
Pigmented and albino rats differ in their responses to moderate, 
acute and reversible intraocular pressure elevation

Akshay Gurdita1, Bingyao Tan2, Karen M. Joos3, Kostadinka Bizheva1,2, and Vivian Choh1

1School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L 3G1 
Canada

2Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 Canada

3Vanderbilt Eye Institute, Vanderbilt University, TN, USA, 37232

Abstract

Purpose—To compare the electrophysiological and morphological responses to acute, 

moderately elevated intraocular pressure (IOP) in Sprague-Dawley (SD), Long-Evans (LE) and 

Brown Norway (BN) rat eyes.

Methods—Eleven-week old SD (n = 5), LE (n = 5) and BN (n = 5) rats were used. Scotopic 

threshold responses (STRs), Maxwellian flash electroretinograms (ERGs), or ultra-high resolution 

optical coherence tomography (UHR-OCT) images of the rat retinas were collected from both 

eyes before, during and after IOP elevation of one eye. IOP was raised to ~35 mmHg for 1 hour 

using a vascular loop, while the other eye served as a control. STRs, ERGs and UHR-OCT images 

were acquired on 3 days separated by one day of no experimental manipulation.

Results—There were no significant differences between species in baseline electroretinography. 

However, during IOP elevation, peak positive STR amplitudes in LE (mean ± standard deviation: 

259 ± 124 μV) and BN (228 ± 96 μV) rats were about 4-fold higher than those in SD rats (56 ± 46 

μV) rats (p = 0.0002 for both). Similarly, during elevated IOP, ERG b-wave amplitudes were 2-

fold higher in LE and BN rats compared to those of SD rats (947 ± 129μV & 892 ± 184 μV, vs 427 
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± 138 μV; p = 0.0002 for both). UHR-OCT images showed backward bowing in all groups during 

IOP elevation, with a return to typical form about 30 minutes after IOP elevation.

Conclusion—Differences in the loop-induced responses between the strains are likely due to 

different inherent retinal morphology and physiology.
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INTRODUCTION

Glaucoma is the second leading cause of blindness in the world [1]. It is characterized by 

changes in the shape of the optic nerve head (ONH), thinning of the nerve fiber layer (NFL) 

and abnormal function and eventual death of retinal ganglion cells (RGCs) [2]. The 

progressive cellular degeneration of the ganglion cell axons and retinal cells can lead to 

significant vision loss and blindness [2]. Currently, the absence of a cure for glaucoma 

requires patient monitoring for early symptoms and risk factors associated with the disease. 

A major risk factor of glaucoma is elevated intraocular pressure (IOP) [3]. Typical IOP in 

humans ranges between 10 – 21 mmHg while elevated pressure leads to optic nerve damage 

and resulting visual field loss [3]. Fluctuations in IOP have been described during different 

activities, and time of day [4–6]. Patients who experience diurnal fluctuations rather than 

maintaining elevated IOPs can develop glaucoma, indicating that acute short-term elevations 

have physiological consequences [6,7].

Although many groups have attempted to emulate the elevated IOPs in animal models to 

determine the functional changes leading to vision impairment [8–10], few have identified 

what effects fluctuating IOPs have on glaucoma development. Joos et al. [11] showed that 

intermittent short-term elevations in IOP (35.3 ± 2.6 mmHg) in Sprague Dawley rat eyes 

resulted in morphological changes to the structure of the retina and optic nerve. Choh et al. 
[12] used a similar model to investigate the short term changes to the retina using 

electroretinography and optical coherence tomography. Although electroretinography is 

commonly used to assess the activity of photoreceptors, bipolar cells and their outputs [13], 

Bui and Fortune [14] revealed that the scotopic threshold response (STR) of the 

electroretinogram (ERG) could be used to assess ganglion cell function in Brown Norway 

rats following optic nerve transection (ONT). However, Alarcon-Martinez et al. [15] found 

that STRs differed between albino and pigmented rats after ONT [15]. Moreover, in laser-

induced OHT models, RGC loss was more severe in albino than in pigmented mice [16,17]. 

Albino mice have also shown to differ in scleral biomechanical behavior in a chronic 

glaucoma model [18]. Outflow facility has also been shown to differ between albino and 

pigmented mice [19] and the IOP-lowering effect of isoflurane anesthesia also varies among 

mice strains [19]. Although albino rats are often used as the model organism for studies 

related to RGC injury and glaucoma, differences between strains are apparent and may be 

useful to better understand observed effects within an experimental model.
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Given that albino and pigmented rat strains demonstrate varying degrees of susceptibility to 

IOP elevation, this study aimed to compare the effect of acute and reversible IOP elevation 

on retinal function and morphology in one albino and two pigmented strains of rats.

