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ABSTRACT

Post-transcriptional regulation of gene expression is
often accomplished by proteins binding to specific
sequence motifs in mRNA molecules, to affect their
translation or stability. The motifs are often
composed of a combination of sequence and struc-
tural constraints such that the overall structure is
preserved even though much of the primary
sequence is variable. While several methods exist to
discover transcriptional regulatory sites in the DNA
sequences of coregulated genes, the RNA motif
discovery problem is much more difficult because of
covariation in the positions. We describe the
combined use of two approaches for RNA structure
prediction, FOLDALIGN and COVE, that together can
discover and model stem–loop RNA motifs in
unaligned sequences, such as UTRs from post-
transcriptionally coregulated genes. We evaluate the
method on two datasets, one a section of rRNA
genes with randomly truncated ends so that a global
alignment is not possible, and the other a hyper-variable
collection of IRE-like elements that were inserted into
randomized UTR sequences. In both cases the
combined method identified the motifs correctly, and
in the rRNA example we show that it is capable of
determining the structure, which includes bulge and
internal loops as well as a variable length hairpin
loop. Those automated results are quantitatively
evaluated and found to agree closely with structures
contained in curated databases, with correlation
coefficients up to 0.9. A basic server, Stem–Loop
Align SearcH (SLASH), which will perform stem–loop
searches in unaligned RNA sequences, is available
at http://www.bioinf.au.dk/slash/.

INTRODUCTION

Transcriptional regulation is well studied in many experi-
mental systems and many examples have been analyzed in
detail. It is usually accomplished by transcription factors that
bind to DNA near the start of transcription to affect the rate of

initiation. Numerous examples of binding sites for specific
factors are known, including many DNA–protein complexes
with structures determined by crystallography (1). While much
less studied, it is clear that post-transcriptional regulation of
gene expression is also common. A recent study showed that
for many yeast genes the levels of mRNA are not highly
correlated with the protein levels (2). One mechanism of post-
transcriptional regulation is for a regulatory protein to bind to
a motif in the mRNA and affect its translation or stability.
However, unlike the DNA binding proteins, the RNA binding
proteins often recognize motifs that are composed of both
sequence and structure constraints (3,4). The combination of
sequence and structure motifs is not compatible with standard
sequence motif search approaches, which partly explains why
there are so few known examples of structure-based regulatory
binding sites.

When a set of transcriptionally coregulated genes are discov-
ered, several pattern recognition approaches are available to
predict binding sites for the regulatory proteins (5–9). But
these methods depend on the binding sites having a semi-
conserved sequence pattern and do not work if the regulatory
sites depend on a conserved structure. The goal of this paper is
to describe an approach that is capable of discovering a
common stem–loop motif in post-transcriptionally coregulated
genes, which may represent the binding site for the regulatory
protein. The method not only identifies the putative motif in
each sequence, but also provides a representation of its
sequence and structure pattern that can be used to search for
other occurrences of the same regulatory site.

Currently, the most reliable method of inferring RNA
secondary structure is by comparing multiple sequences
expected to have the same structure (10–13). The difficulty with
determining RNA secondary structure by such a comparative
analysis is in obtaining a good alignment of those sequences.
Once a good alignment is available most of the secondary
structure can be determined by fairly simple measures of
covariation (14). Further refinement of the secondary structure,
and even elucidation of elements of the tertiary structure, can
be obtained by more complex analyses (15–18). However,
each of these methods requires the alignment of the sequences
to be known. Methods for multiple alignment of sequences,
such as CLUSTALW (19), do not perform well on aligning
structural RNAs because they are not able to consider struc-
ture. Recently developed methods work toward automating
comparative sequence analysis by using genetic algorithms
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and likelihood measures of covariance (20,21); these
approaches find motifs that subsequently might be aligned.
This is in contrast to our approach, which optimizes structure
and alignment simultaneously. For many RNAs the sequences
are only partially conserved, and equally (or more) important is
the conservation of structure. Indeed, the success of compara-
tive methods requires that the sequence be variable while the
structure is conserved. Therefore, obtaining a good alignment
of the sequences requires taking the secondary structure of the
RNAs into account.

