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To the Editor

Contemporary genomic data sets contain tens of thousands of samples and petabytes of 

sequencing data1–3. Pipelines to process genomic data sets often comprise dozens of 

individual steps, each with their own set of parameters4,5. Processing data at this scale and 

complexity is expensive, can take an unacceptably long time, and requires significant 

engineering effort. Furthermore, biomedical data sets are often siloed, both for 

organizational and security considerations and because they are physically difficult to 

transfer between systems, owing to bandwidth limitations. The solution to better handling 

these big data problems is twofold: first, we need robust software capable of running 

analyses quickly and efficiently, and second, we need the software and pipelines to be 

portable, so that they can be reproduced in any suitable compute environment.

Editor’s note: This article has been peer-reviewed.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.
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Here, we present Toil, a portable, open-source workflow software that can be used to run 

scientific workflows on a large scale in cloud or high-performance computing (HPC) 

environments. Toil was created to include a complete set of features necessary for rapid 

large-scale analyses across multiple environments. While several other scientific workflow 

software packages6–8 offer some subset of fault tolerance, cloud support and HPC support, 

none offers these with the scale and efficiency to process petabyte and larger-scale data sets 

efficiently. This sets Toil apart in its capacity to produce results faster and for less cost 

across diverse environments. We demonstrate Toil by processing >20,000 RNA-seq samples 

(Fig. 1). The resulting meta-analysis of five data sets is available to readers9. The large 

majority (99%) of these samples were analyzed in under 4 days using a commercial cloud 

cluster of 32,000 preemptable cores.

To support the sharing of scientific workflows, we designed Toil to execute common 

workflow language (CWL; Supplementary Note 1) and provide draft support for workflow 

description language (WDL). Both CWL and WDL are standards for scientific 

workflows10,11. A workflow comprises a set of tasks, or ‘jobs’, that are orchestrated by 

specification of a set of dependencies that map the inputs and outputs between jobs. In 

addition to CWL and draft WDL support, Toil provides a Python application program 

interface (API) that allows workflows to be declared statically, or generated dynamically, so 

that jobs can define further jobs during execution and therefore as needed (Supplementary 

Note 2 and Supplementary Toil Documentation). The jobs defined in either CWL or Python 

can consist of Docker containers, which permit sharing of a program without requiring 

individual tool installation or configuration within a specific environment. Open-source 

workflows that use containers can be run regardless of environment. We provide a repository 

of genomic workflows as examples12. Toil supports services, such as databases or servers, 

that are defined and managed within a workflow. Through this mechanism it integrates with 

Apache Spark13 (Supplementary Fig. 4), and can be used to rapidly create containerized 

Spark clusters14 (Supplementary Note 3).

Toil runs in multiple cloud environments including those of Amazon Web Services (AWS; 

Seattle, WA, USA), Microsoft Azure (Seattle, WA, USA), Google Cloud (Mountain View, 

CA, USA), OpenStack, and in HPC environments running GridEngine or Slurm and 

distributed systems running Apache Mesos15–17 (Forest Hill, MD, USA). Toil can run on a 

single machine, such as a laptop or workstation, to allow for interactive development, and 

can be installed with a single command. This portability stems from pluggable backend 

APIs for machine provisioning, job scheduling and file management (Supplementary Note 

4). Implementation of these APIs facilitates straightforward extension of Toil to new 

compute environments. Toil manages intermediate files and checkpointing through a ‘job 

store’, which can be an object store like AWS’s S3 or a network file-system. The flexibility 

of the backend APIs allow a single script to be run on any supported compute environment, 

paired with any job store, without requiring any modifications to the source code.

Toil includes numerous performance optimizations to maximize time and cost efficiencies 

(Supplementary Note 5). Toil implements a leader/worker pattern for job scheduling, in 

which the leader delegates jobs to workers. To reduce pressure on the leader, workers can 

decide whether they are capable of running jobs immediately downstream to their assigned 
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task (in terms of resource requirements and workflow dependencies). Frequently, next-

generation sequencing workflows are I/O bound, owing to the large volume of data 

analyzed. To mitigate this, Toil uses file caching and data streaming. Where possible, 

successive jobs that share files are scheduled on a single node, and caching prevents the need 

for repeated transfers from the job store. Toil is robust to job failure because workflows can 

be resumed after any combination of leader and worker failures. This robustness enables 

workflows to use low-cost machines that can be terminated by the provider at short notice 

and are currently available at a significant discount on AWS and Google Cloud. We estimate 

the use of such preemptable machines on AWS lowered the cost of our RNA-seq compute 

job 2.5-fold, despite encountering over 2,000 premature terminations (Fig. 2). Toil also 

supports fine-grained resource requirements, enabling each job to specify its core, memory 

and local storage needs for scheduling efficiency.