METHODS

All procedures were conducted in accordance with the Canadian Council on Animal Care, 

the University of Waterloo Animal Care Committee and the ARVO statement for the use of 

animals in research. Eleven-week-old male Long-Evans (LE), Brown Norway (BN) and 

Sprague-Dawley (SD) rats (n = 5, for each group) were obtained from Harlan Labs 

(Indianapolis, Indiana). The rats were fed ad libitum, and subjected to 12-hour light-dark 

cycles with crepuscular periods (maximum 257 lux for 3.5 hours a day) in the housing 

facility. The animals were anesthetized nasally with 1.5% isoflurane during collection of the 

data. Each eye was provided a drop of a topical anesthetic (0.5% proparacaine 

hydrochloride, Alcaine: #1001600, Alcon, Mississauga, ON, Canada) followed by a 

pupillary dilator (0.5% tropicamide, mydriacyl, #1001600, Alcon, Mississauga, ON, 

Canada). Throughout the duration of an experimental procedure artificial tears (Refresh® 

Celluvisc® drops, Allergan, Parsippany, NJ) were administered to the rat corneas to 

maintain hydration. Experimental procedures were performed on the same rat on four 

separate days (Day 1 = STR, Day 3= ERG, Day 5 = UHR-OCT, Day 6 = Perfusion) as 

described in Figure 1.

Raising Intraocular Pressure

IOP measurements were made using a rebound tonometer (Icare® Tonolab, Icare Finland 

Oy, Helsinki, Finland). IOPs were measured for each eye before intraocular pressure was 

raised via a vascular loop, following the procedures outlined by Joos et al. [11]. The vascular 

loop was placed around the right eye of each rat for one hour; the loop diameter was 

adjusted to achieve an IOP of ~35 mmHg. The left eye was untreated to provide a control. 

IOP measurements were recorded from each eye 45 minutes into the loop-induced IOP 

elevations and then again 30 min after the removal of the loop (Figure 1).

Electrophysiology

Before electrophysiological testing on day 1, animals were dark adapted for at least 12 

hours. All preparations were done under red illumination (631 nm, <10.9 lux). Scotopic 

threshold responses to a luminance series of weak flashes and electroretinograms to a 

stronger luminance series, were performed for each rat strain in separate experimental 

sessions. STRs were recorded using a pair of full-field flash stimulators (D213 Colorburst, 

Diagnosys LLC, Lowell, MA) while ERGs were recorded using a custom visual stimulator, 

integrated with the UHR-OCT retinal imaging probe. Both stimulus systems were connected 

to and controlled by a commercial ERG recording system (Espion E2, Diagnosys LLC). 

Electrophysiological measurements were made for both eyes before the placement of the 

loop, 45 minutes after the loop had been placed onto the right eye (IOP ~35 mm Hg) and 30 

minutes after the loop had been removed. For both STRs and ERGs, a corneal loop electrode 

was placed on the corneal surface of the eye(s) while ground electrodes were placed behind 

the ears and in the middle of the head. For the STR recordings, the rats were dark adapted 
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for an additional 10 min before exposure to binocular stimuli consisting of 40 white light 

flashes of 4 ms duration, separated by 2-second dark intervals as per Bui and Fortune [14]. 

Each luminance step increased by 0.2 log steps from −6.64 log cd·s/m2 to a maximum 

intensity of −3.04 log cd·s/m2. STR amplitudes were and implicit times were analyzed for 

all luminance levels where a response above noise level was detected. Positive STR (pSTR) 

amplitudes were measured from the pre-stimulus baseline to the maximum voltage. Positive 

STR implicit times were measured from the onset of the stimulus flash to the peak pSTR 

amplitude.