Stochastic context-free grammars (SCFGs) (22,23) are a
very good method for representing RNA structures. They are
related to hidden Markov models, which are now commonly
used to represent protein families (24,25), except that they also
capture the constraints of the base pairs in the RNA structure.
Given an alignment of related RNA sequences, an SCFG
program such as COVE (22) can build a model representing
the sequences and structure of that RNA family. The model
can be used to align new sequences to the family and to search
databases for new members of the family (26). Furthermore,
SCFG methods can take unaligned sequences and simultaneously
produce an alignment and the model of the family, using
an expectation-maximization algorithm (22,23). While not
guaranteed to find the correct, or even mathematically optimal,
alignment, the method usually performs well on sequences that
can be aligned from end to end, that is on the ‘global align-
ment’ problem (27). However, current SCFG programs were
not designed to solve the ‘local alignment’ problem, where
only a portion of each sequence contains a common motif that
is sought. In theory, SCFGs can be designed to identify motifs
in longer sequences, but we are sceptical that they will work
effectively because the search space is much larger for local
alignments than global alignments and the method is much
more likely to converge to a local optimum rather than the
globally optimum alignment.

FOLDALIGN was developed specifically for the identifica-
tion of local motifs in RNA sequences, where the motif is
composed of both sequence and structure constraints (28,29).
FOLDALIGN uses a dynamic programming algorithm that is
guaranteed to find the highest scoring local alignment between
two sequences, or between a sequence and an alignment of
other sequences. Of course, the highest scoring alignment may
not be correct; even thermodynamically-based folding
algorithms such as Zuker’s MFOLD (30,31) that are guaran-
teed to find the predicted lowest energy structure often do not
find the biologically correct structure. FOLDALIGN compares
each sequence to every other sequence and saves some number
of the highest scoring alignments. If even one of these pair-
wise alignments is correct it is likely to be reinforced as the
other sequences are added to the alignment, thereby identifying
the true local motif in the set of sequences. However, FOLD-
ALIGN is computationally more expensive than COVE, so its
advantage is primarily for the determination of local structures.
Once those local structures are identified, they can be used by
COVE to develop models suitable for aligning new sequences
and doing database searches.

In this paper we evaluate a strategy of combining FOLD-
ALIGN and COVE to automatically determine the common
structure in a set of related RNAs. We first ran FOLDALIGN
to obtain predictions of the structural alignment, then trained
COVE’s SCFG model on that alignment. The SCFG model can

then be used to align the remaining sequences not included in
the FOLDALIGN alignment, and it could also be used to refine
the alignment provided by FOLDALIGN. We tested the
combined approach on a stem–loop region of archaeal SSU
rRNAs, and compared it to using COVE alone. This dataset
was used because the well curated database of structural
alignments allows us to make a quantitative evaluation of the
performance of the method (32). But to make the dataset repre-
sentative of examples where the common motif occurs within
regions of otherwise unrelated sequences, we truncated the
sequences at random positions surrounding the core motif so
that only a local alignment was possible between all of the
sequences. We also tested the method on a set of ferritin iron
responsive elements (IREs) and their untranslated regions
(UTRs) that had been made more variable. This tested whether
the method could identify common regulatory motifs that
occurred at variable positions within UTRs that are even more
variable, and therefore more difficult to identify, than are IRE
elements.

MATERIALS AND METHODS

Data extraction and processing

A set of 311 archaea 16S ribosomal sequences was extracted
via the Internet from the SSU rRNA database (http://www-
rna.uia.ac.be/ssu/) (32). The corresponding sequences can be
found in other rRNA databases (http://www.cme.msu.edu/
RDP/html and http://www.rna.icmb.utexas.edu) (33,34), but
structural alignments do not seem to be available. From the
archaeal sequences, we excised alignment positions 5703–6027
(corresponding to 1400–1501 in Escherichia coli).

The archaeal set of 311 subsequences was further filtered for
the absence of any indeterminant or missing base assignments
within the considered region, resulting in 117 sequences. We
further reduced the set to eliminate sequences that are >90%
identical (35). This process left 34 sequences. Finally, these
sequences were further randomly truncated at both ends by up
to 20 nt to ensure that the sequences only aligned locally.
Sequence lengths varied from 61 to 105. A few examples of
these sequences are shown in Figure 1A.

The selection process has the advantage of increasing the
reliability of the resulting alignment as well as decreasing the
dataset to a computationally tractable size for FOLDALIGN.
The sequences in the final dataset are as follows, where the
numbers in parentheses are GenBank accession numbers:
Acidianus brierleyi (D26489), Caldococcus noboribetus
(D85038), Cenarchaeum symbiosum (U51469), Desulfuro-
coccus mobilis (M36474), Metallosphaera sp.
(D85508_D38776), Pyrobaculum aerophilum (L07510),
Pyrodictium occultum (M21087), Stygiolobus azoricus 2
(D85520), Sulfolobus metallicus 2 (D85519), Sulfolobus solfa-
taricus 2 (D26490), Sulfurisphaera ohwakuensis
(D85507_D38775), Thermofilum pendens (X14835), Thermo-
proteus tenax (M35966), Archaeoglobus fulgidus
(X05567_Y00275), Bacterial sp. 34 (X92171), Bacterial sp.
36 (X92172), Haloarcula vallismortis (U17593), Halobacte-
riaceae gen. sp. 2 (AJ002946), Halorubrum sodomense
(D13379), Natronobacterium magadii (X72495), Methano-
bacterium sp. (AF028690), Methanobacterium thermo-
autotrophicum 5 (AE000940_AE000666), Methanothermus
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fervidus (M32222), Methanococcus jannaschii 3
(U67517_L77117), Methanococcus vannielii (M36507),
Methanoculleus marisnigri (AF028693), Methanosarcina
frisius (X69874), Methanospirillum hungatei (M60880),
Methanothrix soehngenii (X16932_X51423), Pyrococcus sp. 2
(Z70247), Thermococcus mexicalis (Z75218), Thermococcus
stetteri (Z75240), Ferromonas metallovorans (AJ224936) and
Thermoplasma acidophilum (M38637_M20822).

