (i) estimated transition counts and (ii) estimated number at risk. In this 

paper, we extend these ideas to conditional processes given a continuous covariate by 

introducing appropriate kernel based weights at various stages of this construction.

Consider two states j and j′ in ℜ, and let Ujj′ denote the (latent) transition time of an 

individual from state j to j′ (define it to be ∞, if this transition is not made by the 

Lan et al. Page 3

Stat Neerl. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individual). Henceforth, in our model development, we suppress the subscript l 
corresponding to an individual, wherever possible, for notational convenience. However, we 

imply that the pertinent stochastic quantities varies with l. Let  denote the usual 

counting process counting the number of j to j′ transitions in [0, t] with the complete data, 

defined as . By the laws of large numbers, for any t ≥ 0, we have

(2.1)

Given the independence between the inspection time C and the multistate process, the right 

hand side of the equality can be expressed as the regression function E(I (Ujj′ ≤ C)|C = t). 
Note that we assume all past transitions (j to j′) before time t are known, and the counting 

process  can be computed at the inspection time C. Thus,  can be obtained 

by a nonparametric regression estimator of I (Ujj′ ≤ C) given C.

Next, let  is the number of individuals ‘at risk’ of transition out of state j at time t, 

defined as , with S(t−) representing the state occupied just before 

time t. Thus, the limit of  in probability is Pr{S(t−) = j} = Pj(t−). However, unlike 

the counting process of transition counts, the  process does not have to be monotonic for a 

transient state j. Therefore, Datta & Sundaram (2006) used kernel smoothing rather than 

weighted isotonic regression to estimate this process.

In order to compute the regression functions given a continuous covariate X, we need to 

compute weighted versions of this estimated process where the weight corresponding to the 

lth observation is ϕh(x−Xl). Here, ϕh can be any scaled log concave kernel (normal kernel for 

this study) with bandwidth h (Wand & Jones, 1995). As before, since Pr{Ujj′ ≤ t|X = x} is 

monotonic in t,  can be constructed by a weighted isotonic regression of I (Ujj′ 
≤ C) on C, based on the pairs (Cl, I (Ul,jj′ ≤ Cl)) with weights ϕh(x−Xl), such that 

 is a step function for each x taking values  say, that 

minimizes the weighted sum of squares , 

subject to R1(x) ≤ ··· ≤ Rn(x), where [l] denotes the index in the original data such that C[l] 

equals the lth order statistic C(l). The weighted sum of squares can be written as a quadratic 

form with a diagonal weight matrix which can be solved by a direct application of R 

package isotone, using (generalized) pooled adjacent violators algorithm (GPAVA) (de 

Leeuw et al., 2009). The long flat parts in  resulting from the application of the 

GPAVA are removed using kernel-smoothing techniques (Mukerjee, 1988; Nadaraya, 1964; 

Watson, 1964) while maintaining monotonicity. This yields the final estimator
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(2.2)

where Kh̃ = h̃−1K(./h̃) > 0 is a (differentiable) log-concave density (e.g., the standard 

normal), and 0 < h̃ = h̃ (n) ↓ 0 is the associated data dependent bandwidth sequence 

determined by Wand and Jones criteria (using R function dpik).

The kernel estimated number at risk process, given X = x, is a locally weighted version of 

the corresponding estimated process in Datta & Sundaram (2006) given by

(2.3)

Finally, the class of regression estimators for state occupation probabilities will be computed 

using the identity: , where (P̂ (0, t|x)kj is the 

kjth element the matrix P̂ (0, t|x) = Π(0,t] (I + dÂ(u|x)), and Ŷk(0 + |x)/n are the relative 

proportions of individuals at time 0 in various states. Here Â(u|x) is a conditional estimated 

Aalen-Johansen estimator based on current status data:

(2.4)

where Jj(u, x) = I(Ŷj(u|x) > 0).

Consistency of the above Aalen-Johansen type estimator to the corresponding population 

integrated hazard rates can be established using the same line of arguments as in Datta & 

Sundaram (2006), combined with the non-parametric regression arguments in Mostajabi & 

Datta (2013). Consistency of estimated state occupation probabilities follows from that of 

the Aalen-Johansen type estimator by the continuous mapping theorem and the basic 

arguments laid out in Datta & Satten (2001).