On day 3, baseline ERGs were collected monocularly from the future control eye, followed 

by baseline recordings of the future treated eye. IOP was then raised in the treated eye and 

an ERG was collected 45 minutes after IOP elevation began from that eye. An ERG 

recording was acquired from the control eye immediately thereafter, while the loop remained 

on the treated eye. The loop was removed from the treated eye after it had been on for one 

hour. 30 minutes after removal of the loop, an ERG was recorded for the control eye 

followed by the treated eye. ERG stimuli consisted of 5 white light flashes (white light-

emitting diode), each at 3.73 cd·s/m2 for 7 ms, separated by 1 min dark intervals. ERG data 

were acquired for 1 second including a 10 ms baseline recording before the flashes. ERG a-

wave amplitudes were measured as the absolute value of the maximum trough of the a-wave 

from the baseline voltage. ERG a-wave implicit times were measured from the onset of the 

stimulus to the maximum trough of the a-wave. ERG b-wave amplitudes were measured 

from the trough of the a-wave to the maximum peak of the b-wave. ERG b-wave implicit 

times were measured from the onset of the stimulus to the maximum peak of the b-wave. 

Oscillatory potentials (OPs) were isolated from ERG recordings using a customized 

SigmaPlot bandpass filter (100–300 Hz). OP amplitudes were calculated by taking the 

average of the OP peak difference between the preceding and following troughs. Implicit 

times for the OPs were measured from the onset of the stimulus to the OP peak. OP 

amplitudes and implicit times were measured for five OPs.

Ultrahigh-resolution Optical Coherence Tomography (UHR-OCT)

Two-dimensional (2D) cross sectional images of the rat retina were acquired using a 

research grade UHR-OCT system [12]. The system uses a broadband superluminescent 

diode (Superlum Ltd., λc = 1020 nm, Δλ= 110 nm, Pout = 10 mW) for a light source, and 

provides axial resolution of 3 μm and lateral resolution of ~5μm in retinal tissue. The OCT 

data were acquired with a 1024 pixel InGaAs camera (SUI, UTC Aerospace Systems) 

interfaced with a custom-built OCT spectrometer (P&P Optica Inc.) at the rate of 47,000 

lines/second. The UHR-OCT system provided ~105 dB SNR for 1.7 mW optical imaging 

power incident on the cornea. On day 5, all images were acquired for both eyes, before the 

placement of the loop, 45 minutes after the loop had been placed onto the OD (IOP ~35 mm 

Hg), and 30 minutes after the loop had been removed. Volumetric UHR-OCT images (1000 

frames × 1000 lines/frame × 1024 pixels/line) of the rat retinas were acquired from a region 

in the rat eye centered at the optic nerve head (ONH) from an area of approximately 2 mm2. 

Cross sectional images (3000 lines/frame × 1024 pixels/line) of the retina were also acquired 

from a circular scan around the optic nerve head at a radial distance of ~0.7 mm away from 

the center of the ONH. All UHR-OCT images were acquired monocularly in the same 
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relative order mentioned above for the ERGs. All retinal UHR-OCT images were dispersion 

compensated numerically following a similar approach to the one developed by Wojtkowski 

et al. [20]. A custom semi-automatic MATLAB® (Natick, Massachusetts) algorithm 

developed by our research group was used to determine the nerve fiber layer (NFL), 

ganglion cell layer (GCL) and inner plexiform layer (IPL) layer thicknesses [21]. Blood 

vessels were ignored while determining layer thicknesses. The thickness for these layers 

were summed to provide the ganglion cell complex (GCC) thickness. Additionally, the total 

retinal thickness was measured and defined as the distance between the NFL and the retinal 

pigment epithelial layer (RPE). Volumetric images were generated using Amira® (Hillsboro, 

Oregon) and used to compare overall structural changes to the rat retinas associated with the 

acutely elevated IOP. The change in cross sectional depth of the Bruch’s membrane opening 

(xBMO), defined as the point at which the Bruch’s membrane (BM)/RPE interface ends on 

either side of the optic nerve head in a cross-sectional OCT image, was calculated using the 

B-scan containing the center of the optic nerve head. The center B-scan of the optic nerve 

head was determined by finding the center scan of an ellipse fit to the 2D en face projection 

of the 3D stack. Each xBMO depth was determined by connecting the BM/RPE interfaces at 

the furthest edges of the image (reference plane) and calculating the shortest distance from 

the xBMO to the reference plane [12].