The ferritin IRE-like data were constructed as follows. We
searched in the UTR database (36) for entries with keywords
‘ferritin’ and ‘5′UTR’ from which we obtained 59 sequences.
Of these, 16 had ‘IRE’ in their entry, but only 14 were used:
one sequence was discarded as it was very long (630 nt) for
FOLDALIGN, another because it was a pseudogene. The
length of the remaining UTRs varied from ∼100–330 nt.

The selected IRE regions were highly conserved in sequence
as well as structure, such that sequence motif finders, such as
CONSENSUS (37) can find them within the UTRs. To make
the search more challenging, and representative of motifs that
are highly variable in sequence but with conserved structure,
we modified the IREs and the UTRs that contain them by the
following procedure. For each of the 14 sequences the
structure element was removed and the remaining UTR was
shuffled in sequence such that the dinucleotide distribution
was conserved (38). A new structure element was generated
and put back into the shuffled UTR at a random location. The
general IRE consensus structure motif (39) in the ferritin UTRs
(across the 14 extracted sequences) is listed as:
NNNNNCNNNNNCAGWGHNNNNNNNNNN
(((((.(((((......))))))))))
where the parentheses indicate base pairing, N ∈ {A, C, G, U},
W ∈ {A, U}, H ∈ {A, C, U}. This was changed minimally to:
NNNNNCNNNNNCAXGWGHNNNNNNNNNN
(((((.(((((.......))))))))))

where X is chosen randomly among the four nucleotides and
no symbol (i.e., leaving the loop region as it is). The base pairs
in the stem region were randomized by choosing each of the
base pairs AU, CG, GU and their counterparts, in the propor-
tions 3/16, 3/16 and 2/16, which lowers the bias of U-G content
in the stem region, compared to having the base pairs with
equally probable frequencies. This procedure was repeated
four times and we obtained a set of 56 sequences, where the
first 14 sequences were used by FOLDALIGN to see if it could
generate a core alignment for COVE, which searched for the
motif among the remaining 42 sequences. Some examples of
the resulting sequences are shown in Figure 1B.

Computational approaches

The primary tools applied in this work are FOLDALIGN
(28,29) and COVE (22). COVE is based on the use of a SCFG
model and uses a dynamic programming algorithm to optimize
pairwise mutual information values from a tree representation
of the secondary structure.

FOLDALIGN is based on the algorithm presented by
Sankoff (40) to simultaneously align and predict the common
structure in a set of RNA sequences. For structural alignment
of two sequences, FOLDALIGN works locally and can be
interpreted as a mixture of the local alignment and maximum
number of base pairs algorithms (41,42). For details on how
the algorithm works we refer to Gorodkin et al. (29).

The greedy part of the FOLDALIGN algorithm has similari-
ties to CLUSTAL (19) and CONSENSUS (37) in comparing
two entities of sequences to each other (here one of the entities
is always just one sequence). As the first step is always to
compute all pairwise alignments, the final alignment is
independent of the order the sequences are presented to the
program. In the following steps the s best alignments are saved.

The constraint to stem–loop type structures ensures a time
complexity of O(L4NM3s), which otherwise would be
O(L6NM3s), for aligning up to M ≤ N sequences of length L.
However, constraints built into FOLDALIGN, such as limiting
the size of the motif searched for as well as the number of gaps
between the entities compared, might in some cases provide a
time complexity close to O(L3NM3s). The memory require-
ments in general scale as O(L4N). Thus, two crucial factors that
control time complexity are s and M. To allow for in-depth
analysis and comparison between FOLDALIGN alignments
and database alignment, we used M = N, and s ∼ N for the
rRNA stem–loop region. This was very slow, and in general
was not a feasible approach. However, we could use this to
estimate small values of s and M, which could be applied to the
IRE-like case where core motifs can be found in reasonable
time.