2.2.2 State entry/exit time distributions—Let δj be the (unobserved) indicator of the 

event that an individual would ever enter state j. For any two states j and j′ in ℜ, let Uj and 

Vj be the entry and exit times for state j respectively. The corresponding distribution 

function of Uj is Fj(t) = P(Uj ≤ t|δj = 1), where F0(t) = 1 for all t ≥ 0. Let Sj be the set of 

states of ℓ such that state j is on the path from 0 to ℓ. Therefore, the entry time distribution to 

state j is estimated as:
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where P̂ℓ(∞|x) = limt→∞ P̂ℓ(t|x). In other words, F̂
j(t|x) is the normalized sum of estimated 

state occupation probabilities of state j and all other states that come after j in the 

progressive system, given x.

Analogously, the distribution function of the state exit time Vj is given by Gj(t|x) = P(Vj ≤ t|
δj = 1), where Gj(t|x) = 0 if j is a terminal state, for all t ≥ 0. For a transient state j, Ĝj(t|x) is 

computed as the normalized sum of estimated state occupation probabilities of all other 

states that come after j in the progressive system, as

Consistency of the estimators of state entry and exit time distributions follow from that of 

the state occupation probability estimators.

2.3 Estimation for clustered data with informative cluster size

We now consider a setting where individuals undergoing their multistate systems are 

clustered so that the multistate processes of individuals belonging to the same cluster may be 

dependent; however these processes for individuals belonging to different clusters are 

independent. We use i to index cluster and l to index individuals within cluster. Thus, the 

multistate process of an individual will be denoted by Sil = {Sil(t): t ≥ 0}. We let m denote 

the total number of clusters and for 1 ≤ i ≤ m, ni denotes the size of the ith cluster. Note that 

 denotes the total sample size.

We consider the situation where the cluster sizes are potentially informative. As indicated in 

the introduction, the ICS phenemonon has received some attention in recent years. This 

means the cluster size ni is random, and influenced by some measured or unmeasured (e.g., 

latent factors) cluster level covariates that also correlate with multistate processes in the 

cluster. See the Simulation section for a data generation scheme leading to ICS.

Assuming that the multistate processes Sil and the covariates Xil within a given cluster i are 

exchangeable, we are interested in the marginal state occupation probabilities Pj(t) = 

Pr{Sil(t) = j}, or in the marginal conditional (e.g., regression) state occupation probabilities 

Pj(t|x) = Pr{Sil(t) = j |Xil = x}. More generally, let I have a discrete uniform distribution on 

{1, ···, m} and given I = i, let J = J(i) be a uniformly distributed index on {1, ···, ni}. Then SIJ 

can be interpreted as the multistate process corresponding to a randomly chosen individual 

from a randomly chosen cluster. Define the marginal state occupation probability by
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(2.5)

where E denotes a joint expectation over all random variables/processes invloved in defining 

the indicator event. The case of a marginal regression function can also be treated more 

generally.

We note the use of inverse cluster size weighting in the above definition and in various 

formulas in the rest of this subsection. In the appendix, we show that under some conditions, 

this general definition coincides with the interpretation given earlier. In case of ICS, the 

corresponding formulas without the inverse cluster size weightings may lead to biased 

answers. This is reflected in the simulation results presented in the next section.

Let the ordered inspection times C′s in the pooled sample be C(1) ≤ ··· ≤ C(Q), and r(i, l) be 

the rank of Cil in the pooled sample. Then in this case,  will be a step function 

for each x taking values  say, that minimizes the weighted sum of 

squares

(2.6)

subject to R1(x) ≤ ··· ≤ RQ(x). As mentioned above, we use additional weight that is the 

inverse cluster size  so that we can downweight the contribution of individual members of 

larger clusters to equally balance the total contributions of all clusters (Lee et al., 1992). A 

formal interpretation of a marginal distribution to justify this can be given as before. The 

smoothed estimate for the counting process (in Subsection 2.2) is given by:

(2.7)

and the corresponding at-risk set estimator (given X) with ICS is defined as:

(2.8)

Note that the ICS adjustment enters the estimation framework through equations (2.7) and 

(2.8). Other formulas described in Sections 2.1 and 2.2 can be extended in a similar way by 

using the present versions of the adjusted transition counts and number at riak processes. 

