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Abstract

Cellular DNA replication is initiated through the action of multiprotein complexes that recognize 

replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting 

within these regions. In a given cell cycle, initiation occurs only once per origin and each round of 

replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, 

eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, 

MCM2-7, onto chromatin by the Origin Recognition Complex (ORC), and subsequent activation 

of the helicase by incorporation into a complex known as the CMG. Recent work has begun to 

reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give 

rise to a replication-competent complex, the replisome. Here we review the molecular mechanisms 

that underpin eukaryotic DNA replication initiation – from selecting replication start sites to 

replicative helicase loading and activation – and describe how these events are often distinctly 

regulated across different eukaryotic model organisms.
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Introduction

The success of biological organisms depends on the faithful transmission of genetic 

information from parent to progeny. All life-forms store their genetic content in the form of 

nucleic acids, and the replication and dissemination of this information forms the 

fundamental basis of inheritance. In cells, the process of replication involves two primary 

tasks: (1) the separation of duplex DNA into two single-stranded templates and (2) semi-

conservative replication of each strand. These events are coupled with cell division to 

produce progeny with essentially identical copies of the parent’s genetic information. 
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Through all cellular lineages, a conserved division of labor has been applied to the process 

of DNA replication, such that separable tasks (e.g., start site selection, duplex unwinding, 

DNA synthesis) are allocated to different, albeit sometimes overlapping, factors. Although 

this basic framework is conserved throughout the bacterial, archaeal, and eukaryote 

kingdoms, there has been significant evolutionary diversification of the molecules that 

complete each task, to the point where it is now clear that aspects of the replicative 

machinery emerged twice, independently, during cellular evolution (Edgell and Doolittle, 

1997, Leipe et al., 1999). Replication initiation in eukaryl species has become particularly 

elaborated by disparate forms of regulation to meet the specific demands of multicellularity, 

development and large genome size.

Replication is started by a trans-acting “initiator” factor that directs, in both space and time, 

loading of the replicative machinery onto particular genomic loci known as origins. In 

general, the number of origins scales with genome size, thereby ensuring that chromosome 

duplication can be carried out on a physiologically manageable timescale (Gilbert, 2004). 

Bacteria, as well as certain archaea, frequently initiate replication with a single 

chromosomal start site (Costa et al., 2013, Wu et al., 2014b). Conversely, some archaeal 

chromosomes possess multiple origins (Wu et al., 2014b), as do all eukaryotic genomes (the 

12 Mbp S. cerevisiae genome contains around 400 origins and the 3 Gbp human genome 

~30,000–50,000 origins (Leonard and Mechali, 2013)). The large number of origins and the 

need to coordinate initiation across these sites represents a fundamental challenge to DNA 

replication in eukaryotes; other factors, such as the use of multiple linear chromosomes, as 

opposed to a single circular chromosome, add additional replicative complexity. Replication 

is particularly problematic in multicellular eukaryotes, where the process of development 

can alter replication timing and frequency, and in the context of cellular differentiation, 

which changes the chromatin landscape and requires the coordinated transmission of 

epigenetic marks. Despite these and other challenges, more than 15 trillion repetitive rounds 

of DNA replication and cell division are successfully executed on the developmental path of 

a fertilized human embryo to the adult human body (Bianconi et al., 2013). Although our 

understanding of the replicative process is far from complete, we are beginning to 

understand how eukaryotes utilize a variety of sequential and redundant regulatory 

mechanisms to achieve this biological feat.

The eukaryotic replisome is built from the regulated and stepwise assembly of multiple 

intermediary replication factor complexes. In S. cerevisiae, 42 individual proteins are 

sufficient to fully reconstitute DNA replication in vitro, and since many of these proteins 

function within large macromolecular assemblies, fewer than fifteen pre-assembled 

replication factors are required (Yeeles et al., 2015). In short, replication initiation entails 

four steps (Figure 1): (1) demarcation of start sites by the Origin Recognition Complex 

(ORC) and the Cdc6 helicase-loader; (2) reiterative loading of an inactive form of the 

replicative helicase, MCM2-7, by ORC•Cdc6 and the Cdt1 chaperone to form the pre-

replication complex (pre-RC); (3) helicase activation by the formation of the 

Cdc45•MCM2-7•GINS (CMG) complex (the pre-initiation complex, pre-IC); and (4) 

generation of a bidirectional replication fork that depends on prior origin melting by the 

MCM2-7 complex and on the tethering of DNA polymerases and additional accessory 

factors to the replicative helicase. Here we review the molecular mechanisms underpinning 
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eukaryotic replication initiation, from origin specification to helicase activation. This review, 

although focused on eukaryotic mechanisms, will, as needed, reference studies of the 

archaeal system to fill critical gaps in knowledge. Given the extensive number of 

publications in the field, we apologize to those colleagues whose work is not referenced due 

to space limitations.

Origins of replication

Origins of replication are chromosomal regions that recruit replication initiators for 

facilitating assembly of the replication machinery (Francois Jacob, 1963). The defining 

features of eukaryotic origins are complicated and continuously evolving; for more thorough 

coverage we refer the reader to a number of excellent reviews on the topic (MacAlpine and 

Bell, 2005, Leonard and Mechali, 2013, Creager et al., 2015). Here we briefly discuss the 

most salient features of origins in S. cerevisiae, S. pombe, and metazoans, with a particular 

focus on details pertinent to later topics of discussion.

S. cerevisiae origins of replication

S. cerevisiae origins of replication were initially identified as chromosomal regions capable 

of conferring replicative properties to exogenous plasmids (Stinchcomb et al., 1979). These 

AT-rich, autonomous replication sequences (ARSs) function as replication start sites 

(Huberman et al., 1987, Brewer and Fangman, 1987, Huberman et al., 1988) and serve to 

recruit the eukaryotic initiator, ORC (Bell and Stillman, 1992). The ARS contains a number 

of essential elements, the most important of which is the eleven-basepair ‘A element’, which 

constitutes the ARS consensus sequence (ACS) and represents the primary site of initiator 

binding (Marahrens and Stillman, 1992, Rao et al., 1994, Theis and Newlon, 1994, Rao and 

Stillman, 1995). Notably, amongst the different model eukaryotic systems used for studying 

replication, only S. cerevisiae appears to utilize a specific consensus sequence (Figure 2).

Although there are over 12,000 ACS-like sequences in the yeast genome, only about 400 

facilitate replication initiation (Wyrick et al., 2001, Nieduszynski et al., 2006, Xu et al., 

2006). This low usage of possible S. cerevisiae origins (< 5%) derives in part from an 

additional level of origin specification that is imposed by the local chromatin structure. S. 
cerevisiae origins, like those of other eukaryotes, are maintained as nucleosome-free regions 

(NFRs) (Eaton et al., 2010, Berbenetz et al., 2010). However, surrounding an ARS, ORC-

dependent nucleosome phasing directly affects the efficiency of origin usage (Thoma et al., 

1984, Simpson, 1990, Lipford and Bell, 2001, Berbenetz et al., 2010), and the eviction of 

ORC results in nucleosome encroachment into ARS regions (Thoma et al., 1984, Eaton et 

al., 2010). Mechanistically, NFRs allow ORC access to DNA, while phased nucleosomes 

provide additional favorable sites for binding ORC (Muller et al., 2010, Hizume et al., 

2013). Thus, S. cerevisiae origins are defined by ORC binding to both an ACS and specific 

chromatin features (Leonard and Mechali, 2013, Hoggard et al., 2013).

S. pombe origins of replication

Genome-wide studies demonstrate that the S. pombe genome contains around 400 origin 

sequences that are generally nucleosome-free (Givens et al., 2012, Xu et al., 2012), AT-rich, 
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and around 1 kilobase long (Segurado et al., 2003, Dai et al., 2005, Heichinger et al., 2006). 

These findings are consistent with biochemical studies showing that origin usage in fission 

yeast depends on clustered stretches of adenine and thymine (Clyne and Kelly, 1995, Kim et 

al., 2001, Okuno et al., 1999, Dai et al., 2005). Origin selection in S. pombe is facilitated by 

a species-specific insertion in the Orc4 subunit of ORC that encodes a DNA-binding element 

that specifically recognizes the minor groove of AT-rich sequences (Figure 2) (Chuang and 

Kelly, 1999, Moon et al., 1999).

Metazoan origins of replication

Unlike budding yeast ORC, which shows a degree of sequence-specificity, metazoan ORC 

binds DNA promiscuously (Vashee et al., 2003, Remus et al., 2004). This behavior is 

consistent with the observation that metazoan replication initiates from diverse sequences 

(Mechali and Kearsey, 1984, Heinzel et al., 1991, Hyrien and Mechali, 1993). Despite origin 

sequence variability, the genome-wide analysis of replication start sites has revealed some 

common patterns in metazoan origins. As with budding and fission yeast, metazoan ORC 

binds to NFRs in the genome (MacAlpine et al., 2010, Karnani et al., 2010, Eaton et al., 

2011), which in turn favorably contributes to assembly of the replication machinery 

(Lubelsky et al., 2011). Interestingly, G-rich sequences and CpG islands are highly enriched 

in metazoan origins (Delgado et al., 1998, Cadoret et al., 2008, Prioleau, 2009, Sequeira-

Mendes et al., 2009) and have been proposed to serve two purposes: NFR maintenance 

(Huppert and Balasubramanian, 2007, Wong and Huppert, 2009, Fenouil et al., 2012) and 

the favoring of G-quadraplex formation (Cayrou et al., 2011, Cayrou et al., 2012, Valton et 

al., 2014, Cayrou et al., 2015). Preliminary analyses suggest that ORC may preferentially 

associate with G-rich elements (Zellner et al., 2007, Hoshina et al., 2013), indicating that a 

conserved structural feature in DNA, rather than a specific consensus sequence, may aid 

ORC binding in metazoans. As in S. cerevisiae, metazoan origin selection by ORC is further 

fine-tuned by direct interactions with nucleosomes and chromatin-associated factors. For 

example, the N-terminal Bromo-Adjacent Homology (BAH) domain in Orc1 directly 

interacts with histones to direct origin usage (Figure 2) (Noguchi et al., 2006, Muller et al., 

2010, Kuo et al., 2012).

Although ORC can be targeted to specific genomic loci, origins cannot be strictly defined by 

the position of ORC binding on chromatin. Indeed, once loaded onto DNA by ORC, the 

MCM2-7 helicase (which eventually nucleates replisome assembly following duplex 

melting) appears to lack positional restraints and is free to either diffuse away from ORC 

(Remus et al., 2009, Evrin et al., 2009) or be forcibly displaced by other chromatin-localized 

cellular processes (such as the transcriptional machinery) (Ritzi et al., 1998, Edwards et al., 

2002, Powell et al., 2015, Gros et al., 2015). Thus, origins in eukaryotes must be defined 

flexibly, as the site of initiator binding does not always reflect the site of replication 

initiation.

Overall, both yeast and metazoa contain conserved sequence elements at origins that are 

known or proposed to guide ORC binding. In yeast, these elements are encoded within the 

DNA primary sequence and in metazoa potentially by a propensity to form distinctive 

secondary structures. Chromatin context plays an additional critical, but poorly understood 
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role in origin usage in all eukaryotes. Understanding how these cis- and trans-acting origin 

elements interface is an important and active area of future research.

The Origin Recognition Complex (ORC)

Eukaryotic origins direct the recruitment of the Origin Recognition Complex (ORC), a 

conserved heterohexameric protein assembly identified for its ability to specifically 

recognize the double-stranded form of the yeast ACS (Bell and Stillman, 1992). Upon 

recruitment to chromosomal replication start sites, ORC binds an additional factor, Cdc6, as 

a necessary prerequisite to helicase loading. Despite its centrality to ORC function, the 

mechanism of DNA binding by the initiator has long remained ambiguous. However, 

structural studies from archaea and eukaryotes have revealed a conserved mechanism for the 

association of ORC with DNA that informs not only our understanding of how the 

ORC•Cdc6 initiator stably binds replication start sites, but also how ORC mediates 

downstream helicase loading events (Dueber et al., 2007, Gaudier et al., 2007, Sun et al., 

2013, Bleichert et al., 2015).

The Origin Recognition Complex and Cdc6

ORC was first identified by fractionation of ARS-binding proteins in budding yeast (Bell 

and Stillman, 1992). Although many other ARS-binding factors had been identified 

previously (Jazwinski and Edelman, 1982, Sweder et al., 1988, Diffley and Stillman, 1988, 

Buchman et al., 1988, Shore et al., 1987), ORC proved uniquely able to bind the ACS 

(Diffley and Cocker, 1992, Marahrens and Stillman, 1992, Li and Herskowitz, 1993), and 

temperature sensitive mutants exhibited cell-cycle arrest at a stage consistent with a role in 

the early aspects of DNA replication (Bell et al., 1993, Foss et al., 1993, Micklem et al., 

1993). Following the discovery of ORC in budding yeast, the broad eukaryotic conservation 

of ORC was demonstrated with the identification of orthologs in S. pombe (Muzi-Falconi 

and Kelly, 1995, Grallert and Nurse, 1996), D. melanogaster (Gossen et al., 1995, Landis et 

al., 1997), X. laevis (Carpenter et al., 1996, Romanowski et al., 1996b), and humans (Gavin 

et al., 1995). The mechanism of ORC function has now been investigated across multiple 

model organisms, revealing that the core components, subunit organization, and function of 

ORC are broadly conserved (although not universally, particularly in protozoa (El-Sayed et 

al., 2005)). Despite this conservation, there do exist certain species-specific alterations that 

appear to have generated notable functional differences.