Histology and Immunocytochemistry

One day after the last IOP elevation (five days after the initial IOP elevation), the rats were 

anaesthetized with isoflurane until they were unresponsive to toe pinches. Rats underwent 

cardiac perfusion with saline followed by 4% (w/v) paraformaldehyde in phosphate buffered 

saline (PBS). Eyes were enucleated and a suture was placed at the nasal limbus to mark the 

orientation of the eye. Globes were post-fixed for two days in 4% (w/v) paraformaldehyde in 

PBS then briefly stored in PBS. Graded alcohol and acetone were used to dehydrate the 

globes, which were then embedded in paraffin. Eyes were sectioned and retinal sections 

were treated for antigen retrieval prior to blocking as previously described [12]. Rabbit 

monoclonal anti-microtubule-associated protein 1A/1B-light chain 3 (LC3) antibodies (anti-

LC3A/B (N-term); 1:100; #MABC176, Millipore, Billerica, MA) was used as a primary 

antibody to evaluate for autophagy. Sections were labelled with primary antibodies overnight 

at 4 °C before incubation with rhodamine-conjugated goat anti-rabbit IgG antibodies for 

LC3. Negative controls were stained without the use of a primary antibody. Slides were 

analyzed using a Zeiss Confocal Microscope (LSM 510 Meta, Zeiss, Germany).

Statistical Analysis

All statistical tests were carried out using STATISTICA Version 10 (Statsoft, Boston, MA). 

Results were considered to be significant if p < 0.05. For electrophysiological data, a mixed-

model analysis of variance (ANOVA) was used to determine differences in amplitudes and 

implicit times, with the eye (treated or control) and loop condition (pre-, during, and post-

loop wear) as the dependent factors, and rat strain (SD, LE and BN) as the independent 

factor. For morphological thickness data, the same tests were carried out to compare 

difference in retinal layer thicknesses, with the eye and rat strain as dependent and 

independent factors, respectively. Post-hoc dependent data were analyzed using Bonferroni-
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corrected multiple comparison tests, while independent data were analyzed using Tukey’s 

test. Greenhouse-Geisser corrections were used where epsilon values were <0.75.

RESULTS

Strain-dependent differences were not observed for IOPs for the STR and ERG protocols (p 

= 0.1763 and p = 0.1640, respectively). A strain-dependent difference was observed for 

UHR-OCT experiments (p=0.0258), with the IOPs for LE rats greater than both the BN 

(p=0.0013) and SD (p=0.0002; Table 1).

Electroretinography

During IOP elevation, all rat strains exhibited increases in positive STR responses with a 

recovering response after IOP release (Figure 2). However, analysis of pSTR amplitudes, for 

LE and BN rats, revealed a relatively greater response to acute IOP elevation (Figure 2B). 

When comparing response amplitudes, for all three strains, during IOP elevation, LE (mean 

± standard deviation: 259 ± 124 μV) and BN (228 ± 96 μV) rats had significantly higher 

responses compared to SD (56 ± 46 μV) rats (p = 0.0002 for both; Figure 2C). These 

differences were only apparent while IOP was elevated as both treated and control eyes, pre- 

and post-loop, showed no significant differences (p > 0.9928). Moreover, in conjunction 

with larger amplitudes, pSTR implicit times for LE rats were significantly shorter than in the 

BN and SD rats (p = 0.0300 and p = 0.0250, respectively; Figure 2C inset).

Similar to the pSTR data, ERG recordings for all three rat strains illustrated larger b-wave 

and a-wave amplitudes during elevated IOP (Figure 3A). However, b-wave amplitudes were 

2-fold higher in LE and BN rats compared to SD rats (947 ± 129μV & 892 ± 184 μV, vs 427 

± 138 μV; p = 0.0002 for both; Figure 3C). SD rats had larger overall b-wave implicit times 

compared to either LE or BN rats (p = 0.0090 and p = 0.0080, respectively). Moreover, a-

wave amplitudes during elevated IOP in LE and BN rats were about 1.5 and 1.9 fold higher 

than in SD rats (376 ± 30 μV and 468 ± 51 μV vs 242 ± 107 μV; p = 0.0008 & p = 0.0002, 

respectively; Figure 3B). Similarly to b-wave implicit times, a-wave implicit times also 

showed a significant difference between SD and both LE and BN rats (p = 0.0002 and p = 

0.0006, respectively).