Estimators for state entry and exit times are functions of state occupation probabilities as 
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described in Section 2.2. Once the state occupation probabilities are extended to clustered 

data with ICS, both state entry and exit time distributions can be naturally extended as well. 

Finally, it may be worth pointing out that if we suppress the ϕh factors from (2.6) and (2.8), 

we would obtain the marginal state occupation probability estimators.

2.4 Extensions to clustered data with informative sub-cluster size

The inverse cluster size methodology of Williamson et al. (2003) as adapted in the previous 

section will be inadequate in situations where a discrete subject (i.e., unit) level covariate 

influences the multistate process and the size of the sub-clusters formed by different values 

of the covariate within a cluster. Although, our PD data set does not have this issue, we still 

wanted to extend our methodology in this paper to cover this type of situation so that our 

readers are more fully equipped in case they encounter such a data set. Here, one needs to 

use a more complex weighting to account for such imbalances in the data (Huang & Leroux, 

2011; Pavlou, 2012).

As before, suppose X be the univariate covariate whose regression effect we are studying. In 

addition, we also have a unit/individual level discrete covariate Zil taking values in the set 

{z1, …, zK} that defines the sub-cluster size. For each cluster i, let subcluster k denote the 

set of indices l with Zil = zk. Also, let  denote the size of the kth 

cluster. Assuming all sub-cluster sizes are positive (with probability one), we could use the 

following weighted least squares objective function

to obtain the monotonized estimator of the counting processes , which will lead to 

the smoothed estimator

(2.9)

Similarly, the number at risk process can be estimated as

(2.10)

Note that the weighting scheme has a marginalization interpretation as before. In this case, 

we are interested in the distribution of a typical individual unit of a typical sub-cluster of a 

typical cluster.
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3 Simulation study

3.1 The setup

To compare finite sample performances of the nonparametric estimators of state occupation 

probabilities for multistate models with and without the ICS adjustments using the inverse 

cluster size reweighting, we perform a detailed simulation study using a three stage tracking 

model (State 1 → State 2 → State 3) which includes the initial, transient and absorbing 

stages (Fan & Datta, 2011). In this setting, state occupation probabilities take the following 

form:

(3.1)

Also, the state entry time distributions equal the state exit time distribution of the previous 

state since there is only one path for this progressive system. Therefore,

The current status data for each cluster unit l in a cluster i consists of {Cil, S(Cil), Xil} for l = 

1 ··· ni and i = 1 ··· m. The total survival time (equivalent to the entry time of the absorbing 

state 3) is generated as follows:

(3.2)

where Zil1 ≡ 1, Z2,i is a cluster level discrete (binary) covariate, Z3,i is a cluster level 

continuous covariate, Z4,il is a unit level continuous covariate, and Z5,i is the interaction term 

between Z2,i, Z3,i, and αi is a cluster-specific random effect. Specifically, Z2,i = I(1 ≤ i ≤ 

m/2) where I represents the indicator function, , Z5,il = 

Z2,iZ3,i,  and . State 1 exit time T1,il is generated as a proportion of 

T2,il, where the proportions are uniformly distributed. We use uniform distribution to 

generate the current status censoring time with range (0, max(T2,il)]. Our simulation designs 

cover a wide range of data generation mechanisms, varying with the number of clusters, the 

regression coefficients, the error densities, cluster-specific random effects density, the 

informative cluster size mechanism, and the covariate distributions. These are listed as 

follows:

• Number of clusters: m = 30 (moderate), and m = 200 (large).
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• Two sets of parameter values: (i) β1 = 0.3, β2 = 0.4, β3 = β4 = −0.2, β5 = −0.3, 

and (ii) β1 = 0.8, β2 = 1, β3 = β4 = −0.75, β5 = −1.5. (Note, we let β3 equal to β4 

to reduce the number of simulation setups)

• Continuous covariates generated as stated before with variances: , or 

.

• Cluster-specific random effects variance: , or 0.25.