S. cerevisiae ORC is a roughly 400 kDa assembly composed of six proteins (Orc1-6) named 

in descending order of molecular weight (Bell et al., 1993). Orc1-5 exhibit relatively good 

conservation across species and are members of the ATPases associated with diverse cellular 

activities (AAA+) superfamily of proteins; Orc1-5 also contain a C-terminal winged-helix 

(WH) domain (Loo et al., 1995, Bell et al., 1995, Muzi-Falconi and Kelly, 1995, Liu et al., 

2000). Overall, the Orc1-5 AAA+ and WH domains, which account for a bit over half the 

total mass of ORC, display an average of ~45–50% similarity and 25–30% identity between 

yeast and human orthologs (Tugal et al., 1998, Speck et al., 2005). A majority of AAA+ 

family members bind and hydrolyze ATP through the formation of a composite, bipartite 

active site that is generated between neighboring AAA+ protomers upon subunit 
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oligomerization (Guenther et al., 1997, Lenzen et al., 1998, Putnam et al., 2001). AAA+ 

proteins, like the broad P-loop family of NTPases to which they belong (Iyer et al., 2004), 

contain so-called ‘Walker A’ and ‘Walker B’ signature sequence motifs that contribute to 

nucleotide binding and hydrolysis, respectively. A third motif, generally critical to AAA+ 

ATPase function, is the arginine finger, which is presented in trans to the neighboring 

subunit to reconstitute an active ATPase site (Neuwald et al., 1999, Zhang et al., 2000). 

While many of the structural elements important for ATP binding are conserved in Orc1, 

Orc4, and Orc5, only Orc1 has been found to possess ATPase activity (Klemm et al., 1997, 

Makise et al., 2003, Ranjan and Gossen, 2006, Siddiqui and Stillman, 2007, Bleichert et al., 

2015); Orc2 and Orc3 retain degenerate AAA+ scaffolds that lack functional active site 

motifs altogether (Speck et al., 2005, Clarey et al., 2006, Bleichert et al., 2015). Intriguingly, 

although many AAA+ family members function as toroidal hexameric assemblies (reviewed 

in (Hanson and Whiteheart, 2005)), ORC retains only five proteins with AAA+ domains. 

Orc6 lacks a AAA+ domain (Chesnokov et al., 2003, Balasov et al., 2007, Bleichert et al., 

2013) and its primary sequence is only weakly conserved between yeast and human, making 

it the least conserved ORC subunit (Dhar and Dutta, 2000). Nonetheless, certain elements of 

Orc6 are conserved across species, including an N-terminal TFIIB-like domain and a short 

conserved region at the extreme C-terminus of the protein (Liu et al., 2011, Bleichert et al., 

2013).

Cdc6 forms a complex with ORC at origins and is required for initiator function. Cdc6 was 

first identified in S. cerevisiae mutant screens (Hartwell, 1976) and was later found to have a 

role in replication initiation (Palmer et al., 1990), with functional requirements prior to S-

phase (Kelly et al., 1993, Hogan and Koshland, 1992, Zwerschke et al., 1994). A genetic 

interaction between ORC and Cdc6 suggested a coordinated activity for these factors (Liang 

et al., 1995), with supporting data demonstrating an ORC-dependent recruitment of Cdc6 to 

origins that depends on a direct interaction between the proteins (Santocanale and Diffley, 

1996, Leatherwood et al., 1996, Grallert and Nurse, 1996, Coleman et al., 1996, Cocker et 

al., 1996, Liang et al., 1995, Kong et al., 2003). Importantly, analysis of the Cdc6 primary 

sequence reveals conserved nucleotide binding and hydrolysis motifs (Lisziewicz et al., 

1988, Zhou et al., 1989, Zwerschke et al., 1994), as well as close homology to ORC’s AAA

+ subunits, particularly Orc1 (Bell et al., 1995, Quintana et al., 1997). Cdc6 associates with 

chromatin-bound ORC in an ATP-dependent fashion (Perkins and Diffley, 1998, Kneissl et 

al., 2003, Evrin et al., 2013, Kang et al., 2014, Coster et al., 2014, Ticau et al., 2015), an 

interaction that activates Cdc6’s ATPase activity and is consistent with the reconstitution of 

canonical AAA+ interactions (Randell et al., 2006, Speck and Stillman, 2007). Thus, Cdc6 

recruitment provides a sixth AAA+ subunit to the initiator complex overall.

Structure of ORC and ORC•Cdc6

Orc/Cdc6 homologs have been identified in all eukaryotic and archaeal species analyzed 

(Aves et al., 2012). In many archaea, the initiation factors are genetically streamlined such 

that certain species possess only a single Orc/Cdc6 gene (Barry and Bell, 2006) and the 

relative simplicity of the archaeal system has been exploited to help understand the structure 

and function of eukaryotic Orc homologs. A conserved three-domain architecture is 

observed for Orc and Cdc6 homologs, with two domains at the N-terminus forming the 
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central AAA+ module and a third at the C-terminus comprising a loosely-tethered WH 

domain (Figure 3A) (Liu et al., 2000, Singleton et al., 2004, Gaudier et al., 2007, Dueber et 

al., 2007, Bleichert et al., 2015). The structure of archaeal Orc in complex with DNA has 

shown that both the WH and AAA+ domains contact DNA (Gaudier et al., 2007, Dueber et 

al., 2007), and biochemical studies have demonstrated that contacts mediated by the AAA+ 

domain contribute to origin specificity (Dueber et al., 2011). Surprisingly, structures of 

Orc/DNA complexes have not revealed evidence for the formation of an ATPase-competent 

Orc dimer (Gaudier et al., 2007, Dueber et al., 2007), despite the existence of a conserved 

arginine finger in these proteins that would otherwise suggest that oligomerization might 

occur. The mechanism that promotes formation of a catalytically active ATPase in the 

archaeal system is unclear.

S. cerevisiae Cdc6 forms a stable complex with ORC in the presence of DNA and ATP 

(Wang et al., 1999, Mizushima et al., 2000, Seki and Diffley, 2000, Speck et al., 2005, 

Randell et al., 2006). By using a non-hydrolyzable ATP analog, a stable Cdc6•ORC complex 

can be trapped in the absence of DNA (Speck et al., 2005). Low-resolution 3D electron 

microscopy reconstructions of eukaryotic ORC have revealed an elongated, crescent-shaped 

particle that, in the presence of Cdc6 and ATPγS, transforms into a closed ring with a large 

central cavity (Speck et al., 2005, Clarey et al., 2006, Clarey et al., 2008, Sun et al., 2012). 

Structural investigation of D. melanogaster ORC has demonstrated a subunit order of 

Orc1→Orc4→Orc5→Orc3→Orc2 around the ORC ring (Bleichert et al., 2015), with a 

physical gap between the terminal Orc subunits that accommodates Cdc6 and is consistent 

with the direct interaction observed between Cdc6 and Orc1 (Sun et al., 2012, Sun et al., 

2013, Wang et al., 1999). The C-terminus of Orc6 has been found to tether this subunit to a 

conserved domain insertion within Orc3 (Bleichert et al., 2013, Bleichert et al., 2015); S. 
cerevisiae Orc6 also binds Orc2 (Chen et al., 2008, Sun et al., 2012), possibly through a 

region that is specific to fungal homologs (Bleichert et al., 2013). The adjoining nature of 

Orc1 and Orc4 within the ternary complex is consistent with the known formation of a joint 

ATPase site between the two subunits (Klemm et al., 1997, Chesnokov et al., 2001, Bowers 

et al., 2004, Giordano-Coltart et al., 2005).

The ORC•Cdc6 assembly represents the functional initiator complex at origins. 

Interestingly, ORC itself exhibits differing levels of stability across species, suggesting that, 

in certain cases, ORC subcomplexes may be sequentially recruited. Indeed, unlike D. 
melanogaster and S. cerevisiae ORC, which form stable heterohexamers (Bell and Stillman, 

1992, Chesnokov et al., 1999), human and X. laevis ORC appear to have alternative core 

subcomplexes. Human Orc1 and Orc6 loosely associate with an Orc2-5 core (Dhar et al., 

2001, Vashee et al., 2001, Siddiqui and Stillman, 2007), whereas in X. laevis, the Orc6 

subunit is labile (Gillespie et al., 2001). The weak interactions of certain Orc subunits likely 

play an important role in regulation. For example, vertebrate Orc1 is selectively released 

from chromatin after initiation (Rowles et al., 1999, Natale et al., 2000, Li et al., 2004), 

which helps to prevent re-initiation and provides a means to alter origin usage in a 

developmental- or differentiation-dependent fashion (Li and DePamphilis, 2002). The ability 

of either Orc1 or Orc6 to dissociate from ORC without disrupting the remaining core 

complex is consistent with the terminal position of Orc1 within the core ring and the 

peripheral binding site of Orc6; one exception to this trend occurs in S. pombe, whereby an 
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ORC pentamer can be purified that lacks Orc4, an internal component of the ORC ring 

(Moon et al., 1999, Kong and DePamphilis, 2001). Whether S. pombe ORC retains 

additional stabilizing elements that can compensate for the absence of Orc4 in such 

instances is not known.

The recent atomic-resolution structure of D. melanogaster ORC (Bleichert et al., 2015) has 

helped clarify both our understanding of ORC organization and also mechanistic models for 

origin engagement and helicase loading. ORC adopts a two-tiered, notched ring architecture 

in which the WH domains of Orc1-5 sit atop a layer of AAA+ subunits (Figure 3B). 

Interestingly, the arrangement of AAA+ and WH domain contacts is domain swapped in 

ORC, such that the WH domain of Orc1 rests on the AAA+ region of Orc4, the WH domain 

of Orc4 sits on the AAA+ region of Orc5, and so forth. The open-ended, pentameric AAA+ 

core of ORC in principle provides an opportunity for the formation of four bipartite AAA+ 

interfaces. Within the D. melanogaster ORC structure, however, only one of the observed 

subunit interfaces evinces a typical AAA+ active-site configuration (Orc4/Orc5). Two others 

(Orc5/3 and Orc3/2) approximate the correct protomer alignment but fail to reconstitute a 

canonical active site; in the case of Orc3/2, the two subunits lack the amino acids necessary 

to bind ATP, as predicted. Of the remaining possible AAA+ interactions, Orc1 was 

unexpectedly found to be rotated more than 90 degrees out-of-plane from Orc4, rendering 

this catalytic center inoperative (Figure 3B). This finding was surprising, as Orc1 alone is 

capable of both binding and hydrolyzing ATP, using an arginine finger donated by Orc4 

(Klemm et al., 1997, Chesnokov et al., 2001). Given that the D. melanogaster Orc1 

conformation seen crystallographically is also seen in 3D electron microscopy 

reconstructions of ORC (Bleichert et al., 2013, Bleichert et al., 2015), this observation 

suggests that metazoan ORC can transition between at least two conformations, an 

autoinhibited and active conformation. In the future, it will be important to understand how 

the cell regulates the equilibria of ORC between these states, as well as whether this 

conformational transition is preserved in other ORC homologs.

A two-state model for ORC origin recognition

Despite the fundamental role of ORC in origin selection and recognition, the mechanism by 

which ORC associates with DNA has remained highly enigmatic. The presence of numerous 

interspecies peculiarities, such as divergent origin features, species-specific DNA-binding 

elements, and the effect of chromatin-bound trans-acting factors, have all challenged our 

understanding of how ORC is recruited to and stably binds origins. However, an analysis of 

ORC behavior across species suggests that in all cases, the origin-binding properties of ORC 

can be interpreted within a model containing at least two states: a transient ORC recruitment 

event that is mediated through diverse and sometimes species-specific interactions, and a 

second, mechanistically conserved step that positions ORC for productive origin 

engagement and that leads to stable Cdc6 association. We will first discuss the conserved 

mechanism by which ORC stably associates with origins and then detail the interactions that 

facilitate ORC recruitment.

Structural studies of origin-bound archaeal Orc have revealed a coordinated role for both the 

AAA+ and WH domains in DNA binding (Gaudier et al., 2007, Dueber et al., 2007). The 
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WH domains show extensive contacts with origin DNA by a canonical helix-turn-helix 

(HTH) and β-hairpin wing interface, and a near compete loss of DNA binding by archaeal 

Orc is observed upon mutation or deletion of this region (Singleton et al., 2004, Dueber et 

al., 2011). The WH-DNA interaction positions the AAA+ domain in an orientation where a 

characteristic α-helical insertion within the initiator/helicase loader subgroup of AAA+ 

proteins, the initiator specific motif (ISM), contacts DNA. Given the different subunit 

compositions and oligomeric states observed between archaeal (monomer) and eukaryotic 

initiators (heterohexamer) it was initially unclear to what extent the mechanism of archaeal 

origin binding would be conserved. However, superposing the structure of DNA-bound 

archaeal Orc onto the D. melanogaster ORC crystal structure reveals nearly perfect co-axial 

positioning of the DNA within the ORC central channel (Bleichert et al., 2015). Notably, the 

eukaryotic ISMs and the wings of the WH domains each form a contiguous DNA-binding 

surface that lines the ORC central channel, and are thus positioned to engage DNA in a 

manner similar to that of archaeal Orc (although not identically, as the HTH motif of ORC’s 

WH domains are buried between inter-subunit contacts in the complex (Bleichert et al., 

2015)). This modeling also accounts for an unresolved region of density in an early 3D 

electron microscopy reconstruction of an ORC•Cdc6•DNA complex (Sun et al., 2012). 

Overall, these data indicate that archaeal and eukaryotic ORC engage DNA by a generally 

conserved mechanism.

The insights gleaned from the available structural studies suggest a conserved mechanism 

for stable origin association by eukaryotic ORC. In this model, duplex DNA is loaded 

laterally into the ORC central channel through the discontinuity between Orc1 and Orc2 

(Speck et al., 2005). This gap is then blocked off by the subsequent recruitment of Cdc6, 

generating a stable, closed-ring conformation that encircles origin DNA (Bleichert et al., 

2015). Domain swapping between the WH domain of Orc2 and the AAA+ region of Cdc6 

(and between the WH domain of Cdc6 and the AAA+ element of Orc1) are predicted to 

form, stabilizing the complex (Bleichert et al., 2015). The ability of the ORC•Cdc6 complex 

to encircle DNA would be predicted to underpin ORC’s observed persistence at origins 

(Speck et al., 2005, Duzdevich et al., 2015) and is consistent with the observation that both 

yeast and metazoan Cdc6 can stabilize ORC on DNA (Harvey and Newport, 2003, 

Houchens et al., 2008).

Interestingly, an additional DNA-binding element has been identified between the N-

terminal BAH and AAA+ domain of S. cerevisiae Orc1 that is essential for ARS binding 

(Kawakami et al., 2015). While the related residues are largely conserved in metazoan Orc1, 

they are positioned outside of the ORC central pore and thus it is unclear how this 

interaction is coordinated with the encirclement mechanism described here, or whether it 

contributes only to the initial recruitment of ORC to DNA.