Oscillatory potential amplitudes for each of the three strains responded uniquely to elevated 

IOP (Figure 4). For LE rats, during IOP elevation, OP2 and OP3 were each significantly 

larger than their respective pre- and post-loop conditions (p < 0.0004 for both), while OP1, 4 

and 5 did not significantly change in response to elevated IOP (p = 1.0000). Unlike LE rats, 

only OP2 increased significantly in BN rats, during IOP elevation (p < 0.0001) while OP1, 

3, 4 and 5 did not change (p > 0.1179). For SD rats, only OP3 significantly increased during 

IOP elevation (p > 0.0452) while the others did not change (p >0.9438). IOP elevation also 

resulted in changes to the implicit times of specific OPs for each strain.

For all strains, control eye implicit times did not change as a function of the loop condition 

(p > 0.0823). For LE rats, IOP-elevated eyes showed longer OP3 implicit times compared to 

the post-loop (p = 0.0094) but not to pre-loop (p = 0.0823) conditions, and these implicit 

times were also not different from control eyes at the same time point (p = 0.0823). OP4 
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implicit times in treated eyes were longer during loop-wear than during both pre- (p = 

0.0021) and post- (p = 0.0004) loop conditions and the control eye at the same time point (p 

= 0.0002). For IOP-elevated eyes in BN rats, all OP implicit times were longer compared to 

their respective pre- or post-loop conditions (p < 0.0406), and to their control eyes at the 

same time point (p<0.0009). For SD rats, during IOP elevation, treated eye OP3 implicit 

times were longer than their respective pre-loop (p < 0.0001) but not post-loop (p = 1.0000) 

conditions, while OP4 and OP5 were also longer during elevated IOP than compared to the 

pre- and post-loop conditions (p < 0.0148). For all three OPs, treated eye implicit times 

during IOP elevation were longer than in the control eyes at the same time points 

(p>0.0009). For all strains, pre- and post-loop condition implicit times were not different 

between treated and control eyes (p > 0.1052).

Strain-dependent differences in amplitudes were not observed for OP1, OP4 and OP5 (p > 

0.1996) across all loop conditions (Table 2). Differences were observed for OP2 amplitudes, 

with both LE and BN rats showing significantly higher amplitudes than those for SD rats 

across all loop conditions (p < 0.0003). LE and BN amplitudes for this OP were not different 

across all loop conditions (p > 0.2019). OP3 amplitude patterns were similar for all loop 

conditions (cf. LE & BN vs SD: p < 0.0002; LE vs BN: p > 0.9999) except for the pre-loop 

condition, where BN rat amplitudes were higher than those for both LE and SD rats (p < 

0.0027), the latter two of which were not different (p=0.1467).

During IOP elevation, only OP5 implicit times were different amongst the strains, with 

treated eye implicit times longer for BN rats than LE (p=0.0047) and SD rats (p=0.0497), 

and the latter two implicit times not different (p=0.9999). Strain-dependent differences were 

not observed for the treated eye implicit times in the pre- and post-loop conditions (p > 

0.8912), nor were they observed for control eyes for all loop conditions (p > 0.8206).

Ultrahigh-resolution Optical Coherence Tomography and Immunohistochemistry

The cross-sectional and volumetric images revealed large qualitative changes to the retinal 

structure during IOP elevation (Figure 5). For all three strains, IOP elevation using the 

vascular loop method appeared to have caused characteristic backward bowing of the optic 

nerve head [22,23]. Analysis of the baseline GCC layer thickness revealed significant 

differences between each rat strain at baseline. Accordingly, LE rats have the thickest GCC 

followed by BN and SD rats (p = 0.0051 for LE vs BN, p = 0.0002 for LE vs SD, and p = 

0.0051 for BN vs SD; Figure 6). However, LE rats had the thickest retinas than compared to 

BN or SD rats (p = 0.0454 for LE vs BN, p = 0.0280 for LE vs SD; Table 3), while BN and 

SD rat retinal thicknesses did not significantly differ (p = 0.9599; Table 3). For all three 

strains, the xBMO in the treated eye was significantly deeper during IOP elevation (133 ± 26 

μm) than compared to the pre- (75 ± 32 μm, p < 0.0002) and post-loop (70 ± 22 μm, p < 

0.0001) conditions (Figure 7B). The xBMO in the control eye did not change with respect to 

the loop conditions (p = 1.0000). The xBMO depth in response to IOP elevation did not 

depend on the strain of rat (p = 0.2786), despite the significantly higher IOP in the LE rats 

(Table 1). LC3 expression was present in both LE and BN treated and control retinas (Figure 

