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Abstract

Multiple myeloma (MM) is a plasma cell malignancy characterized by molecular and clinical 

heterogeneity. The outcome of the disease has been dramatically improved with the advent of new 

drugs in the past few years. In this context of increasing therapeutic options, important challenges 

are to accurately evaluate patients’ prognosis and to predict sensitivity to specific treatments and 

drug combinations. Transcriptomic studies have largely contributed to decipher MM complexity, 

characterizing MM sub-groups featured by different outcomes. Micro-arrays and more recently 

RNA sequencing allows evaluation of expression of coding and non-coding genes, alternate 

splicing events and mutations as well as novel transcriptome modifiers providing new information 

regarding myeloma biology, prognostication and therapy. In this review, we discuss the role and 

impact of gene expression profiling studies in myeloma.

Introduction

Multiple myeloma (MM) results from a multi-step transformation of normal to malignant 

plasma cells (1). The distinct stages of the disease include monoclonal gammopathy of 

undetermined significance (MGUS), smoldering MM (SMM), symptomatic MM and 

extramedullary disease or plasma cell leukemia. MM is clinically heterogeneous with a 

spectrum of symptoms that can comprise bone lesions, extramedullary locations, renal 

failure, hypercalcemia, cytopenia, and short or long survival (2,3). This heterogeneity is 

supported by distinct molecular and cytogenetic profiles. Based on karyotype, MM is 

divided into 2 groups: Hyperdiploid MM (HDMM) and non-hyperdiploid MM (NHDMM) 

which is associated with recurrent translocations (40% of MM) involving the 

immunoglobulin heavy chain (IGH) locus and different partners (mainly CCND1, cMAF, 

and MMSET) (1,4). Transcriptomic studies have provided important information regarding 

pathways and genes involved in myelomagenesis, distinguishing 8 to 10 subgroups of MM 
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patients with different clinical and biological patterns (4–9). Initially array-based and more 

recently RNA-sequencing-based, gene expression profile (GEP) studies constitute a reliable 

prognostic tool that has been independently validated by different MM cooperative groups in 

different clinical trials. However, in daily clinical practice, no consensus has evolved to 

integrate GEP in MM care. In this review, we will discuss how GEP can be integrated in the 

clinical practice by identifying high and low risk patients at each step of the disease, 

predicting treatment sensitivity, identifying targetable pathways and specific mutations to 

guide personalized medicine.

GEP and Molecular Heterogeneity in Myeloma

The MM transcriptome has been evaluated using various different cohorts of patients (6–9). 

Differentially expressed genes have been identified between MM and normal plasma cells 

and also between different phases and stages of the disease. Deregulation of the Cyclin D 

family (CCND1, CCND2 and CCND3) appeared to be a universal characteristic of MM 

cells affecting the vast majority of patients from the early MGUS stage (5). The mechanisms 

involved in Cyclin D deregulation are multiple and include the translocation of CCND1 or 

CCND3 with the IgH gene in the t(11;14) and the t(6;14), specific Cyclin D amplifications, 

and trisomies and other cytogenetics events that indirectly contribute to over-expression of 

CCND genes. In particular, CCND2 is overexpressed in t(4;14) and t(14;16) MM (6,7). 

These observations allowed classification of MM in 8 subgroups in the translocation cyclin 

D (TC) classification (5). Further studies have reported other molecular subgroups 

independent of Cyclin D deregulation and associated with other clinical and phenotypical 

features. For exemple, a Low-Bone subgroup, that includes MM patients with lower or no 

bone lesions and underexpresses Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1) or 

the proliferative subgroup which harbors overexpression of numerous cell cycle– and 

proliferation-related genes with a significantly higher gene expression–defined proliferation 

index group have been identified (8). Overall, GEP highlights an important molecular 

heterogeneity in MM (Table 1). More than 500 genes have a significant variation between 

the different subgroups (5). Cytogenetic alterations, mainly hyperdiploidy and translocations 

involving IgH are highly correlated with molecular subgroups clusters. For example, t(4;14) 

which leads to the over-expression of the histone methyl transferase Multiple Myeloma SET 

Domain (MMSET), is associated with a specific gene profile in part due to MMSET activity 

(10). More globally, HDMM and NHDMM can be identified based on GEP (11).