FOLDALIGN does perform reasonably on sequences of
length up to ∼300, with appropriate restrictions. It should be
noted that this time complexity is still a huge reduction
compared to the Sankoff version and other variants (29). In
contrast, the time complexity of COVE is O(L3N), clearly
making it suitable for larger scale search and refinement of a
given dataset. Importantly, when comparing the two algorithms
for local motif search in large sequences, FOLDALIGN has
already reduced the input sequence length by several factors,
making COVE even faster. Thus, in such cases times are not
directly comparable. However, our general experience is that
FOLDALIGN is of the order of hours/days, whereas COVE is

Figure 1. (A) Sequences from the archaeal SSU rRNA that only align locally,
and (B) IRE/UTR sequences generated with higher degree of degeneracy.
Upper case letters indicate base pair regions (the two outermost upper case let-
ters base pair, and so on).
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of the order of seconds/minutes, which is also clear from
comparing the two time complexities.

The FOLDALIGN score for multiple alignments is
computed as the sum of the scores taken over all pairs of
sequences in the alignment. Therefore, the score of round r (the
multiple alignment of r sequences) can be written as:

1

where slk is the pairwise score between sequence l and k, when
they are included in and constrained by the alignment of the r
sequences. Assuming that all the sequences in the alignment
are reasonably similar, and the pairwise score slk is approxi-
mately constant c, we readily see that the score should grow as:

2

Thus, if this assumption holds, Sr/r as a function of r should be
a straight line. The coefficient c can be interpreted as the
average (round normalized) score of the all the pairwise align-
ments of the newly added sequence and each of the (r – 1)
sequences in the already existing alignment. The recursion of
course applies when a sequence with the same properties as the
round r – 1 sequence enters the alignment at round r. Thus, two
different competing motifs could behave in this way, but have
different constants. Likewise, when a motif shortens it can
result in the change of slope (c). Thus, the break points tell us
when the FOLDALIGN motif is likely to change, and when a
primary core motif has been obtained.

Performance evaluation

To evaluate the alignments relative to the database, we applied
Matthews correlation coefficient (43), a measure that is
commonly used in bioinformatics, for example in protein
structure and gene finding evaluations (44,45). This measure
can be applied to RNA secondary structure prediction as well
to quantify the agreement between the predicted structural
alignment and the SSU rRNA database assignment. For each
sequence in a structural alignment the two secondary structure
assignments can be compared by counting the number of pairs
for which both assignments have base pairs between the same
positions (true positives Pt), the prediction has base pairs and
the database does not (false positives Pf), the number of pairs
for which both assignments do not have base pairs (true negatives
Nt), and the number of pairs for which the prediction does not
have base pair assignment but the database does (false negatives
Nf). The numbers can be added for each sequence in the
alignment, and the Matthews correlation coefficient can be
computed:

3

Note that this measure also applies to base pair predictions of a
single sequence for any method, including energy prediction
(46).

A frequently applied method of comparing a structure to a
database is to report the number of predicted base pairs that
are also base pairs in the database assignment, that is, to report
Pt/(Pt + Nf), which is the fraction of correctly predicted base
pairs of all true base pairs. This measure is also called the

sensitivity. Another frequently applied measure is the specificity
Pt/(Pt + Pf), which here is the rate of true predicted base pairs of
all predicted base pairs.

RNA secondary structure imposes constraints on the correla-
tion coefficient: as there are no more than N/2 base pairs for a
sequence of length N, Pt + Nf ≤ N/2. Likewise, if the methods
for predicting secondary structure alone predict no more than
N/2 base pairs, Pt + Pf ≤ N/2. As the total number of possible
pairs is N(N – 1)/2, the constraints imply that Nt ≥ N(N – 3)/2 + Pt,
which is at least a factor N larger than Pt, Pf and Nf. Equation 3
can easily be written as:

4

where Nf/Nt → 0 and Pf/Nt → 0 for N → ∞. For any reasonable
prediction method (Pt > 0), with at least Pt ∼ Pf or Pt ∼ Nf, we
can write:

5

which is recognized as the geometric mean of the sensitivity and
specificity. Thus, such an average provides a better evaluation
than just reporting the fraction Pt/(Pt + Nf), because both types
of false base pair predictions are taken into account. This
approximates the expression in equation 3 very well (see
below). Note the reduction in the expression if Nf = Pf, which
is the case if the number of predicted base pairs is the same as
the true number of base pairs. In a similar way, it can be shown
that the lower bound to C scales as –1/2(N – 3), which goes
towards zero for N going to infinity. Thus, the constraints
governed by RNA secondary structure have some interesting
effects on the correlation coefficient, and its range becomes
reduced to the interval between zero and one. It should,
however, be mentioned that ‘random’ predictions still lead to a
correlation coefficient of zero. RNA secondary structure
induces an anti-symmetry to the correlation coefficient, as it is
not possible to exactly predict the opposite of the number of
base pairs, as any prediction always allows for many true nega-
tives. Notice also that Matthews correlation coefficient can be
written as the difference between the products of two
geometric means, that is C = CPtCNt – CPfCNf, where:

The interpretation of CPt and CNt is clear. CPf is the geometric
mean of the sensitivity and specificity for wrong predictions of
positives. Likewise, CNf is such a mean for negatives.
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We can also evaluate the improvement of COVE scores
when FOLDALIGN provides a seed alignment, compared to
COVE used alone. COVE scores measure the log probability
(in bits) of the aligned sequences compared to a null model
(22). The objective of COVE is to find the SCFG model and
alignment of sequences that maximizes the score. So, if using
FOLDALIGN seeds improves the score of the COVE align-
ment, this indicates that COVE did not attain the globally
optimum alignment and provides a measure of how much
improvement is obtained.

RESULTS

Here we present the automated structural alignments
performed by FOLDALIGN and COVE. The archaeal small
SSU rRNA dataset shows controlled studies of FOLDALIGN
score growth, FOLDALIGN impact on COVE and perform-
ance evaluation of the strategy when quantitatively compared
to the database alignment. The IRE-like dataset demonstrates
the ability of FOLDALIGN to identify a motif with highly
variable sequence but conserved structure, located at various
positions in long UTR sequences, and then to build a COVE
model that can be used to identify additional occurrences of the
motif in other sequences.

Automated structural alignments and FOLDALIGN score
analysis

We considered the set of the 34 archaeal small SSU rRNA
sequences. We focussed on analyzing the score growth of
FOLDALIGN, which was helpful in pointing out useful
COVE seed alignments consisting of a small number of
sequences only. We referred to an alignment of a given number
of sequences as the corresponding round in the FOLDALIGN
algorithm. An example of score growth is given in Figure 2.
FOLDALIGN captured the alignment very well up to round
31, where the greedy algorithm broke down (see below). The
empirical inflection point was at round 22. At round 23 a
mismatch occurred which made the consensus structure consist
of a bulge, which, summed across all sequences in the align-
ment, caused a drop in score (alignments not shown). At round
32 a more serious misalignment occurred that decreased the
absolute score. Note that a decrease in the score does not
necessarily imply a misalignment; it may also mean that the
newly added sequence contains a shorter version of the core
motif, which misses some elements that the previously aligned
sequences contained.

As described by Gorodkin et al. (29), the highest-scoring
alignment does not necessarily describe a consensus motif
best. This is in part due to the progressive construction of the
multiple alignment and the dependence of the score on the
number of sequences aligned (if the pairwise score between
any two sequences is approximately constant). As argued in
the Materials and Methods, such behavior should be detectable
by considering the score normalized by the round, and core
motifs are thereby obtained.

In fact, a more refined picture of events is seen in Figure 2B.
There are several linear regions with different slopes: round 2–7,
8–18 and 25–31 with different (decreasing) slopes. These
regions can be well fit by linear regression (and linear correla-
tion coefficients at 0.99 or better), with the two former regions
having slopes at 214 and 109. This shows a drop in score

growth, which is due to reduced alignment length. Importantly,
this provides us with a subset of the most significant align-
ments, and indicates a class of just a few sequences that
contains the motif.

Both structure logo (47) and mutual information plots (48) of
FOLDALIGN round 31 and database alignment shows that the
automated alignment is in good agreement with the database
alignment (data not shown).

In addition, we also studied a large number of FOLDALIGN
runs on shuffled sequences that did not contain any significant
motif. See Figure 3 for an example. This was clear in two
ways, by considering the score growth, but also through
comparison of the distributions of scores (real versus shuffled)
for each round. Already at round 2 the scores differed signifi-
cantly. The score distribution of shuffled sequences appears to
consist of a single peak only, whereas the score distribution
appears multi-modal for real sequences.

Figure 2. Score growth for the locally alignable sequences. For comparison,
the average scores of all alignments have been included: (A) raw FOLD-
ALIGN score and (B) round–normalized FOLDALIGN score. At round two,
the best score was a factor of 1.5 higher than the average score.
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The difference between the score distribution of a particular
motif and shuffled sequences, which each represent different
(pseudo) structures, represents two extremes in distinguishing
varying structural motifs. Clearly if the dataset is not domi-
nated by a single motif, but by multiple motifs, one would
expect such score distributions to fall in between these two.
Dealing with multiple motifs, one can take out the most signifi-
cant one, and in a subsequent run identify secondary motifs.