8).
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DISCUSSION

Similar baseline scotopic ERG recordings for albino and pigmented rats have been reported 

previously by Alarcon-Martinez et al. [15] and Polosa et al. [24], although not all authors 

agree. Lezmi et al., [25] showed that b-wave amplitudes in BN were greater than those in SD 

rats. The differences in the findings amongst the studies might be related to the anaesthetics 

used and sample size; Alarcon-Martinez et al. [15] used ketamine:xylazine and 31 SD vs 24 

Piebald-Viral-Glaxo pigmented rats, Lezmi et al. [25] used Imalgen:Domitor as their 

anaesthetic and 12 SD and 12 BN rats, and we used isoflurane and 5 rats each for the 3 

strains. Except for the anaesthetic used (ketamine:xylazine), Polosa et al. [24] used the same 

strains we did at 12 animals per strain, and with an additional albino Lewis Wistar strain. 

The combination of the different strains, sample sizes and anaesthetic used could all 

contribute to the disparate results between these 4 studies.

A treatment-associated strain difference was also observed in this study, with pigmented rats 

showing greater responses to moderate IOP-elevation; it is likely that the these strain 

differences, whether arising from variations in genetic background or pigmentation, govern 

the physiological responses to the intervention. Although the treatment is different, 

differences between the albino and pigmented strains were also found in the recovery 

response of the ERG after axotomy [15], indicating that treatment-associated strain 

differences were present.

Albino rats have no melanin in their eyes, specifically in their iris and pigment epithelial 

layer of the retina and their retinas have fewer rod photoreceptors and retinal ganglion cells 

making it difficult to detect low-level light such as the stimuli used in STRs [26,27], 

although the number of photoreceptors, estimated by outer nuclear layer thickness, does not 

differ amongst the strains [28,29]. The neural connections between the eyes and the brain in 

albino rats also have been found to be abnormal, contributing to their poor vision [30] and it 

is known that there are cytoarchitectural differences between albino and pigmented strains in 

the neurons that are involved with circadian rhythms [31,32]. Although we did not observe a 

difference in IOP levels between the strains (Table 1), IOP levels are influenced by circadian 

rhythms [16,33]; thus it is possible that IOP-related strain differences were influenced by 

strain-dependent circadian rhythms. Albino Wistar rats have demonstrated greater 

susceptibility to ischaemic damage from elevated IOP (35 min, 120 mmHg), indicated by 

significant decreases in ERG b-wave amplitudes that did not occur in pigmented rats [34] 

and albino rabbit retinas have also demonstrated a failure to recover b-wave ERG amplitudes 

after 2 hours of ischemia, unlike pigmented rabbits, which exhibited total ERG recovery 

[35]; STR and ERG amplitudes in the albino rats of the present study appear to be consistent 

with the general relative suppression of the ERG responses to IOP elevations. Although the 

data should be interpreted cautiously, we note that LE rats, which are bred from a pigmented 

(wild grey) and an albino (Wistar) rat, showed IOP-associated changes in OP2 and OP3 

amplitudes that were also observed individually for the pigmented (OP2) and albino (OP3) 

rats, respectively. These data may suggest a OP component-specific vulnerability to IOP 

elevation, which also has been shown in humans to differ in response to transient changes in 

retinal vascular perfusion pressure [36]. It should be noted that not all differences observed 

between the strains is related to the amount of pigmentation. The genetic background of the 
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animals likely plays a role. Polosa et al. [24] showed pigmented BN and albino SD albino 

rats were more affected by light-induced damage than pigmented LE and albino Lewis 

Wistar rats, while the LaVail et al. [37] showed differential light-induced damage on two 

different strains of albino mice.

Tan et al. [38] showed that the thickness of the GCC is a sensitive marker for identifying 

glaucomatous eyes [38–40]. In our study, we have demonstrated that GCC thickness differs 

significantly between each of the rat strains, while the total retinal thickness for LE rats 

differed from BN and SD rats, suggesting that differences in GCC thicknesses between rats 

could play a role in the response to factors that are associated with the IOP-induced 

enhancement. GCCs for our BN rats (Table 3) are slightly thinner than those reported by 

Lozano and Twa[41], who reported values between 65 ± 5 to 73 ± 5 μm for approximately 

the same scanning region. Lozano and Twa[41], used a horizontal linear scan, therefore 

limiting retinal thicknesses in either a superior or inferior hemi-field, while we averaged the 

thicknesses from a circular scan, thereby including regions of varying thicknesses for all 4 

quadrants of the retina. Elevated IOP was found to cause changes in the shape of the optic 

nerve head, characterized as a bowing of the retina. Similarly, others have demonstrated 

backward bowing of the lamina cribrosa during elevated IOP [42] and in glaucomatous eyes 

[43] suggesting that changes to the structure we observed are IOP related and not a result of 

the vascular loop model.