GEP and Myeloma Pathogenesis

In order to investigate the molecular basis of myelomagenesis, several studies have reported 

GEP at the different stages of the disease, comparing normal plasma cells, with plasma cells 

from MGUS, smoldering MM, newly-diagnosed symptomatic MM, relapsed MM and cells 

from patients with plasma cell leukemia (PCL). A large study of 877 patients has confirmed 

that MGUS plasma cells share similarities with MM and relapse MM but has identified 

genes and pathways that are activated lately during MM progression. These activated 

pathways include cMYC, E2F activation and chromosomal instability-defined GEP 

signature representing a risk of progression to MM if present at MGUS or SMM stage (12). 

Other groups have reported enrichment in antiapoptotic, NF-kB, DNA repair and cytokines-
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signaling pathway related genes in MM cells in comparison with MGUS cells (13). 

Importantly, impact of microenvironment on gene profile of the MM cells has been 

performed revealing activation of crucial pathways such as NF-kB, Notch and Ras, and 

genes affecting proliferation, survival, cell cycle regulators/activation (14).

GEP and Prognostication

Ability to investigate complete transcriptomic profile of MM cell provided an unique 

opportunity to investigate whether the disease behavior can be predicted based GEP. Clinical 

trials and long-follow-up of MM patients allowed evaluating the ability of GEP to predict 

prognosis in different cohorts. Number of reports, using distinct approaches, have identified 

gene expression signatures capable of predicting EFS and OS in MM. Most of these studies 

have identified GEP signature as an independent prognostic factor (Table 2). Some groups 

have used a biological approach relative to specific features of MM cells. Chromosome 

instability signature (15), centrosome index signature, and cell death signature (16) were 

defined based on genomic instability features, whereas a 7-gene prognostic signature was 

developed from MM cell lines study (17,18). Other signatures like the 15-gene prognostic 

signature or the proliferation signature have also been reported (19). Other groups have 

developed a GEP signature using a simple correlation between GEP with overall survival of 

MM patients in distinct cohorts. The HOVON-65/GMMG-HD4 clinical trial researchers 

(20), the Intergroupe Francophone du Myelome 99 clinical trial (9), and UAMS researchers 

(21) reported a 92, 15 and 70 genes signature respectively, able to identify poor outcome in 

independent cohorts. Importantly, only very few or no genes overlap between these 

signatures suggesting that each signature doesn’t incorporate all high risk patients and also 

highlights the redundancy in the system. In an attempt to simplify GEP use in clinical 

practice and to define a unique tool, a combination of existing prognostic signatures have 

been recently reported defining a single reliable signature that might be used to predict 

outcome in MM at diagnosis and relapse (22).

Interestingly, GEP signature has also been used in early stages of MM or in plasma cell 

leukemia patients. Investigators from UAMS has reported that 70-genes signature and its 

derivative are able to predict outcome in context of MGUS and SMM (23). In the context of 

PCL, in a cohort of 21 patients, a 27 gene expression signature was identified as an 

independent prognostic factor (24).

Profiling Transcriptome Modifiers

Initially transcript of the gene was generally measured by its overall level, using array-based 

methods to reflect overall gene expression profile. However, it is now clear that number of 

intermediate molecules process the initial RNA transcript and eventually modify its level, 

sequence or characteristics to significantly affect the eventual protein being produced. These 

transcriptome-modifiers play an important role in development of malignancies including 

myeloma and affect both the initial tumorigenesis and eventual tumor cell behavior. RNA 

sequencing has progressively replaced micro-array based studies as, besides being highly 

sensitivity and specificity, it allows measurement of various transcripts and their isoforms 

along with identification of majority of the transcriptome modifiers as well as mutations. 
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These new data from RNA-sequencing have been generated and will be integrated into GEP 

to improve prediction of the outcome in the near future.