As the probability of finding the motifs is a combination of
the sequence information content and the mutual information
(47), structural variability lowers the information content of a
common motif, and that will make it difficult, or impossible, to
find a single representative motif. FOLDALIGN score statistics
and related issues have been discussed elsewhere (9,49).

Completing the alignments by combining FOLDALIGN
and COVE

Here we systematically investigated the performance of COVE
using the best FOLDALIGN alignment at each round. First we
analyzed the results using the raw COVE score (measured in
bits), as plotted for increasing rounds in Figure 4. For each
round r, COVE was applied on three types of data: the
sequences completing the best FOLDALIGN alignment
(FOLDALIGN set), the remaining 34 – r sequences from the
similarity reduced set (r34 set) and all the remaining 83
sequences from the total of 117 sequences we started out with
(83 set). The r34 set acts as an ‘independent’ test set, since the
sequences used to train the covariance model are removed, and
no very highly similar sequences remain. For each of these
three sets, two types of covariance models were made: those
making use of the alignment made by FOLDALIGN (A), and
those for which the model is built on the same sequences, but
unaligned (U). The local motif was searched for by a COVE
scanning module.

It is evident from the curves that using FOLDALIGN align-
ments to train COVE does in general significantly enhance

COVE’s performance. The performance of COVE on the
unaligned sequences varied dramatically on the training sets
from different rounds, whereas when trained using the
FOLDALIGN alignments the scores were nearly always
higher and much less variable. As expected, the performance
on the test set (r34 set) was consistently lower than that on
sequences used to build the model. The performance on the 83
set converges to that of the FOLDALIGN set (for both A and
U models), which is also not surprising, as there are many
sequences that are similar to those used to train the COVE
models. Once again using the FOLDALIGN alignment signifi-
cantly enhanced performance for both the r34 and 83 sets. One
striking result is that when run on the training set, COVE
managed to obtain almost maximum performance when
trained with only six FOLDALIGN sequences. The other sets,
r34(A) and 83(A), required more training examples (about 20)
to achieve near maximum performance. These rounds agree
very well with the piecewise linearity found from the FOLD-
ALIGN score growth in Figure 2B, as they correspond to the
inflections in the curve, and represent changes in the (core)
motifs that appear in the FOLDALIGNed sequences. It is clear
that the combination of FOLDALIGN and COVE can improve
on both of them, especially because FOLDALIGN only
assigns the consensus structure to any sequence, whereas
COVE assigns an individual structure, but also because COVE
is an order of magnitude faster than FOLDALIGN. The
resulting combined alignment does indeed resemble the database
alignment, which again is evident from studying structure
logos and mutual information plots (47,48).

As mentioned in the Materials and Methods, this analysis
covered a large parameter space resulting in high time
complexity. The running time for FOLDALIGN on a DELL
PowerEdge 6300 with four 500 MHz PIII processors was ∼3
weeks. However, as we shall see later, the full run is not
needed, nor is the large parameter space coverage (saving the
40 best sequences at each round). Also, we allowed for very

Figure 3. The score distribution for round 4. For comparison, the distribution
of a set where the nucleotides were shuffled while preserving the di-nucleotide
distribution in the sequences (38). The same distribution was also obtained
from a mono-nucleotide shuffling.

Figure 4. COVE performance on the best FOLDALIGN alignment for increas-
ing rounds. Covariance models were made using the FOLDALIGN alignment,
or the corresponding sequences without the alignment. For each such case we
report the average performance on the sequences themselves, the average per-
formance on the remaining sequences in the r34 set, and on the remaining 83
of the total 117 sequences in the dataset.
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large differences in gaps when computing the score (29). This
inclusive coverage was used to ensure a trustworthy analysis
could be made.

However, for most application-specific problems, such as
the IRE-like element search shown later, the effective running
time is ∼10–12 h using a single processor only. This is still
admittedly quite slow, but nonetheless useful. The COVE runs
were of the order of seconds in training models and scan for the
local motifs. But, as mentioned, COVE also works on a much
smaller sequence length than FOLDALIGN.

We also made a quick test of whether the trained COVE
models would be suitable for scanning genomes. Using
the model trained on FOLDALIGN round 31, we scanned
M.janaschii and Pyrococcus abyssi for the characteristic
hairpin (using a window size of 125 nt). The size of these
genomes is in the range 1.75–1.80 million bases, and the scan
took ∼14 h for each. In both cases the real hairpins were found
with scores of 84–87, while the next highest scores anywhere
in the genome were <3.