Diverse mechanisms for origin recruitment of ORC

Although the encirclement model accounts for stable origin binding, eukaryotic ORC has 

been observed to interact with DNA in a mode that exhibits fast kinetics (Harvey and 

Newport, 2003, Remus et al., 2004, Houchens et al., 2008, Duzdevich et al., 2015) and, in S. 
cerevisiae, allows for a one-dimensional linear search for bona fide origin sites (Duzdevich 
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et al., 2015). This initial recruitment of ORC to DNA likely functions as an important 

intermediate on the path towards stable origin binding. Interestingly, substantial mechanistic 

plasticity appears to have been introduced to the recruitment step, co-evolving in certain 

cases with species-specific features.

In S. pombe ORC, the preference for AT-rich origins correlates with a unique domain 

insertion in Orc4 comprising nine AT-hook motifs (Chuang and Kelly, 1999, Moon et al., 

1999), a DNA-binding element that facilitates interactions with the minor groove of AT-rich 

DNA sequences (Aravind and Landsman, 1998). Notably, the AT-hook motif is absent in S. 
cerevisiae and metazoan Orc4. Unlike S. cerevisiae ORC, which utilizes all AAA+ domain-

containing Orc subunits for DNA binding (Lee and Bell, 1997), S. pombe Orc4 is necessary 

and sufficient for initial origin engagement (Chuang and Kelly, 1999, Moon et al., 1999, 

Kong and DePamphilis, 2001, Gaczynska et al., 2004), and the AT-hook motifs of Orc4 are 

additionally required for viability (Chuang et al., 2002). Interestingly, S. pombe ORC shows 

a biphasic mechanism of DNA binding, with an initial, salt-sensitive DNA binding event that 

precedes the formation of a salt-stable form, a state that in turn can be further stabilized by 

the addition of Cdc6 (Houchens et al., 2008). These findings suggest that S. pombe ORC is 

recruited to chromosomes by the Orc4 AT-hook motif, which then leads to stable DNA 

association through a mechanism that likely involves the encirclement of duplex DNA.

Analogous to S. pombe Orc4, metazoan Orc6 has been shown to have a distinct DNA 

binding activity. Despite the absence of an ATPase or WH domain, exclusion of Orc6 from 

D. melanogaster ORC results in the loss of ATP-dependent DNA binding, the same effect 

observed for Orc1 Walker A (ATP binding) and Walker B (ATP hydrolysis) mutants 

(Chesnokov et al., 2001). Analysis of the D. melanogaster and human Orc6 N-terminus 

reveals structural homology with the DNA-binding domain of transcription factor TFIIB 

(Chesnokov et al., 2003, Balasov et al., 2007), and mutation of the Orc6 TFIIB domain 

abolishes DNA binding (Liu et al., 2011). Although the Orc6 TFIIB domain was initially 

considered unique to metazoans, subsequent sequence analysis indicates that the domain is 

conserved in fungal Orc6, but lacks specific DNA-binding elements (Bleichert et al., 2013), 

a finding consistent with S. cerevisiae Orc6 being dispensable for origin recognition in vitro 
(Lee and Bell, 1997, Chen et al., 2007). Given the available data, it seems likely that 

metazoan ORC utilizes Orc6 to loosely tether the complex to DNA in a functionally 

analogous manner as S. pombe Orc4, and that this action aids with the initial ORC 

recruitment event that precedes stable origin association. This model begs the question, 

however, of how ORC is recruited to chromosomes in species where Orc6 is a labile subunit 

(Dhar et al., 2001, Vashee et al., 2001, Gillespie et al., 2001). One possible answer is that 

chromatin-bound Orc6 may function as a recruitment platform for the core Orc1-5 subunits.

In addition to “hard-wired” DNA binding domains, eukaryotic ORC can also bind a plethora 

of chromatin-associated factors that provide additional means for recruiting and regulating 

ORC’s association with origins (Chakraborty et al., 2011). Early studies recognized that 

ORC played dual roles in replication and transcriptional regulation (Bell et al., 1993, Loo et 

al., 1995, Palacios DeBeer et al., 2003, Leatherwood and Vas, 2003), and a number of 

transcriptional regulators have been shown to bind ORC, including HP1, E2F, HMGA1a and 

Sir1 (Triolo and Sternglanz, 1996, Pak et al., 1997, Fox et al., 1997, Gardner et al., 1999, 
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Royzman et al., 1999, Bosco et al., 2001, Prasanth et al., 2004, Thomae et al., 2008, 

Prasanth et al., 2010). Although chromatin accessibility and transcriptional programs are 

clearly regulated in an ORC-dependent manner (Bell et al., 1993, Foss et al., 1993, Micklem 

et al., 1993, Loo et al., 1995, Fox et al., 1995, Pak et al., 1997, Huang et al., 1998, Bose et 

al., 2004, Chesnokov, 2007, Shor et al., 2009), whether chromatin bound transcriptional 

regulators also direct ORC origin usage is less clear. Certain cases have been investigated in 

some detail; for example, ORC can be targeted to chromatin-bound HMGA1a, where it 

directs assembly of replication complexes (Thomae et al., 2008), while genome-wide 

analysis of metazoan origins reveals ORC association with HP1 sites (Cayrou et al., 2011). 

Thus, transcriptional regulators represent an additional means of tethering ORC to 

chromosomes and likely affect ORC function in replication.

Eukaryotic ORC is also directly recruited to histones by the N-terminal Bromo-Adjacent 

Homology (BAH) domain in Orc1 (Zhang et al., 2002, Noguchi et al., 2006, Muller et al., 

2010). This element selectively binds H4K20me2, an interaction that directs replication 

licensing (Kuo et al., 2012). Other histone modifications also have been found to direct 

origin usage (such as H4K20me1, H3K4me2/3, and H4 acetylation), but how these effect 

ORC positioning or downstream licensing reactions remains unclear (Rice et al., 2002, 

Vogelauer et al., 2002, Aggarwal and Calvi, 2004, Knott et al., 2009, Tardat et al., 2010, 

Miotto and Struhl, 2010, Costas et al., 2011, Eaton et al., 2011, Liu et al., 2012b). A factor 

known as ‘ORCA’ (for Origin Recognition Complex Associated) additionally has been 

reported to directly recruit human ORC to chromosomes, as well as to bind to other 

initiation factors that promote replication licensing and S-phase progression (Shen et al., 

2010, Shen et al., 2012). Conversely, the assembly of the replication machinery at telomeres 

has been reported to be controlled by an interaction between ORC and the TRF2 subunit of 

the shelterin complex (Atanasiu et al., 2006, Tatsumi et al., 2008, Deng et al., 2009, Higa et 

al., 2016).

Collectively, multiple lines of data demonstrate that localizing ORC to DNA prior to 

productive origin engagement (i.e., Cdc6-dependent DNA encircling) is a critical step in 

replication initiation, and that many diverse recruitment mechanisms are sufficient to 

demarcate a replication start site. Consistent with this idea is the demonstration that a fusion 

between ORC and the Gal4 DNA binding domain can result in the initiation of DNA 

replication on a plasmid containing a tandem array of Gal4 binding sites (Takeda et al., 

2005). In light of the many mechanisms that can facilitate ORC recruitment, an important 

future direction will be to understand how different recruitment pathways cooperate or 

antagonize each other in specifying sites of replisome assembly.

The Minichromosome Maintenance (MCM) Complex

Following the active designation of an origin by ORC, the complex next facilitates initiation 

at these sites by loading the heterohexameric MCM2-7 helicase onto DNA. Studies into 

MCM2-7 function have revealed a surprisingly complex enzyme that appears capable of 

harnessing ATP to promote both the melting of double-stranded DNA and translocation of 

single-stranded DNA substrates. Although precise mechanisms have yet to be elaborated, a 
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picture of how specific MCM2-7 elements couple ATP turnover to DNA remodeling and 

movement is beginning to emerge.

Identification of the MCM2-7 complex

MCM proteins were originally identified in genetic screens that aimed to uncover factors 

required for replication and cell cycle progression in yeast (Maine et al., 1984, Yan et al., 

1991, Chen et al., 1992, Hennessy et al., 1990, Moir et al., 1982). Homologs were 

subsequently identified in D. melanogaster (Treisman et al., 1995), X. laevis (Madine et al., 

1995) and in humans (Todorov et al., 1995), and like yeast MCMs, were shown to have an 

essential role in DNA replication. Investigation into MCM function converged with studies 

by Laskey and Blow, who identified a replication licensing factor (RLF) that restricted 

replication to once per cell cycle by nuclear exclusion until after nuclear envelope 

breakdown (Blow and Laskey, 1988, Blow, 1993). Indeed, MCM proteins, like the RLF, 

showed redistribution from the cytosol to nucleus upon completion of mitosis (Hennessy et 

al., 1990), and immunodepletion of MCM proteins inhibited replication (Kubota et al., 1995, 

Madine et al., 1995). Importantly, a purified RLF fraction was found to resolve into two 

separate factors, RLF-M and RLF-B, with RLF-M containing multiple proteins that cross-

reacted with MCM antibodies (Chong et al., 1995).

Purification of RLF-M, as well as co-immunoprecipitation studies, revealed that MCM 

proteins reside within large multimeric assemblies with other MCM2-7 family members 

(Kubota et al., 1995, Madine et al., 1995, Chong et al., 1995, Burkhart et al., 1995, Kimura 

et al., 1995, Musahl et al., 1995, Romanowski et al., 1996a, Chong et al., 1996). The 

predominant assembly in vivo is an MCM2-7 heterohexamer, although low levels of 

subassemblies have been reported to exist that may represent intermediates (Su et al., 1996, 

Ishimi, 1997, Adachi et al., 1997, Thommes et al., 1997, Lee and Hurwitz, 2000, Prokhorova 

and Blow, 2000). As with Orc1-5, MCM proteins are predicated upon a conserved AAA+ 

ATPase element (Koonin, 1993, Iyer et al., 2004). However, unlike Orc1-5, which show 

differing levels of active site conservation, the six subunits in the MCM2-7 complex each 

contain the complete set of catalytic residues expected to be necessary for supporting ATP 

hydrolysis.

MCM architecture

The basic architecture of an MCM protein is conserved across archaea and eukaryotes. 

MCMs contain a central AAA+ ATPase fold flanked by conserved N- and C-terminal 

domains (termed ‘NTD’ and ‘CTD,’ respectively). Structural analyses of MCMs have 

revealed three conserved subdomains within the NTD, allowing subdivision of this element 

into the NTD-A, -B, and -C regions (Figure 4A) (Fletcher et al., 2003, Liu et al., 2008, 

Brewster et al., 2008, Bae et al., 2009, Fu et al., 2014, Li et al., 2015). NTD-C, the most 

highly conserved NTD subdomain, possesses an oligonucleotide/oligosaccharide-binding 

(OB) fold. Within an MCM hexamer, interactions between adjacent NTD-C elements serve 

as the primary interface for subunit assembly, with this interaction alone sufficient to 

facilitate hexamerization of the NTD (Fletcher et al., 2003, Kasiviswanathan et al., 2004). 

Although NTD-A is the least conserved N-terminal subdomain, it forms a helical bundle 

with similarity to helix-turn-helix type DNA binding proteins (Costa et al., 2008). The NTD-
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B element comprises a Zn-finger motif that, with the exception of MCM3, is universally 

conserved in MCM2-7 (Li et al., 2015), and that facilitates higher order organization of 

single NTD hexamers into a conserved, head-to-head double hexamer (Figure 4B) (Kelman 

et al., 1999, Shechter et al., 2000, Chong et al., 2000, Fletcher et al., 2005, Remus et al., 

2009, Evrin et al., 2009, Costa et al., 2014, Li et al., 2015).

The AAA+ domain is the most highly conserved region across MCM homologs. The MCM 

AAA+ fold contains three unique insertions relative to prototypical AAA+ proteins, and 

falls within the pre-sensor II (PSII) insert clade of the ATPase superfamily (Iyer et al., 2004, 

Erzberger and Berger, 2006). One such insertion is distinctive in that it remodels a portion of 

the AAA+ cassette to orient a catalytic amino acid known as the sensor II motif in trans with 

the active site of an adjacent protomer (Moreau et al., 2007, Bae et al., 2009), rather than in 

cis, which serves as the more usual arrangement in AAA+ oligomers. By comparison, the 

other two insertions are found in many other AAA+ subgroups and consist of two β–hairpin 

insertions termed the pre-sensor I (PSI)-insert and the helix 2 (H2)-insert. Within the context 

of the hexamer, these two β-hairpins are positioned within the central channel and are 

integral to helicase mechanism (Figure 5). With regard to the MCM catalytic centers, a 

recent high-resolution cryo-electron microscopy structure of a full-length S. cerevisiae 
MCM2-7 double hexamer reveals significant structural variability between the six radially-

arranged ATPase sites, with a catalytically competent conformation but unequal nucleotide 

occupancy observed for four of the sites (Li et al., 2015). This variability is consistent with 

the unequal ATPase activity observed for the six MCM2-7 active sites (Bochman et al., 

2008) and with the non-equivalent function of these sites across the different stages of 

helicase recruitment, loading, and activation (Ilves et al., 2010, Coster et al., 2014, Kang et 

al., 2014).