Of these modifiers, non-coding RNA are particularly studied in MM since reports have 

already shown that micro-RNA participate to myelomagenesis, segregate with MM 

subgroups, and can be used to predict outcome or complete response to auto-transplant. 

MiR17 and miR886-5p have been identified as a strong prognostic marker in a cohort of 163 

newly diagnosed patients from the MRC Myeloma IX l trial for example (25). An increasing 

literature is now describing how microRNAs play an important role in MM and characterize 

distinct MM subgroups (26). For example, miR-126 promotes cMYC overexpression in 

t(4;14) MM (27), and miRs-192, -194, and -215 deregulate p53 and MDM2 in a subgroup of 

MM, contributing to a poorer outcome (28,29). Very interestingly, Expression of circulating 

microRNAs, which are easily accessible has been evaluated and may represent a good 

prognostic biomarkers in MM (30). Furthermore, treatments that can restore miRNAs (in 

case of tumor suppressor miRNA) or inhibit miRNAs (in case of oncogene miRNA) are 

being developed and may constitute a major therapeutic option in the future (31,32).

Long noncoding RNAs (lncRNA) are also being carefully evaluated in MM. Our group with 

others, is currently identifying important deregulation of lncRNAs expression and its impact 

on clinical outcome (33).

Alternate splicing is a critical post-transcriptional event that tremendously increases the 

transcript repertoire affecting number of cellular processes including cell growth and 

survival. It has been recognized as important mediators of malignant phenotype and the 

understanding of the alternate splicing events will contribute in the next future to better 

establish prognosis in MM. Some reports have shown that splicing events affecting specific 

genes as hyaluronan synthase 1 (HAS1) (34,35) or deleted in colorectal carcinoma gene 

(DCC) occur recurrently in MM (36), or that a strategy targeting the splicing of X-box 

binding protein 1 (XBP1) increases sensitivity of MM cells to proteasome inhibitor. Pilot 

investigations by our group as well as others have identified significant number of spliced 

isoforms in myeloma in comparison to normal plasma cells with both functional 

consequence as well as prognostic implications.

Interestingly, the ability to detect/depict mutations at the RNA level is becoming well 

documented. DNA –based studies in MM, including mainly whole exome sequencing, have 

highlighted the mutational landscape of the disease, which includes few recurrent mutations 

(NRAS, KRAS, TP53, DIS3, and FAM46C). NFkB and ERK pathways are the most 

reccurent affected pathways, with mutations in 43 % and 17 % of MM patients respectively 

(37–39).

Although only certain mutations have a clear impact on prognosis (TP53, ATR, and ATM), 

the ability to detect those mutations at the RNA level (40) can now be used to identify 

mutations impacting outcome that can be integrated in the future models predicting 

prognosis in MM.

Finally, next generation sequencing provides the ability to perform single cell studies. This 

method, illustrated by the drop-seq technology (41), allows identification of the clonal 
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heterogeneity as well as evaluation of the transcriptome in the context of the 

microenvironment. The initial data regarding single cell transcriptome measurement suggest 

exciting applications (42) including integration into a new GEP signature (43).

Clonal Heterogeneity and GEP

Intraclonal heterogeneity is an important feature of cancer that has been shown in MM 

(44,45). It refers to the presence of tumoral cells sharing most of its genomic alterations with 

subtle differences in mutations, copy number abnormalities and chromosome 

rearrangements including translocations between different clones. In MM cells, the 

evaluation of Ig gene rearrangement by next-generation sequencing is particularly useful. 

Our group has performed deep sequencing of the IgH gene at diagnosis and relapse in a 

large cohort of patients highlighting the complexity of the clonal and sub-clonal architecture 

of the disease (46). However, only few reports have described the clonal evolution in MM. 