Performance evaluation of the database alignment and the
automated structural alignments

Here we made the comparison of database and predicted
alignments more rigorous by computing Matthews correlation
coefficient (3), and thereby obtained a quantitative measure
that simultaneously includes both assignments. We also
calculated the correlation coefficient for COVE alignments.
The correlation coefficients were computed as follows: for
each sequence region in a structural alignment, the structure
from the prediction was compared to the corresponding struc-
ture assigned in the database. (Thus, gaps in the two structure
assignments were ignored.) For each sequence Pt, Pf, Nt and Nf
were counted and added to the numbers found for the previous
sequence. After counting all sequences the correlation coeffi-
cient was computed from the final four numbers. The results
are shown in Figure 5.

The correlation coefficients were only computed on the final
region of the sequences entering the alignments. As FOLD-
ALIGN reduced the length of the sequences to the common
motif, and COVE aligned the full-length sequences, the
comparison between FOLDALIGN and COVE is slightly
biased. However, differences can still be found. As above,
COVE without FOLDALIGN seeds [COVE (U)] did not
perform well (as expected). When applying the FOLDALIGN
alignment to COVE [COVE (A)] the performance increased,
and was comparable to that of FOLDALIGN.

As mentioned above, FOLDALIGN misaligned sequences
after round 31, but COVE (A) aligned the sequences correctly.
This appeared as a small growth in the difference between the
correlation coefficient of FOLDALIGN and COVE (A). The
drastic drop in the FOLDALIGN correlation coefficient at
round 34 was due to a misalignment of two sequences.

To test whether Matthews correlation coefficient for RNA
secondary structure prediction can be well approximated by
the geometric mean of the sensitivity and specificity, we
compared the approximation to the accurately calculated corre-
lation coefficients. An example is shown in Figure 6. We see
that the geometric mean approximation was very accurate, and
this goes for all the correlation curves shown in Figure 5.

Selecting an alignment generated by an alignment method is
a fundamental problem: there exist many almost equally good
alignments. The more general question of asking about the
probability of an alignment can lead to alignment methods that
do not produce any alignments (50). FOLDALIGN, however,
indicates the round from which to select an alignment where
many (suboptimal) alignments look much the same, and also
indicates the alignment having the highest score at that round.
The application of COVE to the alignment produced by
FOLDALIGN allows for it to be improved upon by the
iterative refinement method of COVE.

Searching for stem–loops in UTR-like sequences

As a completely independent test of the results obtained on the
archaeal SSU rRNA dataset above, we used 14 of the 56
sequences from the ferritin IRE-like dataset. FOLDALIGN
found the stem–loop motif as shown in Figure 7. For the
original set without degeneracy the motif is conserved enough

Figure 5. The correlation coefficients for each round comparing the database
alignment to FOLDALIGN, COVE (A) and COVE (U). The standard devia-
tions of FOLDALIGN scores have been included to indicate the descent of low
score alignment that have high correlation coefficient, for increasing rounds.

Figure 6. The accurate calculation of Matthews correlation coefficient, com-
pared to the geometric mean approximation. For comparison, the specificity is
shown. An example for FOLDALIGN on locally alignable sequences is
shown. As FOLDALIGN requires all sequences to base pair to assign common
base pair, and the structure for each sequence in general can have more base
pairs than consensus, the false negative rate should be expected to be higher
than the false positive rate. Thus, the specificity is higher than the sensitivity
(data not shown).
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in sequence that it could even be found by the local sequence
alignment method CONSENSUS (37). But by making it more
variable, including a variable length loop, it could not be
identified using CONSENSUS, nor by any global alignment
method (data not shown). Using the results obtained above it is
clear that a motif discovered by FOLDALIGN from just a
small number of sequences is sufficient to provide a good seed
alignment to COVE. Even though the motif starts to appear at
round 3–4, and the previous results indicated the seed align-
ment of just six sequences might be useful for COVE, we
provided the 14 sequence seed alignment to COVE. Not
surprisingly, the normalized score formed a linear function of
round number (data not shown). Training COVE on this seed
alignment and searching the remaining 42 sequences picked up
all the motifs. However, a few additional hits were also picked
up by COVE, but by considering the score distribution, a
threshold of 5 bits was found (Fig. 8). At that threshold there
were no false negatives and only one false positive, which
could be identified by an unusual structure (data not shown).

In this example we show that FOLDALIGN was able to
discover a stem–loop motif, sharing only a few conserved
bases of sequence but a common structure, within otherwise
unrelated sequences. Finding a few examples of the motif was
sufficient to train a COVE model which could then be used to
identify additional occurrences of the motif in other sequences.
Once the motif pattern is identified, other approaches might
also be used to identify additional occurrences in a large data-
base search (26,51,52).