Although a lower number of animals were used in the present study, the responses to the 

IOP elevations in all the rats were consistent with previous work using the same IOP 

elevation model in SD rats [12]. Potential mechanisms responsible for the large increase in 

retinal responses, that occurred for all three strains during IOP elevation, have been 

discussed in a previous paper by our group [12]. Specifically, a study by Ward et al. [44] 

demonstrated an increase in excitatory signals in RGCs in response to IOP elevation using 

the microbead injection model. Their results were attributed to increased retinal activity as a 

result of IOP-induced stress on the vanilloid family of cation channels. Enhanced pSTRs 

observed in our study may be related to a similar mechanism. Moreover, nitric oxide (NO), 

which is associated with chronic IOP elevation, has shown to contribute to increased STR 

and ERG a- and b-wave amplitudes [45]. The enhancements of the ERG and STR 

amplitudes were about 2-fold in the study by Vielma et al. [45]; factors that might account 

for the larger enhancement observed in the present study include the observation that NO 

was injected rather than putatively produced from IOP elevations, and the anaesthetic used. 

STR data from our group (Choh et al., manuscript under review) show that the fold increase 

in ketamine:xylazine-anaesthetised rats with acute moderate elevations of IOPs is also at 

about 2-fold. These mechanisms may vary between strains of rat; NO levels in pigmented 

Piebald-Virol-Glaxo rats are higher than in albino Lewis rats in experimental autoimmune 

encephalomyelitis models [46], and intravitreal injections of NO donors led to damaged 

retinas in albino but not in pigmented rabbits [47–49]. The mechanisms underlying strain-

differences are certainly a topic that requires further investigation.

LC3 has been shown to be a marker for autophagy as it associated with autophagosomes and 

autolysosomes [50]. An increase in LC3 expression has also been reported in chronic 

glaucoma models as a result of autophagosome accumulation in dendrites and cytoplasm of 
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retinal ganglion cells after IOP elevation [51]. LC3 expression as a result of acute IOP 

elevation was not different for LE and BN treated and control eyes, indicating that a non-

pathological effect. These results are consistent with our previous experiment on SD rats 

with acutely raised IOPs [12], which also indicated no difference in LC3 expression between 

treated and control eyes [12]. Together, the two studies indicate that acute IOPs elevation 

does not differentially affect LC3 expression. It is important to note that the experiments 

carried out in this study were acute. Chronic models may reveal differential LC3 expression 

as a result of unique levels of susceptibility to elevated IOP.

In summary, these results indicate that LE and BN rats have greater electrophysiologic 

responses to acute, moderately elevated IOP than compared to SD rats. All three strains 

exhibited larger ERG amplitudes during acute moderately elevated IOP. Moreover, GCC 

complex thicknesses differ significantly between rat strains with LE having the greatest 

thickness followed by BN and SD rats. xBMO depth increased during IOP elevation. Lastly, 

LC3 expression did not differ between strains or treated and control eyes. Intrinsic 

morphological differences between rat strains are associated with unique responses to 

elevated IOP. Understanding how these morphological characteristics are related to the 

effects of moderately elevated IOP may further our understanding of its risk and association 

with glaucoma. The observation of strain differences not only among albino and pigmented, 

but also between the two pigmented strains, indicate that potential strain differences should 

be considered when choosing an animal model.
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Fig. 1. 
Time line for the experimental procedures. The black line reflects the protocol as a function 

of IOP over time for the right eye. The blue arrow-head indicates the time at which a 

measurement was made or the vascular loop was used. This protocol was repeated for 

different types of measurements (e.g. STR, ERG and UHR-OCT) on a 5-day schedule (1 day 

break between measurements).
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Fig. 2. 
STR responses pre- during- and post-IOP elevation. (a) Representative STRs for a LE rat for 

both treated (black) and control (gray) eyes, pre-, during- and post-IOP elevation at multiple 

luminances. Flash onset is at 0 ms. (b) Representative STRs for each of the three strains at a 

luminance of −3.04 log cd·s/m2. Flash onset is at 0 ms. (c) Mean pSTR amplitudes for LE, 

BN and SD rats at a luminance of −3.04 log cd·s/m2. Error bars are standard error of means. 