Four patterns have been observed (Fig. 1) (38,47). The change in sub clonal abundance will 

also be reflected in changes in GEP. For example a linear evolution may not significantly 

impact overall GEP, on the other hand branching evolution may be reflected as decrease in 

expression of genes representing clones which have disappeared and appearance of genes 

from newly formed clones. Evaluation of GEP as yet is not sufficient to study or recognize 

neither evolutionary pattern, nor to estimate sub clonal content, which remains major 

limitation of studies utilizing GEP. Further investigations are necessary to evaluate the 

influence of therapies on clonal evolution. As a consequence of the clonal heterogeneity and 

clonal evolution, the genome and the transcriptome vary across the sub-clones and over the 

time, requiring new methods and iterative investigations. The ability to evaluate 

transcriptome at a single cell level might be necessary in order to determine the true impact 

of intraclonal heterogeneity on GEP and to identify potential marker of sensitivity or 

resistance to specific drugs (42,48).

GEP to Guide Therapy

Identification of high-risk patients

Amongst various applications for identifying high-risk patient, is to try and tailor therapy 

specifically to improve outcome in high-risk patients. To date the consensus from the 

International Myeloma Workshop recommends to assess MM risk at diagnosis, using the 

combination of 2 biological criteria determined by the international system staging (ISS) 

(beta2microglobulin and albumin levels) and 2 cytogenetic abnormalities (del(17p13) and 

t(4;14)). These criteria do not reflect the heterogeneity that exists within patients even at the 

time of diagnosis and the evolution of the risk category over time. Although the traditional 

risk categorization still has applicability in practice, the number of newer agents available 

for MM therapy can overcome these traditional high-risk features such as t(4;14). The newer 

genomic correlates, such as GEP, are now able to identify high-risk population even with 

utilization of combination newer agent therapies. Moreover, the combination of gene 

expression, splicing events, and mutations should soon provide an even better tool to predict 

prognosis in MM that can be combined with other clinico-biological parameters.
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GEP in combination with ISS

A recent study has evaluated GEP in combination with other prognosis marker in MM 

including cytogenetic alterations and ISS score. This study evaluated different GEP 

signature and showed that the combination of GEP with ISS is a powerful prognostic tool 

that significantly improves risk stratification (49). Identifying high risk patients remains an 

important task to try and tailor therapy in future discussed by Landgren and Rajkumar in this 

CCR Focus section (50). Currently, no specific therapy is indicated especially for the high-

risk patients, there is increasing emphasis on including multi-agent therapy as consolidation 

and maintenance including longer term use of both proteasome inhibitor and 

immunomodulatory agent. High dose melphalan followed by autologous stem cell transplant 

(ASCT) seems to be the best consolidation therapy to date (51).

Prediction of treatment response

GEP has also been evaluated to predict complete response (CR) to different treatment as 

well. CR is an independent prognosis factor and is an indirect marker of overall survival 

(52). A specific GEP signature has been identified In context of 3 drugs combinations 

(VTD) in newly diagnosed patients (53), in context of high dose therapy (54), another in 

context of Imids/dexamethaosne and double auto-transplant (55) and another at relapse, in 

context of bortezomib based-regimen (56). However, a prediction model study comparing 

different dataset have shown that GEP alone is not efficient to predict CR in different 

datasets (57).

This study utilized various methods to develop a response predictive model; even with the 

best GEP-based CR predictive model accuracy was between 56% to 78% across four 

different datasets. The ability to predict CR was not affected by different platforms used to 

measure GEP, or treatment regimens used or newly-diagnosed or relapsed patients. This 

study highlights the fact that it may be necessary to incorporate multiple other genomic 

correlates in such response predicting model in future.

Personalized therapy selection

Based on GEP, the activation or deregulation of certain pathways can be monitored and 

provide important information to select a therapy. For example, the presence of high DKK1 
level, which is also predictive of bone lesions can be exploited for the use of anti-DKK1 

drug (58,59), or the evaluation of the ratio BCL2 /MCL1 level can predict the sensitivity to 

BH3 mimetic drugs (60). Alternatively, combining the information regarding gene 

expression and mutation expression is very important to consider personalized medicine 

(61). The detection of specific expressed mutations such as BRAF V600E can indicate the 

use of BRAF inhibitor such as vemurafenib (62,63), or mutations activating the MAPK 

pathway can provide rationale for the use of MEK inhibitors such as trametinib (64). Other 

specific and targetable mutations such as SF3B1, FGFR3, ATM/ATR, IDH1/2, and CCND1 
as well as RAS/RAF, NFkB pathway–related genes have been reported in myeloma. These 

mutations can be targeted by appropriate inhibitors.