• Error variance: , or 0.20.

• Covariate for the regression function: X = Z4.

• ICS scenarios: For the first scenario, let g(αi) = γ1 + γ2αi. The cluster sizes were 

randomly generated as , where , i.e., the 

cluster size depends only on the cluster random-effect αi. We consider two sets 

of parameters: γ1 = 1.5, γ2 = 3 and γ1 = −1, γ2 = 4.

For the second scenario, the cluster size is a function of both αi and the cluster 

level covariate Z2,i. Here, g(αi) = γ1 + γ2αi + γ3Z5,iαi. The cluster sizes were 

randomly generated as , where . Once again, 

we consider two sets of parameters: γ1 = 1.5, γ2 = 3, γ3 = 1 and γ1 = −1, γ2 = 4, 

γ3 = −4.

3.2 Estimation accuracy measured by the L1 risk

The global performance of the regression estimators of state occupation probabilities was 

assessed via the expected L1 distance Δ, defined as Δ:= E ∫ |θ̂(t)−θ̂T (t)| dFQ(t), where θ̂ and 

θ̂T denote respectively, the estimates of the state occupation probability θ from the current 

status data and its targeted counterpart based on data generated with 1000 clusters. The 

integrating measure is the empirical distribution function of the transition times, given as 

FQ(t) = Q−1 Σ I{Cil ≤ t}. Δ = 0 implies complete agreement on the support of the observed 

C. We calculate Δ via Monte Carlo averaging with a replication size of 5000.

For the two scenarios on ICS generation, the targeted state occupation probabilities at any 

given time t are computed as follows. Generate a single large sample of M = 1000 clusters, 

and the corresponding transition times T1,il, T2,il. For the first scenario, we consider 

estimating the marginal (i.e., not conditional on X) state occupation probabilities. In this 

case, the targeted state occupation probabilities are taken as:

For the second scenario, the target probabilities are computed as:
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where ϕ is standard normal and h is a data-dependent bandwidth sequence (Wand & Jones, 

1995). For the second scenario, the L1 distance was calculated at the first and third quartile 

of Z4,il from the target cluster. Table 1 presents the L1 risks of weighted (by inverse cluster 

size) and unweighted estimators, represented by superscript w and uw respectively, for 

cluster sizes m = 30 and 200 for the following parameter setting, that was arbitrarily selected 

from all combinations: β1 = 0.3, β2 = 0.4, β3 = β4 = −0.2, β5 = −0.3, 

, γ1 = 1.5, γ2 = 3, γ3 = 1. Results for a number of additional 

settings are reported in Tables 4–14 in the Appendix. The overall conclusions from all the 

tables are similar.

As revealed from Table 1, our ICS adjusted regression estimators outperformed the ‘without 

ICS adjusted’ counterparts for both scenarios. For the weighted estimators, the L1 risks 

decrease as the number of clusters increases. The results are indicative of their large sample 

consistency although the rate of convergence might be slow, which is to be expected. The 

biases for the unweighted estimators do not go away with increasing number of clusters 

indicating that such estimators are not valid in presence of ICS.

3.3 Coverage of smoothed bootstrap based confidence intervals

Nonparametric regression (conditional state occupation probabilities) induces difficulty in 

the asymptotic analysis of our estimators. In addition, operations such as GPAVA will add to 

the complication, and the final asymptotic distribution may not be tractable in a usable form, 

say for construction of confidence intervals (CI). A practical/working alternative may be a 

bootstrap-based CI. Guided by existing results (Li & Datta, 2001) for bootstrapping 

nonparametric regression estimators, we proposed a smoothed bootstrap where a larger 

bandwidth is used for centering the resampled statistic.

The current problem is an example of non-standard asymptotics for which the naive 

bootstrap will not work. In addition to the issue of clustered data, the estimators we are 

trying to bootstrap involves smoothing. It has been demonstrated that with a naive centering, 

bootstrap cannot capture the bias term in the smoothed estimator (Faraway & Jhun, 1990). 