The inset graph reflects mean pSTR implicit times for each rat strain, treated and control 

eyes and pre-, during- and post-IOP elevation. Asterisks (*) indicate differences relative to 

pre-loop conditions for the rat strain. Daggers (†) reflect a significant difference relative to 

SD rats at the same loop-condition.
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Fig. 3. 
ERG responses pre- during- and post-IOP elevation. (a) Sample ERGs for SD, BN and LE 

rats for both treated (black) and control (gray) eyes, pre-, during- and post-IOP elevation. 

Flash onset is at 0 ms. (b) Mean ERG a-wave amplitudes for each rat strain, treated and 

control eye, and pre-, during and after-IOP elevation. Error bars are standard error of means. 

The inset graph reflects mean ERG a-wave implicit times for each rat strain, treated and 

control eyes and pre-during and post-IOP elevation. (c) Mean ERG b-wave amplitudes for 

each rat strain, treated and control eye, and pre-, during and post-IOP elevation. Error bars 

are standard error of means. The inset graph reflects mean ERG b-wave implicit times for 

each rat strain, treated and control eyes and pre-during and post-IOP elevation. Asterisks (*) 
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indicate differences relative to pre-loop conditions for the rat strain. Daggers (†) reflect a 

significant difference relative to SD rats at the same loop-condition.
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Fig. 4. 
OP amplitudes and implicit times of the three rat strains. (a) Sample OP from a LE rat at a 

luminance of −3.04 log cd·s/m2. Flash onset is at 0 ms. (b–f) Mean OP1−5 amplitudes for 

each rat strain, treated and control eyes, pre-during and post-IOP elevation. Error bars are 

standard error of means. The insets reflect mean OP implicit times for each strain, eye and 

loop condition. Asterisks (*) indicate differences relative to pre-loop conditions for the rat 

strain. Daggers (†) reflect a significant difference relative to SD rats at the same loop-

condition.
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Fig. 5. 
UHR-OCT images in response to IOP elevation. (a, b and c) Two-dimensional and (d, e and 

f) three-dimensional representative, UHR-OCT images of a LE treated rat retina, (a and d) 

before, (b and e) during and (c and f) after IOP elevation. The arrow head indicates the 

region of backward bowing during IOP elevation. Scale bars: z = 400 μm, x and y = 200 μm. 

‘N’ is nasal and ‘T’ is temporal with respect to the orientation of the image.
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Fig. 6. 
GCC thicknesses of the three rat strains. (a) Representative cross-sectional UHR-OCT image 

acquired from a circular scan centered at the ONH of a treated LE rat retina prior to IOP 

elevation. (b) Mean GCC thicknesses for each rat strain for both the treated and the control 

eyes. LE had the thickest GCCs followed by BN and SD rats. Error bars are standard 

deviation. Letters ‘a’, ‘b’, and ‘c’ represent significant differences between other strains.
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Fig. 7. 
Structural changes in the rat retina in response to elevated IOP. (a) Graphical representation 

of the method used for determining the xBMO. The sample image is from a LE rat during 

IOP elevation. (b) Mean xBMO depth for each rat strain, treated and control eye, and pre-, 

during and post-IOP elevation. Error bars are standard error of means. Asterisks (*) indicate 

differences relative to pre-loop conditions for the rat strain.
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Fig. 8. 
Immunohistochemical staining of representative rat retinas for LC3. LC3 was equally 

expressed throughout the retinal section of a (a) treated and (b) control eye from a BN rat. 

GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = 

outer plexiform layer, ONL = outer nuclear layer, PR = photoreceptor layer.
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Table 3

Mean total retinal thickness (Mean ± standard deviation) for each rat strain (LE = Long-Evans, BN = Brown 

Norway, SD = Sprague-Dawley) with respect to treated and control eyes at baseline.

Eye Total Retinal Thickness (mean ± standard deviation μm)

LE BN SD

Treated 160.9 ± 11.1 152.5 ± 9.8 154.8 ± 11.6

Control 165.3 ± 5.3 152.7 ± 4.1 154.1 ± 11.0

LE rats had the thickest retinas than compared to BN or SD rats (P=0.04543 for LE vs BN, P=0.0280 for LE vs SD, while BN and SD rat retinal 
thicknesses did not significantly differ (P=0.9599).
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