Some mutations can also be evaluated to predict drug sensitivity. Preliminary data showed 

that the presence of NRAS mutations in relapsed MM is associated with lower response to 
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bortezomib (65) or in contrast, that the presence of IRF4 mutations is associated with higher 

sensitivity to immuno-modulatory agents (37). These data need to be confirmed in distinct 

clinical trials but may constitute important results.

The identification of specific micro-RNA expression profile can also be exploited to inform 

therapy. Several microRNAs are being investigated as therapeutic targets with potential for 

development of small molecules that affect micro-RNA function.

Similarly, GEP has been utilized to predict resistance to individual agents with a view that 

one can avoid toxicity of agents which are not likely to work. Using number of B-cell lines 

including multiple myeloma cell lines, a microarray-based GEP signature was developed to 

predict melphalan resistance. Although the signature was able to predict sensitivity versus 

resistance in cell lines, its application to patient remains to be confirmed (66,67). 

Interestingly, a pharmacogenomic analysis of global GEP of myeloma cells retrieved from 

patients with myeloma, certain time after administration of various therapeutic agents have 

been performed (68,69). Prognostic information was obtained from GEP of purified plasma 

cells 2 days after administration of thalidomide and dexamethasone or bortezomib to newly-

diagnosed myeloma patients. An 80-gene signature was identified following bortezomib 

administration allowing improving patients’ risk stratification (69).

From therapeutic as well as prognostic end points, it is also important to consider continues 

evolution of genome which happens spontaneously as well as under the influence of 

microenvironment, epigenomic changes or therapy. Therefore, evaluation of GEP at a single 

time point may not be adequate. The evolution of GEP from diagnosis, response and relapse 

should be investigated to theoretically provide important information for potential selection 

of the most appropriate therapy.

Limitation of GEP in Current Clinical Practice

Despite a significant amount of data, general adoption of GEP in clinical practice is neither 

observed nor recommended. Important obstacles still exist to application of gene expression 

profiling to general clinical practice. Although several distinct GEP signatures have been 

identified and a recent study has combined several of these signatures to generate a unique 

signature (70) no consensus has been adopted so far for universal application to all patient 

population. GEP remains an investigational tool and is not yet validated by the FDA. From 

clinical application point of view, the GEP data have been generated mostly in a context of 

specific treatments that includes thalidomide, lenalidomide and borteziomib with or without 

auto-transplant. Since the therapeutic landscape is largely evolving in MM, re-evaluations 

are needed for each new drug and/or combination. In particular the advent of new 

therapeutic classes such as antibody-based therapies (Elotuzumab, Daratumumab) and new 

Imids and proteasome inhibitors, as discussed elsewhere in this CCR Focus section (71,72), 

greatly modify the prognosis and may require new GEP studies and signatures (73–78). GEP 

has been used to date in a limited number of myeloma centers and mostly for research 

purposes. The development of simpler and faster methods should be considered. Simple 

quantitative PCR has been evaluated in a cohort of 157 newly diagnosed patients with good 

results (79). However, a consensus remains to be established to define the genes that should 

be evaluated. Most importantly, we believe that an integrated approach that includes, at the 
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minimum, gene expression, mutational profile and microRNA expression will be required to 

allow a broader utilization of genomic data to guide both therapeutic selection as well as 

prognostication. Taking the current state-of-the-art to the next level, it will be necessary to 

understand the clinical impact of clonal content and evolution along with identification of 

sub-clonal variants and role of molecular mechanism driving such changes, on disease 

outcome. The current data that mutational load predicts outcome will need to be investigated 

for therapeutic purpose. These algorithms will also change with the advent of 

immunotherapeutic strategies which may have greater success in tumors with high number 

of mutations. Again, as demonstrated by our earlier study expression of mutations will need 

to be studied for eventual consideration in therapeutic decisions (61).