Insofar as the MCM CTD, solution structures have shown this region to adopt a canonical 

winged-helix (WH) domain (Figure 4A) (Wei et al., 2010, Liu et al., 2012a, Wiedemann et 

al., 2015), which based on the weak or absent CTD density in structures of many full-length 

MCM proteins, appears flexibly tethered to the AAA+ core. Although the position of this 

domain with respect to the hexamer was at first unclear, recent structural and biochemical 

work demonstrates that the WH domain sits distal to the NTD (Li et al., 2015, Wiedemann et 

al., 2015, Yuan et al., 2016). The S. solfataricus MCM WH domain can bind single-stranded 

DNA weakly (Pucci et al., 2007); however, what role this activity plays in vivo, and whether 

the WH domains of the eukaryotic MCMs can also bind DNA, are open questions. The 

majority of data reported thus far suggests that, at least in archaea, the MCM WH domain 

functions to allosterically modulate the ATP hydrolysis rate of the AAA+ domain (Jenkinson 

and Chong, 2006, Barry et al., 2007, Wiedemann et al., 2015). In addition, this region can 

serve as a protein/protein interaction site, with the WH domains of eukaryotic MCM3 and 

MCM6 having been shown to engage Cdc6 and Cdt1, respectively (You and Masai, 2008, 

Liu et al., 2012a, Frigola et al., 2013). Interestingly, recent structural analyses of the 

activated yeast helicase (the CMG complex) have revealed that the Mcm5 and Mcm6 WH 

domains partially occlude the Mcm2-7 central channel, thus positioning them to perhaps 

function in the translocation process (Yuan et al., 2016). Despite this observation, the precise 

role of the MCM WH domains remains to be determined.
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Although the ATPase activity of MCM proteins localizes exclusively to the core AAA+ 

domain, hexamer formation is facilitated by both the AAA+ and NTD elements in the order 

MCM5→MCM3→MCM7→MCM4→MCM6→MCM2 (Schwacha and Bell, 2001, Crevel 

et al., 2001, Davey et al., 2003, Costa et al., 2011). A loop within each NTD-A OB-fold, 

termed the allosteric communication loop (ACL), contacts the AAA+ domain of its adjacent 

protomer, further stabilizing the hexamer (Miller et al., 2014, Li et al., 2015). Collectively, 

these interactions facilitate the formation of a particle consisting of two stacked rings (a 

AAA+ tier and an NTD tier). In single and double MCM2-7 hexamers, the central channel is 

sufficiently large enough to accommodate double-stranded DNA (Figure 4B) (Remus et al., 

2009, Evrin et al., 2009, Costa et al., 2011, Lyubimov et al., 2012, Costa et al., 2014, Li et 

al., 2015); later, in an unknown series of events, the helicase undergoes an isomerization 

reaction that appears coupled to the extrusion of one of the two strands through a natural 

discontinuity between the MCM2/5 subunits (Bochman and Schwacha, 2008, Costa et al., 

2011, Bruck and Kaplan, 2015b), permitting translocation along single-stranded DNA 

(Ishimi, 1997, Kelman et al., 1999, Shechter et al., 2000, Ilves et al., 2010, Fu et al., 2011).

MCM mechanism in origin melting and processive unwinding

The MCM2-7 complex matures through a variety of intermediates before being incorporated 

into the active helicase present at replication forks. Within the MCM2-7 lifecycle, two stable 

complexes are observed: an origin-bound double hexamer (Evrin et al., 2009, Remus et al., 

2009) and a replication fork-associated single hexamer (Fu et al., 2011, Duzdevich et al., 

2015). Interestingly, the double hexamer serves not only as a platform for recruiting 

helicase-activating factors but also is likely responsible for the initial origin melting event 

(Sun et al., 2014, Li et al., 2015, Bochman and Schwacha, 2015). Thus, the MCM complex 

must utilize the ATP-hydrolysis-driven repositioning of its DNA-binding elements to carry 

out two very distinct tasks, origin opening as a double hexamer and processive DNA 

unwinding as a single hexamer. Although the MCM2-7 DNA-binding elements are relatively 

well defined, it is currently unclear whether the two functionalities of the helicase require an 

overlapping or mutually exclusive set of protein interactions with DNA.

The MCM2-7 hexamer has multiple tiers of DNA-binding elements that are positioned to 

engage DNA passing through the central pore (Figure 5). The NTD-B Zn-fingers are 

situated at one end of the hexamer, forming a skirt of DNA-binding elements that run 

parallel to and extend the central channel. This domain is required for double hexamer 

formation, and mutation or deletion of the archaeal NTD-B reduces DNA binding and 

results in loss of helicase activity (Poplawski et al., 2001, Pucci et al., 2004, 

Kasiviswanathan et al., 2004). The Zn-finger motifs of eukaryotic MCM2-7 also facilitate 

double-hexamer formation (Li et al., 2015) and represent a putative DNA-binding region, 

but the role of this domain in helicase activity has not been investigated directly. The Zn-

finger motif of S. cerevisiae Mcm2 and Mcm5 are required for cellular proliferation, 

suggesting an essential and conserved function for this region (Yan et al., 1991, Dalton and 

Hopwood, 1997).

As one moves through the central MCM2-7 pore, from the NTD to the CTD, the next DNA-

binding elements encountered are the β–hairpin insertions within the OB-fold (NTD-C). The 
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NTD-C β–hairpin constricts the central channel (Fletcher et al., 2003, Li et al., 2015) and, in 

archaea, is electropositive in nature. Mutation of basic residues within this loop and on the 

adjacent, pore-lining surface of the OB-fold dramatically reduce both DNA binding and 

helicase activity in archaeal MCM (Fletcher et al., 2003, Pucci et al., 2004, McGeoch et al., 

2005, Fletcher et al., 2008). The NTD-C β-hairpin is highly variable in length and 

composition within the eukaryotic MCM2-7 family, and while a majority are enriched in 

basic residues, this conservation is not universal. Nevertheless, the NTD-C region appears 

critical for eukaryotic MCM function, as S. cerevisiae strains harboring mutations within 

this β–hairpin of Mcm5 show an increased rate of minichromosome loss (Leon et al., 2008). 

This effect can be repressed by the addition of multiple ARS sequences, which suggests that 

origin recruitment, but not helicase activity, is defective in this particular mutant.

In addition to the NTD-C β–hairpin, the crystal structure of an archaeal MCM NTD bound 

to single-stranded DNA has revealed a second DNA-binding region within the NTD-C, the 

MCM-single-stranded-DNA binding motif (MSSB) (Froelich et al., 2014). The MSSB is 

formed primarily by two positively charged residues that extend from the OB-fold and, 

interestingly, bind single-stranded DNA in an orientation perpendicular to the long axis of 

the central channel. The MSSB DNA-binding residues are conserved among three 

consecutive subunits of the eukaryotic MCM2-7 complex (MCM4, MCM6, and MCM7), but 

not the other subunits. It has been suggested that the MSSB plays a role in DNA melting, 

working against a DNA pumping action of the ATPase domains to induce topological strain 

that encourages strand separation (Froelich et al., 2014). Thus, the MSSB may have a role in 

the early steps of initiation, consistent with the defects observed for S. cerevisiae MSSB 

mutants in in vitro loading reactions (Froelich et al., 2014); whether or how this motif 

contributes to helicase function during elongation is unknown.

The AAA+ PSI β–hairpin insertion constitutes the most C-terminal DNA-binding element. 

This pore-lining loop shows the highest level of conservation of the various DNA binding 

elements discussed thus far, and contains an invariant lysine that projects towards the central 

pore. The PSI β-hairpin has been compared to the translocation β–hairpin of SF3 helicases 

(e.g., the papillomavirus E1 protein and the SV40 Large T-antigen), which in the context of 

a hexamer forms a vertically aligned, right-handed staircase that tracks the DNA backbone 

with a conserved lysine (Enemark and Joshua-Tor, 2006, Enemark and Joshua-Tor, 2008). 

Consistent with a critical role in helicase function, mutation of the PSI lysine in archaeal 

MCM weakens DNA binding and ATP hydrolysis, and fully abrogates helicase activity 

(McGeoch et al., 2005); mutation of this residue within the context of the D. melanogaster 
CMG similarly abolishes helicase function (Petojevic et al., 2015). Interestingly, genetic 

analysis of the S. cerevisiae PSI β–hairpin lysines has highlighted non-equivalent functions 

for this residue in the six Mcm2-7 homologs, with only the mutation of this residue in Mcm3 

abolishing an ability to complement deletion strains (Lam et al., 2013, Ramey and Sclafani, 

2014).

How are the activities of the MCM2-7 DNA-binding elements functionally coordinated with 

ATP turnover to achieve the different functionalities observed for the helicase? At least two 

other loops seem to facilitate communication between the AAA+ domain and the DNA-

binding elements lining the central channel. One is a motif known as the H2-insert, which 
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sits in the MCM AAA+ fold and forms an extended loop that junctions the ATPase and NTD 

tiers, creating a pore-lining feature at the interface (Brewster et al., 2008, Bae et al., 2009, Li 

et al., 2015). Notably, analysis of the current data suggests that ATP-dependent repositioning 

of the H2-insert may switch the helicase between an origin melting conformation to one that 

facilitates processive unwinding. Despite a low level of sequence conservation, the length of 

the H2-insert is fully conserved in archaea and all MCM2-7 homologs and is sufficiently 

long to directly contact the MSSB. Interestingly, the H2-insert is rich in charged amino acids 

and alignment of the six yeast Mcm proteins reveals two fully conserved acidic residues that, 

in the context of the double hexamer, are positioned to shield the MSSB from binding DNA 

(Figure 5). Consistent with this proposal, the H2-insert dramatically affects DNA binding in 

the archaeal MCM complex, with removal of the loop enhancing MCM affinity for both 

double and single-stranded DNA (Jenkinson and Chong, 2006). The position of the H2-

insert is thought to be modulated in an ATP-dependent fashion, such that the presence of 

ATP results in a more buried state for this loop (Jenkinson and Chong, 2006). In conclusion, 

the available data suggest a critical role for the H2-insert in transitioning the helicase 

between different functional states.

In addition to H2-insert dependent crosstalk between MCM subunits, the ACL of NTD-C 

projects upward from the OB-fold and toward the AAA+ domain of an adjacent protomer, 

where it is sandwiched between the H2-insert and PSI β–hairpin (Sakakibara et al., 2008, 

Barry et al., 2009, Li et al., 2015). Like the other functional motifs within the NTD, the ACL 

is absolutely required for helicase activity. However, the ACL does not affect DNA binding 

activity, but instead modulates the ATPase activity of the AAA+ domain; mutation of ACL 

residues or deletion of the region results in markedly reduced ATPase activity and inhibition 

of duplex unwinding (Sakakibara et al., 2008, Barry et al., 2009). Like the H2-insert, the 

ACL position with respect to the AAA+ domain is altered under different nucleotide-bound 

states (Barry et al., 2009).

Overall, the DNA-binding elements within the MCM NTD appear to play a critical function 

in both origin melting and unwinding. Although functional data point to an ATP-controlled 

connection between the positional status of specific DNA binding elements within the 

MCM2-7 ring and their ability to grasp or release substrate, direct observation of these 

elements in either a DNA melting or translocation mode is currently lacking. Recent electron 

microscopy models of the activated eukaryotic MCM2-7 helicase in the context of the CMG 

have revealed that there exists conformational coupling between the NTD and CTD tier, 

suggestive of coordinated action between these regions during processive unwinding (Yuan 

et al., 2016, Abid Ali et al., 2016). NTD-A also exhibits conformational dynamics and has 

been seen to rotate markedly away from the hexamer axis, a movement that may be 

coordinated through direct binding of DNA to the NTD-A (Fletcher et al., 2003, Chen et al., 

2005, Hoang et al., 2007, Liu et al., 2008, Costa et al., 2008). As additional substrate-bound 

structures are solved for the archaeal and eukaryotic MCM homologs, exciting insights into 

its DNA remodeling and motor mechanisms are certain to emerge.
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Loading of the replicative helicase

The defining step in eukaryotic replication licensing is loading of MCM2-7 onto duplex 

DNA into a stable head-to-head double hexamer (Figure 1) (Remus et al., 2009, Evrin et al., 

2009, Gambus et al., 2011). To attain this state, single MCM2-7 hexamers are sequentially 

loaded by an interaction with ORC•Cdc6 that is chaperoned by the Cdc10-dependent 

transcript 1 (Cdt1) protein. Structural characterization of multiple intermediates, together 

with the ability to reconstitute and study loading in vitro, are revealing how the stepwise and 

carefully orchestrated exchange of pre-RC factors at origins underlies this complex reaction 

(Figure 6).

Mechanism of helicase recruitment to origins

Maturation of the pre-RC occurs in a sequential fashion during the G1 phase of the cell cycle 

(Romanowski et al., 1996b, Gillespie et al., 2001, Tsuyama et al., 2005, Remus et al., 2009, 

Evrin et al., 2009, Tsakraklides and Bell, 2010, Ticau et al., 2015). Demarcation of 

replication start sites by ORC represents the inaugurating event, and permits the recruitment 

of and stable association with Cdc6 (Liang et al., 1995, Cocker et al., 1996, Coleman et al., 

1996, Donovan et al., 1997, Seki and Diffley, 2000, Tsuyama et al., 2005). In an in vitro 
setting, Cdc6 regulates the fidelity of origin selection by two distinct mechanisms. First, 

Cdc6 helps to restrict the initiator from acting at illegitimate origins by sequestering the free 

initiator (thereby lowering the effective concentration of the initiator to increase origin 

specificity) (Duzdevich et al., 2015), and by triggering the dissociation of ORC from non-

origin DNA (Mizushima et al., 2000). Second, Cdc6 ATPase activity is enhanced when 

bound to non-ARS sequences, which triggers the dissociation of Cdc6 from the initiator 

(Speck et al., 2005, Speck and Stillman, 2007). Ultimately, the secure association between 

Cdc6 and ORC at origins primes the initiator for helicase recruitment and loading (Rowles et 

al., 1996, Donovan et al., 1997, Perkins and Diffley, 1998, Feng et al., 2000, Tsuyama et al., 

2005); this same complex will later facilitate the release of the double hexamer for 

subsequent activation at the onset of S phase (Chang et al., 2015).

The MCM2-7 helicase must first be recruited to origins to initiate the loading reaction. 

Notably, the helicase is sensitive to solution conditions and shows substantial 

conformational heterogeneity (Gomez-Llorente et al., 2005, Bochman and Schwacha, 2008, 

Costa et al., 2011), a feature that is pertinent for understanding the mechanism of association 

with the origin-bound initiator. Biochemical and structural analyses of the MCM2-7 

complex has revealed that, in the absence of ATP, archaeal, fungal, and metazoan complexes 

can adopt a cracked ring architecture that bears a discontinuity, or ‘gate,’ between MCM2 

and MCM5 (Bochman and Schwacha, 2008, Costa et al., 2011, Lyubimov et al., 2012, 

Boskovic et al., 2016, Samson et al., 2016). Nucleotide binding constricts the ring and favors 

the formation of MCM2/5 interactions across the ring break (Samel et al., 2014), but does 

not appear to irreversibly close the gate in single MCM2-7 hexamers (Costa et al., 2011, 

Lyubimov et al., 2012). Thus, MCM2-7 may not require active ring-opening prior to 

loading, but instead may simply be stably aligned around DNA by origin-bound ORC•Cdc6.