One way of circumventing the problem is to resample from an oversmoothed estimator, 

followed by centering based on the oversmoothed estimator. Theoretical validity of these 

type of smoothed bootstrap has been established in Li & Datta (2001). Hence, we used the 

following resampling scheme in order to tackle the issues of bootstrapping smoothed 

estimators based on clustered data. First, a bootstrap sample 

{ , 1 ≤ i ≤ m} was obtained via simple random sampling 
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with replacement of the entire clusters of observations {ni, Cil, Sil(Cil), Xil, 1 ≤ l ≤ ni, 1 ≤ i ≤ 

m}, where m is the total number of clusters and ni is the size of the ith cluster, as defined 

before. Note, here we do not resample individual records, but the entire clusters of data 

values, following Field & Welsh (2007). This preserves the dependence structure within the 

clusters, and also the informativeness. Let g = max(h0.8, h̃0.8), where h and h̃ were the 

bandwidths described in Section 2.2. Since typically both h and h̃ are less than 1, g is going 

to be larger than these bandwidths, which is needed for the over-smoothing mentioned 

before. We then smooth the inspection times by , where εil follows a 

truncated standard normal distribution with lower boundary equals to negative of minimum 

of .

For 0 < α < 1, let Δ̂
1−α(t) be the (1 − α)-th bootstrap percentile of the distribution of 

, where P̂* uses the same bandwidth as in the original 

but is based on the bootstrap sample; however, P̂
j(t; g|x) for centering is recomputed from 

the original sample but using the new bandwidth g. Then, our (1 − α) × 100% pointwise CI 

for the state j occupation probability at time t is given by

(3.3)

where P̂
j(t|x). Note that the PD data application (Section 4) also uses the same rule to obtain 

g.

We evaluate the performance of the smoothed bootstrap based confidence intervals in the 

ICS scenario 2. A set of 1000 bootstrap replicates was used to calculate the bootstrap 

percentiles for each original sample in 1000 Monte Carlo trials. From Table 2, we note that 

the empirical coverage probabilities of bootstrap-based 95% CIs are reasonable. The overall 

coverage improved for more extreme time values with the number of clusters.

4 Application

The motivating PD data was collected as part of a clinical study to explore the relationship 

between PD and diabetes (determined by the popular marker HbA1c, or ‘glycosylated 

hemoglobin’) in the Type-2 diabetic adult Gullah-speaking African-Americans residing in 

the coastal sea-islands of South Carolina by the Center for Oral Health Research (COHR) at 

the Medical University of South Carolina (MUSC) (Fernandes et al., 2009). The relationship 

between periodontal disease and diabetes level has been previously studied in the dental 

literature (Faria-Almeida et al., 2006; Taylor & Borgnakke, 2008). We selected 288 patients 

with complete covariate information and with at least one tooth present at inspection.

Dental hygienists often use a periodontal probe to measure clinical attachment level (or 

CAL) at six sites per tooth throughout the mouth (excluding the third molars). The CAL is 

defined as the distance down a tooths root detached from the surrounding bone. 

Additionally, several patient-level covariates were obtained, including age (in years), gender 
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(1 = Female, 0 = Male), body mass index or BMI (in kg/m2), smoking status (1 = a smoker, 

0 = never) and HbA1c (1 = High, 0 = controlled). Of the 288 subjects, 76% were female, 

31% were current or past smokers, and 41% had a high HbA1c level (≥ 7). BMI is classified 

as Overweight (with 25 ≤ BMI < 30), Obese I (with 30 ≤ BMI < 40), Obese III (with BMI ≥ 

40). The (clustered) multistate current status data consists of the PD states determined by 

CAL values at each of the 6 sites per tooth, with the current status times calculated as the 

difference between the patient’s age and dentition time for each tooth. Note that the 

dentition/eruption time varies by tooth and subject, and is unknown for this population. 

Hence, we fix the eruption times at a common value representing the population averaged 

eruption time of US adults, available at the American Dental Association weblink (http://

www.ada.org/2930.aspx). The various states of our multistate model are: CAL = 0 

representing State 0 (healthy); CAL in [1, 2] representing State 1 (slight PD); CAL in [3, 4] 

representing State 2 (moderate PD); and CAL >= 5 or missing, representing State 3 (severe 

PD), following the American Association of Periodontology (AAP) 1999 classification 

(Armitage, 1999). The prevalence of the states of PD by various covariates are presented in 

Table 3. Each patient is treated as a cluster, with the maximum cluster size be 168 when all 

teeth are present.