Future Direction

To improve upon tremendous progress made so far, newer high-throughput technologies are 

being incorporated. Array-based methodologies have given way to sequencing-based 

method, and newer bio-informatic methodologies are being developed to identify meaning 

from the large amount of data being generated (Fig. 2). Furthermore, integrative 

oncogenomic efforts are incorporating new markers such as mutations, splicing events, 

noncoding RNA, miRs to improve both predictive and prognostic markers. The personalized 

medicine based on the selection of a targeted therapy informed by the presence of a specific 

mutation or GEP signature is appealing. However, in future, the selection of patients will 

require consideration of dynamic evolution of the disease, coexistence of sub-clones, and the 

possibility of downstream activating mutations in the same pathway as it may be the case 

with KRAS and BRAF for the ERK pathway

To conclude, gene profiling studies provide important information regarding MM biology, 

and constitute a powerful tool to predict outcome and to guide therapy. The combination of 

mutational profile, splicing events, gene expression with ISS and cytogenetic may become a 

standard into MM care.
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Figure 1. Clonal heterogeneity and clonal evolution in multiple myeloma impacts gene expression 
profile
The figure represents complex clonal content and clonal evolution in multiple myeloma. 

Four distinct evolutionary patterns have been identified and their impact on gene expression 

profile is presented. Branching evolution, which corresponds to the appearance of new 

clones expressing new genes while other clones disappear, affects GEP. Linear evolution is 

characterized by the emergence of one new clone that influences GEP. Differential clone 

response, featured by the modification of the relative proportion of the sub-clones, affects 

GEP. Stable clonality with no detectable change does not impact GEP.
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Figure 2. Next generation highthroughput and sequencing technologies provides new markers 
for gene profiling
Gene expression profile results from various processes (middle row) including post-

translational leading to protein modification. Several genomic analysis technologies (upper 

row) are available to identify various genomic abnormalities to develop an integrated 

approach allowing understanding of the molecular pathogenesis of multiple myeloma, risk 

stratification and development of personalized medicine.

Alternate UTR, alternate untranslated region; ATAC seq, Assay for Transposase-Accessible 

Chromatin with high-throughput sequencing; GEP array, gene-expression profile array; 

lncRNA: long noncoding RNA; miRNA, microRNA; RNA seq, RNA sequencing.

*Small RNAs: small nucleolar RNA (snoRNAs), small nuclear RNA (U-RNA), small 

rDNA-derived RNA (srRNA).

**Protein modification such as phosphorylation, acetylation, ubiquitination, sumoylation, 

and glycosylation.

Adapted from Munshi and Avet-Loiseau (80).

Szalat et al. Page 15

Clin Cancer Res. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Szalat et al. Page 16

Ta
b

le
 1

M
ol

ec
ul

ar
 c

la
ss

if
ic

at
io

n 
of

 m
ul

ti
pl

e 
m

ye
lo

m
a

G
en

e 
ex

pr
es

si
on

 p
ro

fi
lin

g 
of

 M
M

 s
am

pl
es

 a
llo

w
ed

 id
en

tif
yi

ng
 1

1 
su

b-
gr

ou
ps

 h
av

e 
be

en
 id

en
tif

ie
d 

co
rr

el
at

ed
 w

ith
 c

lin
ic

al
 o

ut
co

m
e.