In addition to the ORC•Cdc6 helicase-loader complex, Cdt1 is also required for helicase 

loading in yeast and metazoa (Maiorano et al., 2000, Nishitani et al., 2000, Whittaker et al., 

Parker et al. Page 17

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2000, Claycomb et al., 2002, Devault et al., 2002). However, the role of this factor has been 

enigmatic. Although Cdt1 was initially thought to be required for helicase recruitment to 

ORC (Asano et al., 2007, Chen et al., 2007, Chen and Bell, 2011), recent data suggest that 

MCM2-7 is recruited by direct interactions with the initiator (Fernandez-Cid et al., 2013, 

Frigola et al., 2013). With the exception of Orc6, all initiation factors discussed thus far 

possess a central AAA+ ATPase unit; Cdt1 represents an additional non-AAA+ protein 

involved in the process. Cdt1 was first identified in S. pombe, and through an ability to 

induce re-replication in the absence of cell division, was recognized as an essential and 

potent initiator of replication (Hofmann and Beach, 1994, Nishitani et al., 2000). Cdt1 is 

universally conserved in metazoa but is inconsistently found in other eukaryotic supergroups 

(Tada et al., 1999, Maiorano et al., 2000, Whittaker et al., 2000, Aves et al., 2012). The weak 

conservation of Cdt1 across species aggravated initial attempts to identify an S. cerevisiae 
homolog, but eventually the TAH11 (Topoisomerase-A hypersensitive 11) protein was 

identified as the budding yeast counterpart (Tanaka and Diffley, 2002, Devault et al., 2002). 

TAH11 was first isolated in genetic screens for genes that showed synthetic lethality with a 

mutant topoisomerase I allele (Fiorani and Bjornsti, 2000), and proteomic studies in human 

cells have suggested there exists an interaction between Cdt1 and both topoisomerase I and 

topoisomerase IIa (Sugimoto et al., 2008). Archaea also contain a Cdt1-related protein, 

termed WhiP; however, this factor appears to uniquely function in the Orc-independent 

assembly of pre-RCs (Robinson and Bell, 2007, Samson et al., 2013).

Interestingly, Cdt1 has markedly diverged between S. cerevisiae and metazoa, and functional 

analyses have suggested that there exist differing mechanisms for Cdt1-dependent action 

across species. All Cdt1 homologs are built from a conserved C-terminal pair of WH 

domains (Lee et al., 2004, Khayrutdinov et al., 2009). By contrast, the N-terminal region of 

Cdt1 is not conserved, and while the N-terminal domain of metazoa and S. pombe Cdt1 has 

a basic pI (human Cdt1 pI = 10.5) that is predicted to be unstructured, the S. cerevisiae N-

terminus has an acidic pI (pI = 5.1) and possesses sufficient secondary structure to likely 

constitute an ordered domain (modeling using Phyre2 (Kelley et al., 2015) suggests that this 

region corresponds to a catalytically defunct oxygenase fold). Interestingly, an S. cerevisiae 
Cdt1 construct lacking the non-conserved N-terminal domain fails to load the helicase into 

an activation-competent conformation (Takara and Bell, 2011, Fernandez-Cid et al., 2013), 

whereas the N-terminus of metazoa Cdt1 is dispensable for the loading reaction (Ferenbach 

et al., 2005).

The factors with which Cdt1 stably associates also evince species-specific differences. In S. 
cerevisiae, Cdt1 and Mcm2-7 form a tight complex and exhibit interdependent nuclear 

import (Tanaka and Diffley, 2002, Kawasaki et al., 2006, Remus et al., 2009, Takara and 

Bell, 2011); Cdt1 similarly helps maintain the structural integrity of the Mcm2-7 complex 

(Wu et al., 2012, Frigola et al., 2013). Conversely, Xenopus Cdt1 and MCM2-7 are 

biochemically separable initiation factors, with immunodepletion of MCM3 from Xenopus 
egg extracts removing MCM2-7 but having no effect on Cdt1 (Maiorano et al., 2004) (it is 

worth noting that mouse Cdt1 has been reported to form a complex with MCM2-7 in vitro 
(You and Masai, 2008), but the stability of this assembly has not been investigated). Multiple 

explanations could account for the differences in behavior between S. cerevisiae and 

Xenopus Cdt1; for example, differences in the relative affinities of Cdt1 for the MCM2-7 
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complex could reflect an alteration to the sequential assembly of the pre-RC factors in 

metazoa, such that Cdt1 associates first with ORC•Cdc6 rather than with the helicase 

(Maiorano et al., 2000, Waga and Zembutsu, 2006). Finally, metazoa contain an additional 

Cdt1-binding protein, Geminin, which negatively regulates licensing by inhibiting the Cdt1-

dependent loading of the helicase into a stable double hexamer (Wohlschlegel et al., 2000, 

Edwards et al., 2002, Yanagi et al., 2002, Wu et al., 2014a).

Despite the differences in Cdt1 structure and its preferred binding partners between budding 

yeast and metazoans, multiple studies have identified MCM6 as the primary Cdt1 interaction 

site on the helicase hexamer (Yanagi et al., 2002, Ferenbach et al., 2005, Zhang et al., 2010, 

Wei et al., 2010, Liu et al., 2012a, Wu et al., 2012) (mouse Cdt1 also interacts with MCM2 

(You and Masai, 2008)). Cdt1/MCM6 contacts are facilitated by the C-terminal WH domain 

of each protein (Ferenbach et al., 2005, Teer and Dutta, 2008, Khayrutdinov et al., 2009, Jee 

et al., 2010, Wei et al., 2010, Takara and Bell, 2011), with structural studies of the human 

proteins revealing that a helical extension which projects from the Cdt1 WH region engages 

the helix-turn-helix motif of the MCM6 C-terminus (You and Masai, 2008, Liu et al., 

2012a). Mutagenesis of residues in the interaction surface abolishes helicase loading and 

DNA replication in budding yeast, suggesting that the MCM6-Cdt1 mechanism of binding is 

widely conserved (Liu et al., 2012a). Despite this contact, in vitro binding studies have 

suggested that there exist additional undefined sites of interaction between Cdt1 and 

MCM2-7 (Khayrutdinov et al., 2009, Fernandez-Cid et al., 2013).

S. cerevisiae Cdt1 has also been reported to bind Orc6 (Semple et al., 2006, Asano et al., 

2007, Chen et al., 2007, Chen and Bell, 2011). This interaction was initially proposed to 

facilitate helicase recruitment by helping to tether MCM2-7 to the ORC•Cdc6 complex (it is 

unclear whether metazoan Cdt1 and Orc6 interact (Yanagi et al., 2002)); however, other 

work has indicated that S. cerevisiae Mcm2-7 contains elements that directly engage 

ORC•Cdc6 and that are wholly sufficient for recruitment (Fernandez-Cid et al., 2013, 

Frigola et al., 2013). Cdt1’s participation in modulating MCM/ORC•Cdc6 interactions is 

still under debate, with one study noting that budding yeast Cdt1 relieves an Mcm6-

dependent autoinhibitory mechanism that prevents Cdt1-independent recruitment (i.e., 

deletion of an Mcm6 autoinhibitory domain results in helicase recruitment in the absence of 

Cdt1) (Fernandez-Cid et al., 2013), and another showing that Cdt1 is fully dispensable for 

helicase recruitment (here only an interaction between Cdc6 and the extreme C-terminus of 

Mcm3 appears necessary for recruitment (Frigola et al., 2013). Consistent with the proposed 

role of the eukaryotic MCM3 C-terminus, recent studies in archaea have found that the 

MCM C-terminal WH domain directly binds Orc to facilitate recruitment of the helicase to 

replication origins (Samson et al., 2016).

Together, the available data suggest that Cdt1 may be dispensable for helicase recruitment, 

and that this step instead predominantly relies on interactions between ORC•Cdc6-bound 

origins and MCM2-7. What then might be the significance of Cdt1 and its interaction with 

Orc6? Beyond a potential ability to relieve MCM6-dependent autoinhibition (Fernandez-Cid 

et al., 2013), S. cerevisiae Cdt1 stabilizes Mcm2-7 at origins in an Orc6-dependent manner 

(Chen et al., 2007), such that in the absence of Cdt1, topologically linked Mcm2-7 hexamers 

fail to load (Chen and Bell, 2011). Notably, an N-terminal deletion construct of budding 

Parker et al. Page 19

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



yeast Cdt1 permits loading of double hexamers, but in a state that is incapable of being 

subsequently activated (Takara and Bell, 2011). Thus, Cdt1 is required for events 

downstream of recruitment, which appear to include the formation of an MCM2-7 double 

hexamer intermediate that is competent for replication. Overall, the molecular details 

underlying the role of Cdt1, and in particular its Orc6 association, are in need of further 

study.

Loading the double hexamer

Ultimately, the initiator-dependent recruitment of MCM2-7 to origins leads to the formation 

of a stable chromatin-bound MCM2-7 complex that, unlike ORC•Cdc6, is resistant to high-

salt extraction (Donovan et al., 1997, Edwards et al., 2002, Bowers et al., 2004). Notably, the 

MCM2-7 loading reaction has been fully reconstituted in vitro with purified proteins from S. 
cerevisiae (Remus et al., 2009, Evrin et al., 2009), which has in turn allowed the use of 

single molecule and structural techniques to understand both the nature of the salt-stable 

complex and the events leading to its formation. The details of the loading reaction 

discussed below are derived exclusively from studies with S. cerevisiae initiation factors; 

given some of the species-specific differences observed to date, it will be important to 

reconstitute the loading reaction in vitro with other organisms for comparison.

Following the recruitment of Cdt1•Mcm2-7 to ORC•Cdc6-bound origins, Mcm2-7 is 

deposited onto DNA while both Cdc6 and Cdt1 are ejected from the pre-RC in an ATP 

hydrolysis-dependent fashion. Cdc6 release occurs prior to Cdt1 both for single- and double-

hexamer loading (Remus et al., 2009, Evrin et al., 2009, Tsakraklides and Bell, 2010, Kang 

et al., 2014, Ticau et al., 2015) (Figure 6). Singly-loaded Mcm2-7 hexamers result in the 

transient formation of a meta-stable ORC•Cdc6•Cdt1•Mcm2-7 (OCCM) intermediate, which 

can be stabilized by the presence of a non-hydrolyzable ATP analog. This property has been 

exploited to permit imaging of the complex by 3D cryo-electron microscopy (Sun et al., 

2013). Within the OCCM, Cdt1 interfaces with the N-terminal tier of Mcm2, Mcm6, and 

Mcm5. The Mcm3 C-terminus resides proximal to Cdc6, consistent with the observed 

interaction between these regions in vitro and the proposed role of this interaction in 

helicase recruitment (Sun et al., 2013, Frigola et al., 2013). Cdt1 and Orc6 make no visible 

contacts in the OCCM structure; indeed the N-terminal TFIIB domain of Orc6 does not 

appear ordered. Notably, the Cdt1•Mcm2-7 heptamer is oriented such that the MCM C-

terminal domains (the region containing the AAA+ and WH domains) abut the ORC WH 

domains (Bleichert et al., 2015), leaving the MCM NTD accessible. Although analysis of the 

loading reaction in bulk has indicated that singly-loaded Mcm2-7 hexamers are salt-sensitive 

(Remus et al., 2009, Evrin et al., 2009, Kang et al., 2014), single molecule analysis of the 

reaction reveals that nearly 50% of the singly-loaded helicases are salt-stable, suggesting 

that at this stage Mcm2-7 ring closure has occurred (Ticau et al., 2015). This discrepancy 

between bulk and single-molecule studies currently lacks explanation, although may arise 

from the relatively high protein concentrations used in the bulk assays and/or by their 

limited kinetic sensitivity.

After the first loading event, Cdc6 re-associates with the ORC•Mcm2-7 complex, forming a 

short-lived ORC•Cdc6•Mcm2-7 (OCM) intermediate that is competent for recruitment of a 
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second Cdt1•Mcm2-7 heptamer (Fernandez-Cid et al., 2013, Ticau et al., 2015). At present, 

the mechanics by which a second hexamer is recruited are unclear. It has been proposed that 

loading of the second hexamer requires equivalent interactions as the first, with the Mcm3 

C-terminus being required for both loading steps (Frigola et al., 2013). However, if loading 

the second helicase into a double hexamer requires an interaction with ORC•Cdc6, this 

mechanism must involve some fairly complicated acrobatics, mainly because the first loaded 

Mcm2-7 complex should still be present to block the MCM-binding surface on ORC, and 

because the second Mcm2-7 complex must be placed at a location more than ~100 Å from 

ORC’s initial binding site on DNA, and in an inverted orientation from the first helicase. 

This spatial problem could be solved if two ORCs were used for the loading of two helicases 

with opposing polarity; however, single-molecule analysis has demonstrated that a single, 

stably bound ORC is sufficient to load a double hexamer (Ticau et al., 2015). Because of 

these steric complications, an alternative mechanism has been proposed wherein the first, 

loaded hexamer templates loading of the second through a distinct mechanism that does not 

require direct ORC•Cdc6 interactions (Ticau et al., 2015). Consistent with this idea, the 

kinetics of loading the second hexamer are slower than the first (Fernandez-Cid et al., 2013), 

as is the release of Cdc6 and Cdt1 (Ticau et al., 2015), suggesting different reaction 

intermediates are accessed.