Note that BMI is the only quantitative covariate in our case study. The other covariates are 

naturally categorical and the corresponding conditional estimators are just the marginal 

estimators obtained using the sub-samples that correspond to each level of the covariate. The 

state occupation probabilities and state entry/exit time distributions for the PD data are 

estimated and plotted by gender, smoking status, HbA1c category and the BMI level (only 3 

arbitrarily selected levels are used for the display) in Figures 1–4. Females are more 

frequently detected than males across all disease states before 73.5 years of age (Figure 1). 

From Figure 2, current or former smokers tend to be diagnosed more often at all stages of 

PD than non-smokers at all ages, except for slight PD until age 60.5 years old and beyond. 

In addition, smokers enter the various disease states at a higher rate than non-smokers across 

all states and ages. Patients with controlled HbA1c were detected more often with moderate 

PD across all ages (see Figure 3), compared to the high HbA1c group. However, both 

HbA1c groups had similar performances when PD is severe. From Figure 4, we observe that 

the effect of obesity (BMI) on PD varies with age. For the overweight patients (BMI 

between 25 and 29.9), the periodontal health deteriorated quickly from 20 years of age, is 

the most observed group for slight and moderate PD states, and also for the severe PD state 

till 63.5 years of age. However, the impact of the Class III obesity group (BMI ≥ 40) was 

predominant at higher ages (> 65 years), as compared to the overweight and Class I-II obese 

(BMI between 30 and 39.9) groups, for severe PD.

Note that we can test the overall effect of a cluster level covariate X on the state occupation 

probability Pj by comparing the marginal and the conditional state occupation probabilities 

using the L1 distance test statistic

(4.1)
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where FQ is as before (see the Simulation section). Its p-value can be computed using a null 

boot-strap that resamples { }, 1 ≤ i ≤ m, and { }, 1 ≤ i ≤ m, 

separately from the respective collections of original data values and then concatenates them 

together to form { }, 1 ≤ i ≤ m. For computational savings, 

we approximated this test statistic by comparing at five percentiles of the covariate 

distribution and a grid of fifty time points (representing age of teeth). Using this 

nonparametric and omnibus test, statistical significance at 5% was reached only for the 

effect of BMI on the severe PD state occupation probabilities (bootstrap based p-value = 

0.006).

5 Conclusion

We present a nonparametric regression framework for clustered current status data observed 

at multiple disease states under the ICS scenario. Although each of these issues (current 

status multi-state data, non-parametric regression of state occupation probabilities, clustered 

data with ICS) has been separately studied in the literature, the combination of the three is 

new. As demonstrated by the application to the PD data, such a combination could arise in 

practice. This work extends the previous nonparametric estimation strategies presented in 

Lan & Datta (2010b) for the estimation of marginal state occupation probabilities using 

current status data and the work by Mostajabi & Datta (2013) for non-parametric regression 

under right censored data. Both simulation studies and application to a real dataset on PD 

reveal the superior performance of the ICS-adjusted estimators over the non-ICS ones.

Although our data application is on PD, there are other contexts where a unified framework 

combining multi-state models, current status data, and informative cluster size is justified. 

For example, in an epidemiological study on dental caries, subjects around a specific age 

(say, 19 years) may be inspected to determine the age distribution of dental caries 

development in young adults (as defined by a specific age range). Here, the event whether 

caries has developed or not at the exact age of inspection is a current status information. The 

teeth within a mouth are clustered, the number of teeth is potentially informative of the 

carries development (due to its connection to the overall oral health), and the caries 

development occurs through a sequential progression of states. Another example could be on 

determining the distribution of an ongoing staphylococcus infection in hospitals in a given 

locality. Here, patients within a hospital are inspected for presence/absence of infection, and 

the corresponding event times for each patient (given by the number of days since 

hospitalization determined from their admission record) would represent clustered current 

status event times. Once again, the number of patients within a hospital (cluster size) can be 

informative of the underlying infection, related through quality of care, management, greater 

individual-individual contact, etc, and the associated infection can exhibit a multistate 

progression.