 C
D

1 
an

d 
C

D
2 

ar
e 

cl
us

te
ri

ng
 to

ge
th

er
 a

nd
 r

el
at

ed
 to

 I
gH

 tr
an

sl
oc

at
io

n 
w

ith
 C

C
N

D
1 

or
 C

C
N

D
3 

(t
(1

1;
14

) 
an

d 
t(

6;
14

))
. L

B
 c

or
re

sp
on

ds
 to

 lo
w

-b
on

e 
di

se
as

e 
an

d 
is

 a
ss

oc
ia

te
d 

w
ith

 lo
w

 D
K

K
1 

ex
pr

es
si

on
. P

R
 a

nd
 C

TA
 a

re
 c

lu
st

er
in

g 
to

ge
th

er
 a

nd
 f

ea
tu

re
d 

by
 h

ig
h 

pr
ol

if
er

at
io

n 
in

de
x 

bu
t C

TA
 s

ub
-g

ro
up

s 
is

 f
ea

tu
re

d 
by

 b
et

te
r 

ou
tc

om
e 

an
d 

hi
gh

er
 C

an
ce

r 
Te

st
is

 A
nt

ig
en

. M
S 

re
la

te
s 

to
 I

gH
-M

M
SE

T
 tr

an
sl

oc
at

io
n 

t(
4;

14
) 

an
d 

M
F 

to
 I

gH
-M

A
F 

tr
an

sl
oc

at
io

n 
t(

14
;1

6)
. H

Y
 s

ub
gr

ou
p 

is
 

re
la

te
d 

to
 h

yp
er

di
pl

oi
d 

sa
m

pl
es

 w
he

re
as

 N
FK

B
 is

 r
el

at
ed

 to
 a

 s
ub

gr
ou

p 
of

 p
at

ie
nt

s 
w

ith
 h

ig
h 

ac
tiv

at
io

n 
of

 th
is

 p
at

hw
ay

. T
he

 P
R

L
3 

su
bg

ro
up

 is
 

ch
ar

ac
te

ri
ze

d 
by

 th
e 

ov
er

-e
xp

re
ss

io
n 

of
 th

e 
ty

ro
si

ne
 p

ho
sp

ha
ta

se
 P

R
L

3.
 F

in
al

ly
, t

he
 m

ye
lo

id
 s

ub
gr

ou
p 

is
 c

on
tr

ov
er

si
al

 a
nd

 it
 is

 a
ss

oc
ia

te
d 

w
ith

 lo
w

 

in
fi

ltr
at

io
n 

by
 p

la
sm

a 
ce

ll 
in

 th
e 

bo
ne

 m
ar

ro
w

 s
ug

ge
st

in
g 

co
nt

am
in

at
io

n 
of

 th
e 

sa
m

pl
es

 (
7,

 8
).

Su
bg

ro
up

C
D

1
C

D
2

M
F

M
S

L
B

P
R

H
Y

C
T

A
N

F
K

B
P

R
L

3
M

ye
lo

id

C
yt

og
en

et
ic

t(
11

;1
4)

t(
11

;1
4)

t(
6;

14
)

t(
14

;1
6)

t(
14

;2
0)

t(
4;

14
)