While the model described above does not directly account for the demonstrated role of the 

budding yeast Mcm3 WH domain in the loading of both the first and second Mcm2-7 

hexamers (Frigola et al., 2013), previous work has revealed that deletion of the Mcm3 C-

terminus results in a dramatic loss of Mcm2-7 ATPase activity (Sun et al., 2014). Since 

proper ATPase function by the Mcm2-7 hexamer is critical at all stages of the loading 

reaction in S. cerevisiae, this loss of activity in the Mcm3 WH domain mutant could account 

for the observed defect in loading the second hexamer. Accordingly, Mcm2-7 complexes 

with individual active site mutations also show defective recruitment (particularly Mcm2 

Walker A and Mcm6 arginine finger mutants), Cdt1 release, and dramatically reduced levels 

of salt-stable double hexamers (Kang et al., 2014, Coster et al., 2014). Although a marginal 

level of double-hexamer formation can be achieved with particular MCM ATPase mutants, 

these loaded complexes are generally deficient for downstream activation events and cannot 

drive DNA replication in vitro (Kang et al., 2014). Collectively, the present data indicate that 

ATP binding and hydrolysis by S. cerevisiae Mcm2-7 is required from the early steps of 

helicase recruitment to the concluding activation events. These results are difficult to 

rationalize with the observation that Xenopus MCM6 and MCM7 Walker A mutants are 

loaded normally (Ying and Gautier, 2005), but this finding may again reflect species-specific 

differences.

Although double-hexamer loading is critically dependent on the ATPase activity of Mcm2-7, 

ATP hydrolysis by Cdc6 and ORC perform additional roles that are consistent with a 

requirement for their ATPase activity in vivo (Zwerschke et al., 1994, Weinreich et al., 1999, 

Wang et al., 1999, Schepers and Diffley, 2001, Takahashi et al., 2002, Bowers et al., 2004). 

ATP hydrolysis by Orc1 is dispensable for the loading reaction (Evrin et al., 2013, 

Fernandez-Cid et al., 2013, Coster et al., 2014), but resets the initiation machinery to allow 

reiterative loading of MCM double hexamers at origins (Bowers et al., 2004). By 

comparison, Cdc6 has been reported to function as a quality control factor, whose ATPase 
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activity ensures that defective or incomplete Mcm2-7 complexes are released from origins 

(Frigola et al., 2013, Kang et al., 2014, Coster et al., 2014). Another major function of Cdc6 

ATPase activity appears to be in the final step of pre-RC formation, where it is responsible 

for releasing successfully loaded double hexamers from ORC, an event that enables the 

downstream activation of the helicase (Chang et al., 2015). Loss of Cdc6 ATPase activity 

also results in inefficient Cdt1 release (Randell et al., 2006), although ATP turnover by 

Mcm2-7 appears primarily responsible for Cdt1 ejection (Kang et al., 2014, Coster et al., 

2014). Overall, Cdc6 functions as a linchpin factor critical for multiple events in the loading 

process.

Helicase activation

Although a double MCM2-7 hexamer is loaded during pre-RC formation, at replication 

forks this structure is dissolved to yield two single MCM2-7 hexamers that move in opposite 

directions (Yardimci et al., 2010, Ticau et al., 2015). On their own, single MCM2-7 

hexamers possess little or no helicase activity (Ishimi, 1997, Lee et al., 2000, Kaplan et al., 

2003, You et al., 2003, Ilves et al., 2010). Initially, this observation was difficult to 

rationalize with the strong evidence that pointed towards a role for the complex as the 

replicative helicase, but it is now appreciated that MCM2-7 is incorporated into a larger 

Cdc45•MCM2-7•GINS (CMG) complex that possesses robust helicase activity. Like pre-RC 

assembly, double hexamer dissolution and CMG formation occur through a highly 

orchestrated and interconnected series of events that provide yet another means for 

regulating the DNA replication initiation reaction.

Identification of the Cdc45•MCM2-7•GINS (CMG) complex

The MCM2-7 genes are essential proteins in DNA replication (Moir et al., 1982, Maine et 

al., 1984, Gibson et al., 1990, Dalton and Whitbread, 1995) and their phylogenetic lineage to 

helicases led to early suggestions that these factors might function as nucleic acid motor 

proteins (Koonin, 1993). Together with work on archaeal MCMs, which have been found to 

possess robust helicase activity (Chong et al., 2000, Kelman et al., 1999, Shechter et al., 

2000), these data indicated that the MCM2-7 complex likely served as the replicative 

helicase in eukaryotes. Interestingly, initial in vitro studies were unable to detect helicase 

activity from the eukaryotic MCM2-7 complex, although an MCM subcomplex composed of 

subunits (4,6,7)2 showed weak helicase activity (Ishimi, 1997, Lee et al., 2000, Kaplan et al., 

2003, You et al., 2003). These data suggested that the MCM2-7 assembly might play a more 

limited role in replication, such as origin melting. However, the persistence of MCM2-7 at 

replication forks (Aparicio et al., 1997), coupled with the observed S-phase arrest after 

MCM2-7 inactivation (Labib et al., 2000, Pacek and Walter, 2004, Shechter et al., 2004), 

provided irrefutable evidence for the role of the complex in elongation (Todorov et al., 1995, 

Krude et al., 1996). Nevertheless, the demonstration of helicase activation remained elusive.

Eventually, conditions were identified that recovered in vitro helicase activity for budding 

yeast Mcm2-7 (Bochman and Schwacha, 2008). Roughly contemporaneously, several lines 

of analysis began to reveal that the helicase also existed within a larger macromolecular 

assembly (Masuda et al., 2003, Calzada et al., 2005, Pacek et al., 2006, Gambus et al., 2006, 
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Moyer et al., 2006). Three parallel studies – two using an unbiased assessment of Cdc45 and 

GINS interacting factors and a third using a candidate-based approach to determine the 

composition of the helicase stalled at replication forks – have now demonstrated that 

MCM2-7 forms a stable complex with Cdc45 and GINS (Pacek et al., 2006, Gambus et al., 

2006, Moyer et al., 2006). Cdc45 and GINS are essential replication fork components (Moir 

et al., 1982, Hopwood and Dalton, 1996, Dalton and Hopwood, 1997, Zou et al., 1997, 

Kamimura et al., 1998, Kanemaki et al., 2003, Masuda et al., 2003), which mimic the 

chromatin association pattern of MCM subunits (Takayama et al., 2003, Kubota et al., 2003). 

Each MCM2-7 binds a single copy of Cdc45 and one GINS tetramer to form a stable, 

eleven-protein complex termed the CMG (for Cdc45•MCM2-7•GINS). The CMG has been 

shown to possess robust helicase activity (Moyer et al., 2006, Ilves et al., 2010), and 

bioinformatics analyses have indicated that a full set of CMG factors are likely conserved 

from archaea to eukaryotes (Makarova et al., 2012), with recent work demonstrating that, as 

observed for the eukaryotic accessory factors, archaea’s Cdc45 and GINS homologs activate 

MCM in vitro and in vivo (Xu et al., 2016).

Regulating helicase activation

Appropriate recruitment of the factors necessary for CMG formation constitutes a highly-

regulated step towards replisome formation. Consistent with the Cdc6-dependent release of 

the MCM2-7 double hexamer from ORC (Chang et al., 2015), helicase activation steps no 

longer require the function of either ORC or Cdc6 (Hua and Newport, 1998, Rowles et al., 

1999, Jares and Blow, 2000, Walter, 2000, Yeeles et al., 2015). The newly formed MCM2-7 

double hexamer serves itself as a binding platform and target for the Dbf4-dependent kinase 

(DDK) that, in collaboration with S-phase cyclin-dependent kinase (S-CDK), constitute the 

minimal set of kinases needed to regulate the recruitment of Cdc45 and GINS. Together, the 

activity of these two kinases coordinate the assembly of a pre-IC that is poised for activation 

and formation of a bidirectional replication fork (Figure 6) (Aladjem, 2007).

DDK is formed by the direct association of the Cdc7 kinase with Dbf4, a protein co-factor 

that relieves Cdc7 autoinhibition (Kitada et al., 1992, Jackson et al., 1993, Dowell et al., 

1994) and that is regulated in a cell-cycle dependent fashion (Cheng et al., 1999, Oshiro et 

al., 1999, Nougarede et al., 2000). DDK phosphorylates multiple MCM subunits (Lei et al., 

1997, Weinreich and Stillman, 1999, Masai et al., 2006, Montagnoli et al., 2006, Cho et al., 

2006, Sheu and Stillman, 2006, Tsuji et al., 2006) and is required for initiating DNA 

replication (Chapman and Johnston, 1989, Hollingsworth and Sclafani, 1990, Jiang et al., 

1999a). Like DDK, S-CDK is required for replication (Broek et al., 1991, Hayles et al., 

1994) and exists in an inactive conformation by engaging Sic1, a repressive protein that 

restricts S-CDK activity into late G1/S phase (Mendenhall, 1993, Donovan et al., 1994, 

Schwob et al., 1994, Knapp et al., 1996, Schneider et al., 1996). Redundant regulation of S-

CDK occurs by the cell-cycle dependent expression of activating cyclins (Abreu et al., 

2013). It is currently unclear whether there is a conserved sequential order for DDK and 

CDK activity. In a X. laevis egg extract system, DDK activity is independent of CDK, and 

exposing the pre-RC first to CDK fully ablates DNA replication initiation (Jares and Blow, 

2000, Walter, 2000), suggesting that DDK acts first. Such a consensus has not been found 

with S. cerevisiae proteins, where the sequential action of DDK and CDK depends on the 
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experimental setup (Nougarede et al., 2000, Heller et al., 2011) and has been found to be 

inconsequential in a fully in vitro reconstituted DNA replication system (Yeeles et al., 2015).

DDK is recruited to Mcm2-7 through interactions with Mcm4 and Mcm2 (Sheu and 

Stillman, 2010, Ramer et al., 2013) and targets specific MCM subunits within the context of 

a double, but not a single, MCM2-7 hexamer (Francis et al., 2009, Evrin et al., 2014, Sun et 

al., 2014, Kang et al., 2014, Costa et al., 2014). Notably, the MCM subunits responsible for 

recruiting DDK are non-adjacent within the context of a single hexamer; however, the 

rotational offset within the double hexamer results in the adjacent placement of MCM2 and 

MCM4 from separate hexamers (Costa et al., 2014, Sun et al., 2014, Li et al., 2015), thus 

forming a composite DDK-interaction interface. In addition, MCM2, MCM4, and MCM6, 

which are all phosphorylated by DDK (Lei et al., 1997, Masai et al., 2006, Tsuji et al., 2006, 

Sheu and Stillman, 2006, Cho et al., 2006, Bruck and Kaplan, 2009, Randell et al., 2010), 

reside in close proximity within the double hexamer and the interface between the two 

hexamers is somewhat splayed apart at this position, creating a gap that may provide DDK 

access to the N-terminal serine/threonine rich domains (NSD) of its MCM targets (Sheu and 

Stillman, 2010, Sun et al., 2014, Li et al., 2015). Collectively, the available data suggest that 

the DDK-dependent activation of MCM2-7 is temporally regulated by selective recruitment 

of the kinase to and action upon a double hexameric MCM2-7, a structure that uniquely 

positions the relevant MCM subunits in close proximity (Sun et al., 2014). In addition to 

DDK, budding yeast Mcm2-7 has been shown to be phosphorylated by CDK and Mec1 

kinases, which sensitize Mcm2-7 to DDK activity (Devault et al., 2008, Randell et al., 

2010); however, in vitro DDK alone is required for activation of S. cerevisiae Mcm2-7 

(Yeeles et al., 2015).

In S. cerevisiae, the DDK-dependent phosphorylation of Mcm2-7 is important for 

facilitating the Sld3 and Sld7-chaperoned recruitment of Cdc45 onto the double hexamer 

(Masai et al., 2006, Yabuuchi et al., 2006, Sheu and Stillman, 2006, Tanaka et al., 2011a). In 

humans, two proteins known as Treslin and MTBP (for MDM2 binding protein) have been 

proposed to represent functional homologs of budding yeast Sld3 and Sld7, respectively 

(Matsuno et al., 2006, Sanchez-Pulido et al., 2010, Sansam et al., 2010, Kumagai et al., 

2010, Bruck and Kaplan, 2015c, Boos et al., 2013). In vitro, Cdc45 recruitment depends on 

the prior association of Sld3 and Sld7 with the DDK-phosphorylated N-termini of Mcm2, 

Mcm4, and Mcm6 (Deegan et al., 2016, Fang et al., 2016); however, in vivo Sld3/7 and 

Cdc45 form a stable complex and may be co-recruited to double hexamers (Kamimura et al., 

2001, Tanaka et al., 2011a, Tanaka et al., 2011b). Notably, in the absence of DDK, no 

additional initiation factors are recruited to Mcm2-7 double hexamers. Conversely, in the 

absence of CDK activity, Cdc45 as well as Sld3 and Sld7 are still efficiently recruited 

(Heller et al., 2011, Yeeles et al., 2015). Thus, recruitment of Cdc45 appears to rely 

exclusively on DDK.

How does DDK-dependent MCM2-7 phosphorylation facilitate Cdc45 recruitment? 

Although we lack a complete mechanistic picture for DDK-dependent activation, three 

distinct MCM modifications have been identified that result in DDK bypass, suggesting 

there exists a complex role for DDK that likely involves a concerted change within multiple 

MCM subunits. First, hyperphosphorylation of the S. cerevisiae Mcm4 N-terminus relieves 
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an autoinhibitory function that this region imposes on the helicase (indeed, deletion of the 

Mcm4 N-terminus bypasses the DDK requirement) (Sheu and Stillman, 2006, Sheu and 

Stillman, 2010). Although a mechanism entailing a steric block to the Cdc45 binding site or 

the adoption of a different non-permissive orientation would satisfy this observation, within 

the atomic structure of the S. cerevisiae Mcm2-7 double hexamer the Mcm4 N-terminus is 

disordered, suggesting that autoinhibition is relieved by an alternative mechanism (Li et al., 

2015). Second, phosphorylation of Mcm4 and Mcm6 generates a phosphopeptide binding 

site for recruiting Sld3 (phosphomimetic mutants of these MCM subunits can bypass the 

requirement for DDK) (Deegan et al., 2016). Finally, a mutation within budding yeast 

Mcm5, known as the bob1 allele, has been found to bypass DDK-activated initiation (Hardy 

et al., 1997).