DISCUSSION

We have addressed the problem of finding structural RNA
motifs (stem–loop) within a set of sequences that have nothing
else in common. We developed an approach that is a combina-
tion of two other methods, FOLDALIGN and the SCFG-based
COVE. Methods designed to identify sequence motifs, but
which ignore structure, cannot solve this problem, nor can
COVE alone because it does not identify local alignments.
FOLDALIGN can solve the problem but is too slow for large
collections of data or long sequences. By combining both
approaches we had a fairly efficient and reliable method that
was capable of finding an IRE-like stem–loop motif in a set of
randomized UTR sequences.

The approach was first studied carefully on a set of archaeal
rRNA stem–loop regions that were excised so they only
aligned locally. Using the curated database alignment it was
possible to evaluate the methodology quantitatively through
Matthews correlation coefficient. We obtained correlation
coefficients from 0.8 to 0.9 between predicted structural align-
ments and database, indicating the usefulness of the combined
approach.

By studying the FOLDALIGN score growth more carefully
we could detect changes in the existing motif as new sequences
were added to the alignment. In that way early core motifs
were detected and could be given to COVE and near optimal
performance could be obtained. In this way the approaches
could be optimally combined.

There are two main reasons why a correlation coefficient of
1.0 (perfect agreement) is not obtainable here. From a probabi-
listic point of view a statistical alignment approach (50,53)
would compute the probability of any alignment of the
N sequences, P(x1,…,xN), and we would have to consider the
distribution of structural alignments rather than any particular
instance. As there will be many alignments with almost the
same probability, it is in the end somewhat arbitrary which one
is selected from the method (leaving aside the question of
which one is true). Further, it is important to point out that
different alignment methods in general would lead to different
probability density distributions. Nonetheless, the same
conclusions about the relationships among the sequences can
most likely be drawn from a large number of alignments for
any given method.

As this is the case, there will always be a small variation
between a database alignment and a prediction method when
they both include only secondary structure information.
Including three-dimensional information (assuming it is avail-
able) would be a clear improvement. Other contributions to
false predictions are that FOLDALIGN only assigns the
consensus structure to any sequence in its alignment and indi-
vidual sequences may have more structure than the common

Figure 7. The local alignment found by FOLDALIGN. The motifs were
distributed randomly in UTR-like sequences of length 100–330 nt, as shown in
Figure 1. FOLDALIGN located the motifs and aligned them by their structure.
The last line indicates the structure assignment, using parentheses to indicate
individual base pairs.

Figure 8. Distribution of COVE scores on all 56 sequences when the align-
ment shown in Figure 7 was used as a core alignment. The distribution sug-
gests a natural score cut-off to discard false hits.
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elements. COVE can correct that limitation, but often does not.
Improvements to the COVE program may even further
increase the agreement between the fully automated alignment
and that in the databases, which have been refined through
expert intervention.

Incorporating evolutionary information of an estimated
phylogenetic tree (54,18) would undoubtedly lead to improved
performance, and a more consistent assignment of base pairs to
the individual sequences.

The idea of applying an evolutionary model that assumes
simultaneous compensatory substitutions, that is substituting
base pairs in one sequence with base pairs in another (54–56),
is in agreement with the basic construction of the FOLD-
ALIGN score. In particular, Tillier and Collins (55) derived
parameters which measured the degree of sequence conserva-
tion versus covariation in a set of phylogenetically related
sequences, and such information can be incorporated into the
FOLDALIGN scoring scheme by weighing the sequence
similarity component against the base pair component of the
scoring matrix.

The speed and efficiency of FOLDALIGN can be improved,
which allows us to analyze longer sequences and consider
more varied structures. In particular, the greedy algorithm can
identify sets of aligned sequences that are mutually consistent
and merge them directly, saving a large number of intermediate
comparisons. Including more varied structure allows searches
for more complicated regulatory motifs, for example internal
ribosomal entry sites. It is also possible to align regions that are
mutually consistent, while re-evaluating the non-consistent
regions, perhaps through the application of COVE over the
region in doubt only. Such interspersed use of FOLDALIGN
and COVE (or a similar method), along with phylogenetic
information, should improve its prediction accuracy even
more.

As the large scale sequencing projects are being followed up
by genome-wide projects to uncover regulatory networks, the
ability to identify functional sites in RNA sequences will
become increasingly important. The combination of the two
RNA motif identification programs FOLDALIGN and COVE
improves upon the capabilities of either alone, and promises an
effective means of identifying such RNA motifs.

We have constructed a server that can perform basic stem–
loop searches by combining FOLDALIGN and COVE, as
described here. The SLASH server (Stem–Loop Align SearcH)
is available at http://www.bioinf.au.dk/slash/.
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