1q
 g

ai
n

1q
 g

ai
n

H
D

1q
 g

ai
n

H
D

H
D

C
C

N
D

 e
xp

re
ss

io
n

C
C

N
D

1
C

C
N

D
1

C
C

N
D

3
C

C
N

D
2

C
C

N
D

2
C

C
N

D
1

C
C

N
D

2
C

C
N

D
2

C
C

N
D

1
C

C
N

D
1

C
C

N
D

1
C

C
N

D
2

C
C

N
D

1
C

C
N

D
2

C
C

N
D

2
C

C
N

D
1

C
C

N
D

2

H
ig

h-
ex

pr
es

se
d 

ge
ne

s
IN

H
B

E
E

T
V

1
M

A
C

R
O

D
2

cd
79

a
cd

20
IL

6R
c-

M
A

F
M

A
FB

M
M

SE
T

FG
FR

3
PB

X
1

E
D

N
1

IL
6R

SM
A

D
1

C
C

N
B

1 
M

C
M

2
C

D
C

2
B

IR
C

5 
C

C
N

B
2

A
U

R
K

A

T
R

A
IL

D
K

K
1

C
C

R
5

C
an

ce
r 

Te
st

is
 A

nt
ig

en
A

U
R

K
A

C
D

40
B

C
L

10
IL

8

SO
X

3
PT

P4
A

3
PT

PR
Z

1

C
D

16
3

C
A

1
L

IZ

L
ow

-e
xp

re
ss

ed
ge

ne
s

C
D

9
N

O
T

C
H

2N
L

C
C

N
D

2
D

K
K

1
C

C
N

D
1

C
C

N
D

1
D

U
SP

2
SY

K
 P

A
X

5

D
K

K
1

ST
A

T
1

ST
A

T
2

C
X

C
R

4
C

D
27

C
C

N
D

2
C

D
52

TA
G

L
N

2
C

K
S1

B
O

PN
3

M
A

L
A

T
1

T
R

A
F3

C
C

R
2

M
A

T
2A

C
D

44
D

U
SP

6
PR

M
T

1
D

U
SP

5
SM

A
D

7

C
lin

ic
al

 f
ea

tu
re

/
pr

og
no

si
s

L
ow

 r
is

k
L

ow
 r

is
k

H
ig

h 
ri

sk
H

ig
h 

ri
sk

L
ow

 r
is

k
L

ow
 r

at
e 

of
 

bo
ne

 le
si

on
s

H
ig

h 
ri

sk
L

ow
 r

is
k

H
ig

h 
ri

sk
L

ow
 r

is
k

L
ow

 r
is

k
L

ow
 r

is
k

L
ow

 r
at

e 
of

 
pl

as
m

a 
ce

ll 
in

 th
e 

bo
ne

 m
ar

ro
w

F
re

qu
en

cy
4–

9%
11

–1
7%

6–
10

%
15

–1
7%

12
–1

7%
11

%
26

–3
2%

7%
11

%
2–

3%
12

%

Clin Cancer Res. Author manuscript; available in PMC 2017 November 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Szalat et al. Page 17

Table 2
Summary of main reported prognosis signatures allowing identification of high risk 
multiple myeloma patients

No single gene is common across the 8 signatures.

Signature Number of genes Number of 
common 

genes with 
70-gene 

signature

Number of 
common genes 
with 92-gene 

signature

Clinical significance

UAMS (21) 70 genes 70 genes 2 genes (BIRC5, 
LTBP1)

Identifies low and high risk 
patients at diagnosis and relapse. 
The high risk patients overexpress 
genes mapping at 1q21, 1q22, 
1q43–q44 and 8q21–8q24 
regions.

HOVON-65/GMMG-HD4 (EMC92) (20) 92 genes 2 genes 
(BIRC5, 
LTBP1)

92 genes An independant prognosis marker 
identifying high risk patients at 
diagnosis and relapse.

Intergroupe Francophone du Myelome (9) 15 genes None 1 gene (FAM49A) Identifies high risk patients 
featured by overexpression of 
genes involved in cell cycle.

Chromosome instability signature 
(CINGECS) (15)

214 genes 7 genes 15 genes Signature is based on copy-
number alterations identified by 
aCGH.. It alows separating MM 
patients in 4 groups : low, 2 
intermediates and high risk group.

Centrosome index signature (CNTI) (16) 4 genes None None An independant prognosis factor 
that identifies high risk patients 
featured by higher sensitivity to 
aurora kinase inhibitor.

Cell death signature (18) 6 genes None None Based on the presence of genomic 
deletions involving cell death 
genes, it identifies low and high 
risk patients.

7-gene prognostic signature HMCL 6-gene 
signature for non t(4;14) patients (17)

7 genes
6 genes

None
None

None
None

Based on MM cell lines, identify 
low, intermediate and high risk 
MM patients and can discriminate 
low and high risk patients within 
molecular sub-groups, especially 
in non t(4 ;14).

Proliferation signature (19) 50 genes 3 genes 
(BIRC5, 
ASPM, 
CKS1B)

6 genes (ESPL1, 
MCM6, NCAPG, 
SPAG5, ZWINT, 

BIRC5)

Identifies 3 groups of MM 
associated with high, intermediate 
and low risk. It correlates with 
chromosomal aberrations 
(amp(1q) and del(13p)) and 
molecular subgroups.

Number of overlapping genes None

Abbreviation: aCGH, array comparative genomic hybridization; HMCL: human myeloma cell lines.
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