In addition to DDK-dependent recruitment of Cdc45, Mcm2-7 activation requires an 

association with GINS and, for origin firing, with Replication Protein A (RPA), MCM10, 

Polα, Polε, and CTF4 (van Deursen et al., 2012, Yeeles et al., 2015). Notably, CDK’s action 

on the growing, chromatin-associated replication assembly, as well as on replicative proteins 

yet to be integrated into the replisome, results in the recruitment of the remaining initiation 

factors that are needed for origin firing. In this swarm of activity, CDK targets Cdc45, Sld2, 

Sld3, and Sld7 (Masumoto et al., 2002, Zegerman and Diffley, 2007, Tanaka et al., 2007, 

Muramatsu et al., 2010, Heller et al., 2011, Yeeles et al., 2015), and, together with a protein 

known as Dpb11, facilitates recruitment of a multiprotein assembly composed of GINS, 

Sld2, and Polε to the growing complex (Araki et al., 1995, Kamimura et al., 1998, 

Kamimura et al., 2001, Takayama et al., 2003, Muramatsu et al., 2010, Tanaka et al., 2013). 

Thus, DDK and CDK drive formation of an active helicase by phosphorylating key assembly 

factors that allow for the sequential recruitment of Cdc45 and GINS. For its part, MCM10 is 

recruited by interactions with the CMG (Homesley et al., 2000, Wohlschlegel et al., 2002, 

Douglas and Diffley, 2016) and further appears to help stabilize the replisome once formed 

(Gregan et al., 2003, Ricke and Bielinsky, 2004). Polε is likewise recruited directly to the 

CMG by an interaction with GINS (Araki et al., 1995, Muramatsu et al., 2010), whereas 

Polα is physically coupled to the helicase by CTF4 (Villa et al., 2016, Simon et al., 2014).

Many questions remain for the events that transition the growing MCM2-7 complex into a 

competent bi-directional replication fork. For example, it is currently unclear at what point 

and how origin melting occurs, or how an MCM2-7 double hexamer, which encircles duplex 

DNA, transitions into two uncoupled CMG particles that encircle single-stranded DNA 

(Yardimci et al., 2010, Ticau et al., 2015). Interestingly, recent data suggests that the process 

of origin melting and strand extrusion may be interdependent and temporally intertwined 

with CMG assembly. Indeed, S. cerevisiae Sld2, Sld3, and Dpb11, which chaperone GINS 

into a complex with the helicase, compete with GINS for Mcm2-7 binding, a function that is 

relieved in the presence of single-stranded DNA (Bruck et al., 2011, Bruck and Kaplan, 

2011, Bruck and Kaplan, 2014, Bruck and Kaplan, 2015c, Dhingra et al., 2015) (the 

metazoan Sld2 and Sld3 equivalents also bind single-stranded DNA (Sangrithi et al., 2005, 

Ohlenschlager et al., 2012, Bruck and Kaplan, 2015c)). Thus, GINS binding may not only 

be anticipated by origin melting and the generation of single-stranded DNA, but by strand 

extrusion as well, as the separated origin strands may be contained within the Mcm2-7 

double hexamer for a period of time (Sun et al., 2014, Li et al., 2015). The topological 
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transformations to DNA in the context of the maturing CMG complex are likely aided in by 

the phosphorylation of Mcm2 by DDK (Lei et al., 1997, Bruck and Kaplan, 2009), an event 

that weakens the Mcm2/5 gate and promotes ring opening (Bruck and Kaplan, 2015a, Bruck 

and Kaplan, 2015b). Consistent with this idea, origin melting and strand extrusion have been 

reported to occur concomitantly with DDK-dependent activation but prior to complete CMG 

assembly (Bruck and Kaplan, 2015a). Interestingly, recent data suggests that the single-

stranded DNA binding activity of budding yeast Mcm10 is required for initiation and that it 

may help stabilize the origin melting reaction (Perez-Arnaiz and Kaplan, 2016).

Despite the available insights, the mechanisms that transition a loaded double hexamer into 

an active, bi-directional replication fork remain shrouded in mystery. An important future 

direction will be to understand the timing of different events in the lifecycle of the helicase, 

such as when double-hexamer dissociation and replisome factor recruitment occurs (such as 

MCM10, Polα and RPA), as compared to origin melting and strand extrusion. The physical 

mechanisms that coordinate CMG structural changes with origin remodelling likewise 

remain ill-defined, and require structural studies of different intermediates that, at present, 

have not been stably isolated.

Mechanism of CMG function

The cracked ring architecture of the MCM2-7 complex is an asset when it comes to loading 

the helicase around double-stranded DNA, but would seem to be a potential liability in terms 

of processive DNA unwinding functions (Bochman and Schwacha, 2008, Ilves et al., 2010, 

Petojevic et al., 2015). Although nucleotide binding by MCM2-7 helps to overcome a 

natural tendency of the helicase to splay open (Samel et al., 2014), cracked-ring 

conformations still readily form (Costa et al., 2011, Lyubimov et al., 2012), providing a 

physical basis for the weak in vitro helicase activity of MCM2-7 (Bochman and Schwacha, 

2008, Ilves et al., 2010). Incorporation of MCM2-7 into the CMG counteracts the functional 

deficiencies of the MCM2-7 complex for DNA unwinding. 3D electron microscopic 

reconstructions of both the Drosophila and budding yeast CMG have revealed that GINS and 

Cdc45 seal off the MCM2/MCM5 discontinuity and reduce the conformational dynamics of 

the MCM2/5 gate, likely as a means to favor productive ATPase interface contacts (Figure 

7A-B) (Costa et al., 2011, Costa et al., 2014, Abid Ali et al., 2016, Yuan et al., 2016). Thus, 

instead of being directly involved in translocation per se, it would seem that GINS and 

Cdc45 help shift the structural disposition of the MCM2-7 AAA+ domains into productive 

conformations. Consistent with this notion, incorporation of Drosophila MCM2-7 into the 

CMG increases the vmax of ATP hydrolysis by over 300-fold and results in a 10-fold higher 

affinity for DNA, resulting in a dramatic increase in helicase activity (Ilves et al., 2010). 

Interestingly, in addition to participating in the control of MCM2-7 ring status, both GINS 

(Boskovic et al., 2007, Ilves et al., 2010) and Cdc45 (Krastanova et al., 2012, Bruck and 

Kaplan, 2013, Szambowska et al., 2014) have been shown to bind DNA. Cdc45, which is a 

catalytically-defunct homolog of the RecJ exonuclease (Sanchez-Pulido and Ponting, 2011, 

Simon et al., 2016), also appears to assist with capture of the leading strand during transient 

CMG gate opening (Petojevic et al., 2015), thereby possibly playing a protective role during 

replication fork stalling (Bruck and Kaplan, 2013).
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Structural analysis of the CMG reveals the presence of two distinct conformers that are, as 

observed for the MCM2-7 helicase core, differentiated by the relative positioning of the 

gating subunits (Yuan et al., 2016, Abid Ali et al., 2016). As the MCM NTD is stabilized by 

extensive contacts with GINS and Cdc45, changes within the AAA+ ATPase ring appear 

primarily responsible for the alterations observed between the two conformational states 

(Costa et al., 2011, Costa et al., 2014, Abid Ali et al., 2016, Yuan et al., 2016). Altering the 

position of the MCM2/5 gate appears to propagate structural changes around the MCM2-7 

ring that result in significant translational and rotational rearrangement of MCM6 and, to a 

lesser extent, MCM4. These changes in turn are coupled to a transition from a constricted 

conformer state, where the MCM2-7 NTD and CTD tiers are co-planar, to a relaxed, tilted 

form, which generates an asymmetric expansion of the gap between the NTD and CTD tiers 

on one side of the ring (Figure 7C). It has been suggested that switching between these 

conformations could elicit a pumpjack motion, with the CTD tier rocking with respect to a 

stable NTD tier during DNA translocation (Yuan et al., 2016), and that these dynamics could 

be used to drive a linear, as opposed to rotational, mechanism of DNA translocation (Yuan et 

al., 2016, Abid Ali et al., 2016). Higher-resolution structures of distinct translocation 

intermediates, coupled with single-molecule measurements of ring dynamics and 

displacement, will be needed to test these ideas.

An interesting point of discussion in the field has been whether the ATPase regions of 

MCMs serve as single or double-stranded DNA translocases. Based on a distant 

phylogenetic kinship to RuvB, a known double-strand translocase, MCM2-7 was initially 

proposed to move along duplex DNA, with the NTD-associated GINS/Cdc45 accessory 

subunits serving as a ploughshare to separate the two strands (Takahashi et al., 2005). 

However, subsequent biochemical studies of the Drosophila CMG have shown that the 

complex requires a fork for unwinding (Ilves et al., 2010), consistent with both archaeal 

MCM and metazoan MCM4,6,7 functioning as single-stranded DNA translocases on model 

substrates (Ishimi, 1997, Kelman et al., 1999, Shechter et al., 2000, Moyer et al., 2006, Kang 

et al., 2012). Along these lines, studies in archaea have reported that an MCM construct 

lacking the NTD tier (and that has no associated GINS/Cdc45) still possesses helicase 

activity (Barry et al., 2007). Moreover, replisomes have been challenged with leading and 

lagging strand roadblocks in an X. laevis extract system, with only leading strand roadblocks 

proving capable of stalling fork progression (MCM2-7 is a 3′→5′ helicase that tracks on 

the leading strand) (Fu et al., 2011). Consistent with this observation, recent analysis of the 

pattern of forked DNA crosslinking to the CMG reveals that the leading strand shows robust 

crosslinking to all MCM2-7 subunits, as well as Cdc45, while lagging strand crosslinks are 

markedly fewer and those that occur are all on the exterior surface of MCM2-7 (Petojevic et 

al., 2015). Collectively, these data strongly indicate that the CMG functions as a single-

stranded DNA translocase.

Structural analysis of the apo and substrate-bound CMG states also support a single-strand 

tracking model. In particular, upon binding of the CMG to a forked duplex substrate, nucleic 

acid density can be visualized within the central channel whose dimensions appear sufficient 

to accommodate single but not double-stranded DNA (Abid Ali et al., 2016). This finding is 

consistent with a previous structural analysis of the CMG bound to duplex DNA containing 

a single 3′-tail, which showed that the duplex region of a DNA fork is positioned outside the 
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central channel in an orientation consistent with the known 3′→5′ polarity of DNA 

engagement (Costa et al., 2014). Interestingly, the high-resolution structure of the S. 
cerevisiae CMG reveals that the WH domains of Mcm5 and Mcm6, which are disordered 

within the context of the double hexamer (Li et al., 2015), become ordered and take up a 

position within the central pore of the CMG that constricts the AAA+ pore to a point where 

it is too small to accommodate double-stranded DNA (Yuan et al., 2016). Overall, these lines 

of evidence largely corroborate the view that the CMG tracks along single-stranded 

templates, albeit with a potential capacity to switch to a double-stranded DNA mode of 

translocation, as might occur during replication termination, when forks converge (Dewar et 

al., 2015) (parenthetically, there is evidence that the E. coli DnaB helicase can undergo a 

transition between single and double-stranded translocation modes (Kaplan, 2000, Kaplan 

and O’Donnell, 2002)). Understanding the role of the WH domains awaits determination of 

substrate-bound CMG structures in which the disposition of the nucleic acid substrate and 

the WH domains are fully defined.

Overall, while a variety of mechanistic models exist to account for hexameric helicase 

activity, the so-called steric exclusion model appears most compatible with the observed data 

to date for the CMG. The steric exclusion model posits that translocation occurs along 

single-stranded DNA with the non-template strand being excluded from the central channel. 

One assumption of this framework has been that the lagging strand is functionally passive, 

implying that once displaced, it is inconsequential to helicase function. However, emerging 

lines of evidence are starting to suggest that the lagging strand may wrap around the external 

surface of the CMG and support helicase activity (Figure 7D). Consistent with this notion, 

DNA interactions with the external surface of archaeal MCM is integral to helicase function 

(Rothenberg et al., 2007, Costa et al., 2008, Graham et al., 2011, Graham et al., 2016). DNA 

binding to the MCM external surface appears at least partially facilitated by the NTD-A 

region, which can undergo large structural rearrangements to expose a DNA-binding site 

(Fletcher et al., 2003, Chen et al., 2005, Costa et al., 2008, Miller et al., 2014). Whether the 

eukaryotic MCM NTD-A also facilitates DNA binding is unclear; however, the MCM AAA

+ domain contains a conserved, surface-exposed β–hairpin that has been reported to directly 

engage DNA (Brewster et al., 2010, Graham et al., 2011) and, in the context of the 

eukaryotic CMG, is integral to helicase function (Petojevic et al., 2015). Thus, the CMG 

may function by a mechanism of single-stranded DNA translocation that results in both 

steric exclusion and wrapping of lagging strand DNA (Graham et al., 2011).

Regulatory mechanisms for preventing re-initiation

Origin licensing and firing are the most tightly regulated events in the process of DNA 

replication initiation. Multiple interdependent and redundant mechanisms ensure that origins 

can be marked and utilized only within a certain window of the cell cycle. While the 

previous discussion of helicase activation has demonstrated the role of CDK and DDK in 

positively regulating initiation, a plethora of mechanisms exist to negatively regulate 

replication licensing and prevent re-replication as well. This section will discuss some 

general principles for preventing re-replication; although regulatory approaches show 

substantial evolutionary diversification and expansion, certain common themes do exist. For 

a more thorough discussion of the regulation of DNA replication initiation in eukaryotes, we 
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point the reader to a number of dedicated reviews on the topic (see (Arias and Walter, 2007, 

Hook et al., 2007, Masai et al., 2010, Araki, 2010, Siddiqui et al., 2013)).

Initiator and helicase regulation

By temporally separating helicase loading from activation, S-CDK can simultaneously 

activate the helicase while also inhibiting helicase loading factors to prevent origin re-firing. 