ICS is a topic of considerable interest in recent times (Huang & Leroux, 2011; Nevalainen et 
al., 2014). In particular, the recent article by Seaman et al. (2014) compares and contrasts 

various proposed schemes that uses weighted (Williamson et al., 2003) and doubly-weighted 

(Huang & Leroux, 2011) generalized estimating equations (GEE), and shared random-

effects (Li et al., 2011). Our current framework is nonparametric. How our method compares 
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with the GEE-type or random-effects based propositions for multistate current status data is 

of interest. In addition, PD clinical trials generate more complex clustered-longitudinal data 

where tooth-site level longitudinal profiles are generated, along with covariates that can be 

time varying. This leads to more complex interval-censoring issues, with possible ICS 

scenario reflective of the periodontal health at a specific time point. The methods developed 

in this paper can certainly be adapted to this scenario, and remains a viable area for future 

research.

Our present demonstration handles one covariate at a time. Multiple covariates are common 

in most applications, and use of a fully non-parametric approach will suffer from the ‘curse 

of dimensionality’. However, a semi-parametric approach, such as a single index model for 

the counting and number at risk processes for each time point may be viable. Very recently, 

Siriwardena et al. (2016) developed the details for right-censored survival data. Extending it 

to the multi-state current status framework will be explored elsewhere.
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Appendix

Theoretical justification of the inverse cluster size marginalization

Proposition

Assume that Vi:= {ni, Si1, ···, Sini}, 1 ≤ i ≤ m, are independent and identically distributed 

random elements. Suppose the Sil within a given cluster i are exchangeable given the cluster 

size ni Then Pj(t) given by (2.5) equals

for any i and l.
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Proof—By definition

Note: As can be seen from the proof, the conditional exchangeability assumption can be 

weakened to that of conditional identical distribution of the Sil.

Additional L1 risk results

The L1 risk values for other combinations of the simulation parameters are presented in 

Tables 4–14. The weighted and the unweighted estimates are listed side-by-side, represented 

by superscript w and uw, respectively, for cluster sizes m = 30 and 100. Data were generated 

based on the following scenarios: (a) for ICS scenario 1, the parameters used for state 2 exit 

times are β1 = 0.8, β2 = −0.75, β3 = β4 = 1, β5 = −1.5, 

 and we estimate the marginal state 

occupation probabilities; (b) for ICS scenario 2, an additional parameter γ3 is needed to 

generate ICS associated with X and we calculate the conditional state occupation 

probabilities where the given value of the covariate X was set at each of the first and the 

third quartiles of the covariate distribution.
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Figure 1. 
Estimates of state occupation probabilities and entry/exit time distributions for healthy (State 

0), early (State 1), moderate (State 2) and severe (State 3) PD categories by gender from the 

dataset.
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Figure 2. 
Estimates of state occupation probabilities and entry/exit time distributions for healthy (State 

0), early (State 1), moderate (State 2) and severe (State 3) PD categories by smoking status 

from the dataset.
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Figure 3. 
Estimates of state occupation probabilities and entry/exit time distributions for healthy (State 

0), early (State 1), moderate (State 2) and severe (State 3) PD categories by HbA1c status 

from the dataset.
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Figure 4. 
Estimates of state occupation probabilities and entry/exit time distributions for healthy (State 

0), early (State 1), moderate (State 2) and severe (State 3) PD categories by BMI levels from 

the dataset.
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Table 2

Coverage probabilities for the weighted estimator of state occupation probabilities based on 1000 Monte Carlo 

runs and 1000 bootstrap samples per run at nominal level 0.05. This is evaluated at ten fixed time points when 

the unit level covariate X = Z4,il equals its third quartile.

Time n = 50 n = 100 n = 200

0.75 0.94 0.94 0.95

1 0.96 0.96 0.97

1.25 0.96 0.96 0.97

1.5 0.98 0.98 0.98

1.75 0.98 0.98 0.99

2 0.97 0.99 1.00

2.25 0.97 0.99 1.00

2.5 0.95 0.98 0.99

2.75 0.92 0.96 0.96

3 0.88 0.92 0.93
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