A major means by which CDK protects against re-licensing in S-phase is to regulate initiator 

interactions and their association with chromatin. Although budding yeast ORC remains 

stably bound throughout the cell cycle (Diffley et al., 1994, Liang and Stillman, 1997, Fujita 

et al., 1998), vertebrate Orc1 is the target of CDK-dependent and CDK-independent 

mechanisms that remove it from chromatin (Figure 8) (Rowles et al., 1999, Findeisen et al., 

1999, Natale et al., 2000, Li and DePamphilis, 2002, Li et al., 2004, Kreitz et al., 2001, Sun 

et al., 2002). In both yeast and metazoans, initiation factors are targeted for proteolysis in a 

CDK-dependent fashion, with budding yeast exclusively targeting Cdc6 (Piatti et al., 1995, 

Drury et al., 1997, Perkins et al., 2001, Mimura et al., 2004) and metazoans targeting both 

Orc1 and Cdc6 (Mendez et al., 2002, Tatsumi et al., 2003, Ohta et al., 2003, Lidonnici et al., 

2004, Kalfalah et al., 2015). In S. pombe, Orc2 is also targeted by CDK to prevent re-

licensing, but the mechanism utilized in this instance is unclear (Vas et al., 2001, Wuarin et 

al., 2002). In S. cerevisiae, CDK-dependent control is further extended to regulate Cdc6 

transcription and nuclear localization (Moll et al., 1991, Honey and Futcher, 2007); 

metazoan Cdc6 likewise undergoes CDK-dependent nuclear export to limit replication (Saha 

et al., 1998, Jiang et al., 1999b, Petersen et al., 1999). Interestingly, budding yeast Orc6 and 

Cdc6 stably associate with CDK during S-phase and this interaction sterically inhibits 

interactions necessary for pre-RC assembly, such as with Cdt1 (Mimura et al., 2004, Wilmes 

et al., 2004, Chen and Bell, 2011). In metazoans, Cdt1 has not yet been reported to interact 

with Orc6.

In addition to regulating ORC and Cdc6, in S. cerevisiae CDK targets Mcm2-7 to prevent 

new, productive interactions with chromatin-bound ORC•Cdc6 complexes. This action 

occurs through the CDK-dependent nuclear exclusion and export of Mcm2-7 (Labib et al., 

1999, Nguyen et al., 2001, Tanaka and Diffley, 2002, Liku et al., 2005). There is currently 

no evidence that CDK targets metazoan MCM2-7 directly, although phosphorylation of the 

initiator reduces helicase association with origins (Findeisen et al., 1999). Interestingly, a 

new, CDK-independent MCM regulatory mechanism has recently been identified in budding 

yeast that involves the SUMOylation of all members of the Mcm2-7 hexamer in G1. The 

SUMO modification in turn, through phosphatase recruitment, prevents phosphorylation-

dependent helicase activation and thus negatively regulates initiation (Wei and Zhao, 2016). 

How the SUMO pathway integrates with the other mechanisms that regulate initiation is 

currently unclear.

Cdt1: a master regulatory nexus

Cdt1 plays an essential part in the loading of MCM2-7 onto DNA as a stable double 

hexamer. As such, Cdt1 turns out to be a common regulatory point. S. cerevisiae Cdt1 

activity is restricted by the CDK-dependent inhibition of its interaction with Orc6 (Chen and 

Bell, 2011) and by nuclear export of Cdt1 in G1 (Tanaka and Diffley, 2002). Conversely, 
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metazoan and S. pombe Cdt1 protein levels are regulated in a cell-cycle dependent fashion 

such that Cdt1 is actively degraded upon S-phase entry (Figure 8) (Wohlschlegel et al., 2000, 

Nishitani et al., 2000, Gopalakrishnan et al., 2001, Nishitani et al., 2001, Zhong et al., 2003, 

Nishitani et al., 2004). Degradation of Cdt1 is restricted to S-phase by an interaction with 

chromatin-bound PCNA, which serves as a platform for Cdt1 recognition and ubiquitination 

by the Cullin-RING ligase 4 (CRL4) ubiquitin ligase (Arias and Walter, 2005, Arias and 

Walter, 2006, Senga et al., 2006, Hu and Xiong, 2006, Guarino et al., 2011). A conserved 

PCNA-interacting protein (PIP) degron within the Cdt1 N-terminus facilitates the interaction 

with chromatin-bound PCNA and is required for degradation (Senga et al., 2006, Havens 

and Walter, 2009, Havens and Walter, 2011). Similarly, the CDK-dependent phosphorylation 

of Cdt1 leads to its recognition and ubiquitination by the SCFSkp2 E3 ubiquitin ligase, 

providing an additional mechanism to limit Cdt1 protein levels and prevent re-replication (Li 

et al., 2003, Liu et al., 2004, Sugimoto et al., 2004, Thomer et al., 2004, Kondo et al., 2004, 

Nishitani et al., 2006). Notably, Cdt1 ubiquitination can be reversed through the function of 

the ubiquitin hydrolase USP37, whose activity stabilizes Cdt1 and promotes helicase loading 

(Hernandez-Perez et al., 2016).

Metazoan Cdt1 is also uniquely regulated by binding to a partner protein, Geminin. Geminin 

is a coiled-coil protein (Saxena et al., 2004, Lee et al., 2004) that was initially identified in 

Xenopus egg extract screens for proteins destabilized in mitosis (McGarry and Kirschner, 

1998). This study, along with many others, revealed that Geminin, a nuclear protein whose 

levels become elevated during S-phase, targets and restricts Cdt1 activity to G1, thus 

preventing Cdt1-induced re-replication (Quinn et al., 2001, Tada et al., 2001, Mihaylov et 

al., 2002, Cook et al., 2004, Yoshida et al., 2005, Lutzmann et al., 2006, Kerns et al., 2007). 

Geminin binds directly to Cdt1 (Wohlschlegel et al., 2000, Lutzmann et al., 2006, De Marco 

et al., 2009), and this interaction has been shown to inhibit Cdt1 binding to mouse MCM6 

(Yanagi et al., 2002). Recent work demonstrates that Geminin binding to Cdt1 inhibits ORC-

dependent helicase loading but not recruitment (Wu et al., 2014a), a finding consistent with 

studies in budding yeast showing Cdt1-independent recruitment of the helicase to the origin-

bound initiator (Frigola et al., 2013, Fernandez-Cid et al., 2013).

Interestingly, Geminin serves two seemingly dichotomous functions. Although clearly an 

inhibitor of licensing, Geminin is also required for replication initiation through its ability to 

stabilize Cdt1 levels by protecting the protein from degradation (Ballabeni et al., 2004, 

Narasimhachar and Coue, 2009). Thus, metazoans regulate Geminin protein levels and 

cellular localization to liberate Cdt1 from Geminin and promote pre-RC assembly in G1 

(McGarry and Kirschner, 1998, Tsunematsu et al., 2013, Dimaki et al., 2013). In addition, 

the stoichiometry of the Cdt1•Geminin complex has been suggested to regulate Geminin’s 

activity, such that a lower order Cdt1:Geminin complex (1:2) is permissive to pre-RC 

assembly whereas a higher order (2:4) complex is not (De Marco et al., 2009). How this 

stoichiometry is regulated in the context of the other regulatory mechanisms governing 

Geminin and Cdt1 protein levels and cellular localization is not known.
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Concluding remarks

At this point, many of the major events and intermediates that facilitate pre-RC and pre-IC 

assembly have been defined. However, between these stable intermediates there exist 

multiple, undefined dynamic and transient protein interactions, modifications, and 

exchanges that represent critical steps towards building a replisome. The questions that 

remain are both broad and specific: how does ORC balance sequence preference and trans-

acting chromatin contextual cues when selecting origins? What is the role of Cdt1 in 

MCM2-7 loading and, given the minimal conservation of this protein, is Cdt1 mechanism 

conserved across eukarya? Does MCM2-7 melt origins and unwind duplex DNA (as part of 

the CMG) using an overlapping or mutually exclusive set of protein-nucleic acid 

interactions, and how is this functional switch regulated? What type of molecular dance 

must take place to transition the pre-RC product, the double-stranded DNA-bound MCM2-7 

double hexamer, into the CMG, and then again into a bi-directional replication fork defined 

by two single helicases bound to single-stranded DNA? It will be critical to address these 

and other questions in multiple model eukaryotic organisms to begin to understand what 

level of conservation can be expected for such a complex process. Future work that aims to 

resolve these and other questions will undoubtedly reveal exciting new mechanisms that 

underlie the highly orchestrated and regulated process of replication initiation in eukarya.
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Figure 1. 
Mechanistic outline of DNA replication initiation in eukarya. During the G1 phase of the 

cell cycle, an origin-bound ORC•Cdc6 complex together with Cdt1 facilitates the sequential 

recruitment and loading of two MCM2-7 complexes into a stable double hexamer that 

encircles duplex DNA (pre-RC). At the onset of S phase, the helicase is activated, leading to 

origin unwinding. The recruitment of other initiation factors (Cdc45 and GINS, the pre-IC) 

and double-hexamer dissolution activate the helicase to drive fork progression as a single-

stranded DNA-bound Cdc45•MCM2-7•GINS (CMG) complex. A color version of this 

figure is available online.
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Figure 2. 
Molecular details of eukaryotic origins and mechanisms of ORC binding. (GREY) S. 
cerevisiae origins are distinctive among eukaryotes for conforming to a consensus sequence, 

the ACS. ScORC can bind the ACS directly and specifically, although interactions between 

the Orc1-BAH domain and nucleosomes can also modulate ORC origin selection. 

(PURPLE) Although they do not possess a strict consensus sequence, S. pombe origins are 

AT-rich. SpORC specifically binds such sites using a domain insertion unique to SpOrc4 that 

encodes a DNA-binding AT-hook motif. (GREEN) Metazoan ORC can be targeted to 

chromosomes through a variety of mechanisms, including the Orc1 BAH domain, the DNA-

binding TFIIB domain of Orc6, and through interactions with chromatin-associated factors. 
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A majority of metazoan origins are also predicted to contain G-quadruplex secondary 

structure elements, but how this feature affects ORC binding is currently unclear. A color 

version of this figure is available online.
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Figure 3. 
ORC architecture. A) Cdc6/Orc homologs are characterized by three domains, two of which 

form the AAA+ module (green) and a third that encodes a winged-helix (WH) domain 

(grey). Bound nucleotide is shown as sticks (PDB = 1FNN). B) The D. melanogaster ORC 

heterohexamer is a crescent shaped molecule with the AAA+ (green surface) and WH (grey 

cartoon) domains forming a domain-swapped arrangement. Orc6 is bound by a domain 

insertion in the AAA+ domain of Orc3. Although the Orc1/Orc4 active site is required for 

activity, in the D. melanogaster structure Orc1 is disengaged from Orc4 and positioned 

above the plane of the AAA+ ring (PDB = 4XGC). A color version of this figure is available 

online.
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Figure 4. 
MCM architecture. A) MCM homologs are characterized by three domains: NTD, AAA+, 

and CTD. The NTD can be subdivided into NTD-A (a small helical bundle), NTD-B (Zn-

finger), and NTD-C (OB fold). The CTD forms a WH domain (for AAA+ and NTD, PDB = 

3F9V; for WH domain, PDB = 2KLQ). B) Two physiologically relevant MCM oligomers 

have been observed, a hexamer that is formed by lateral interactions between the AAA+ and 

NTD domains of adjacent protomers, and a double hexamer that is formed by interactions 

between the NTD-B Zn-finger domains of two MCM2-7 rings. The double hexamer 

structure from S. cerevisiae Mcm2-7 is shown (Li et al., 2015), with one hexamer faded 

compared to the other. The inset shows a top-down view through the central cavity and the 

radial arrangement of eukaryotic MCM2-7 subunits (the double hexamer was built from two 

copies of PDB = 3JA8 fit to the EM density map EMD-6338 (Li et al., 2015)). A color 

version of this figure is available online.
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Figure 5. 
Functional elements of MCM helicases. A) Each MCM monomer contains multiple 

functional elements, including DNA-binding/sensing motifs, regions that modulate ATPase 

activity, and loops that communicate between the NTD and AAA+ domain (PDB = 3JA8, 

chain 2). B) In the context of a hexamer, the MCM functional elements (excepting the 

external β-hairpin) line a central cavity through which DNA translocates (modeled after 

PDB = 3JA8, chains 4, 6, and 7). C) Symbol key. D) Detailed functional description for each 

MCM element known to contribute to activity. A color version of this figure is available 

online.
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Figure 6. 
MCM2-7 complex loading and maturation into the CMG. Two sequential rounds of helicase 

recruitment and loading at origins is required for building an MCM2-7 double-hexamer. For 

both hexamers, DNA is threaded into the central channel through a discontinuity between 

MCM2 and MCM5. The first hexamer is recruited through direct interactions with the 

initiator (MCM3-Cdc6) and may require Cdt1 for overcoming an MCM6-mediated 

autoinhibited state of the helicase. After the first hexamer loads, both Cdc6 and Cdt1 are 

released. Rebinding of Cdc6 to ORC primes the system for recruiting and loading a second 

hexamer in the opposite direction as the first, an event that has been proposed to be 

controlled by ORC•Cdc6, but templated by the first MCM2-7 hexamer. Cdt1 and Cdc6 

recruitment and ejection are required for both loading events. Phosphorylation of the double 

hexamer and other initiation factors by CDK and DDK facilitate origin melting, GINS and 

Cdc45 recruitment/assembly, DNA strand extrusion, and activation of the helicase for DNA 

unwinding. A color version of this figure is available online.
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Figure 7. 
CMG helicase organization and dynamics. (A) MCM2-7 adopts a spiral, cracked-ring 

architecture with a discontinuity between MCM2 and MCM5. Upon incorporation into the 

CMG, Cdc45 and GINS convert the helicase into a planar form and seal off the MCM2/5 

gate (EM density maps = EMD-1835 and EMD-1833 for MCM2-7 and CMG, respectively). 

(B) A view of the CMG from the AAA+ face illustrating the overall architecture of the 

complex (PDB = 3JC5 (Yuan et al., 2016)). (C) At least two conformational states exist for 

the CMG, a constricted state in which the AAA+ and NTD rings are coplanar (bottom 

panel), and a relaxed state where one end of the AAA+ tier lifts up from NTD tier (top 

panel). These conformations appear coupled to alterations in the relative disposition of the 

gating subunits, MCM2 and MCM5 (constricted and relaxed conformer PDB codes = 3JC5 

and 3JC7, respectively). (D) The activated CMG helicase is thought to translocate along 

single-stranded DNA, unwinding downstream template through a combined steric exclusion 

and DNA wrapping mechanism. A color version of this figure is available online.
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Figure 8. 
Mechanisms to prevent re-replication. Multiple, redundant mechanisms are utilized to 

prevent re-licensing of origins after S-phase has initiated. Whereas yeast seem to exclusively 

utilize CDK-dependent mechanisms to prevent re-licensing, metazoans also employ CDK-

independent pathways for negatively regulating Cdt1 activity. A color version of this figure 

is available online.
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