Controlled-access data requires appropriate precautions to ensure data privacy and 

protection. Cloud environments offer measures that ensure stringent standards for protected 

data. Input files can be securely stored on object stores, using encryption, either 

transparently or with customer managed keys. Compute nodes can be protected by SSH key 

pairs. When running Toil, all intermediate data transferred to and from the job store can be 

optionally encrypted during network transmission and on the compute nodes’ drives using 

Toil’s cloud-based job store encryption. These and other security measures help ensure 

protection of the input data, and as part of a broader security plan, can be used to ensure 

compliance with strict data security requirements.

To demonstrate Toil, we used a single script to compute gene- and isoform-level expression 

values for 19,952 samples from four studies: The Cancer Genome Atlas (TCGA)1, 

Therapeutically Applicable Research To Generate Effective Treatments (TARGET; https://

ocg.cancer.gov/programs/target), Pacific Pediatric Neuro-Oncology Consortium (PNOC; 

http://www.pnoc.us/), and the Genotype Tissue Expression Project (GTEx)18. The data set 

comprised 108 terabytes. The Toil pipeline uses STAR19 to generate alignments and read 

coverage graphs, and performs quantification using RSEM20 and Kallisto21 (Fig. 1 and 

Supplementary Note 6). Processing the samples in a single batch on ~32,000 cores on AWS 

took 90 h of wall time, 368,000 jobs and 1,325,936 core hours. The cost per sample was 

$1.30, which is an estimated 30-fold reduction in cost, and a similar reduction in time, 

compared with the TCGA best-practices workflow5. We achieved a 98% gene-level 

concordance with the previous pipeline’s expression predictions (Figs. 1,2 and 

Supplementary Fig. 1). Notably, we estimate that the pipeline, without STAR and RSEM, 

could be used to generate quantifications for $0.19/sample with Kallisto. To illustrate 

portability, the same pipeline was run on the I-SPY2 data set22 (156 samples) using a private 

HPC cluster, achieving similar per sample performance (Supplementary Table 1). 

Expression-level signal graphs (read coverage) of the GTEx data (7,304 samples from 53 

tissues, 570 donors) are available from a UCSC Genome Browser23 public track hub 

(Supplementary Fig. 2). Gene and isoform quantifications for this consistent, union data set 

are publicly hosted on UCSC Xena9 and are available for direct access through a public 

AWS bucket (Supplementary Fig. 3 and Supplementary Note 7).
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Although there is an extensive history of open-source workflow-execution software6–8, the 

shift to cloud platforms and the advent of standard workflow languages is changing the scale 

of analyses. Toil is a portable workflow software that supports open community standards 

for workflow specification and enables researchers to move their computation according to 

cost, time and data location. For example, in our analysis the sample data were intentionally 

co-located in the same region as the compute servers in order to provide optimal bandwidth 

when scaling to thousands of simultaneous jobs (Supplementary Note 8). This type of 

flexibility enables larger, more comprehensive analyses. Further, it means that results can be 

reproduced using the original computation’s set of tools and parameters. If we had run the 

original TCGA best-practices RNA-seq pipeline with one sample per node, it would have 

cost ~$800,000. Through the use of efficient algorithms (STAR and Kallisto) and Toil, we 

were able to reduce the final cost to $26,071 (Supplementary Note 9).

We have demonstrated the utility of Toil by creating one of the single largest, consistently 

analyzed, public human RNA-seq expression repositories, which we hope the community 

will find useful.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
RNA-seq pipeline and expression concordance. (a) A dependency graph of the RNA-seq 

pipeline we developed (named CGL). CutAdapt was used to remove extraneous adapters, 

STAR was used for alignment and read coverage, and RSEM and Kallisto were used to 

produce quantification data. (b) Scatter plot showing the Pearson correlation between the 

results of the TCGA best-practices pipeline and the CGL pipeline. 10,000 randomly selected 

sample and/or gene pairs were subset from the entire TCGA cohort and the normalized 

counts were plot against each other; this process was repeated five times with no change in 

Pearson correlation. The unit for counts is: log2(norm_counts+1).
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Figure 2. 
Costs and core usage. (a) Scaling tests were run to ascertain the price per sample at varying 

cluster sizes for the different analysis methods. TCGA (red) shows the cost of running the 

TCGA best-practices pipeline as re-implemented as a Toil workflow (for comparison). CGL-

One-Sample/Node (cyan) shows the cost of running the revised Toil pipeline, one sample per 

node. CGL (blue) denotes the pipeline running samples across many nodes. CGL-Spot 

(green) is the same as CGL, but denotes the pipeline run on the Amazon spot market. The 

slight rise in cost per sample at 32,000 cores was due to a couple of factors: aggressive 

instance provisioning directly affected the spot price (dotted line), and saving bam and 

bedGraph files for each sample. (b) Tracking number of cores during the recompute. The 

two red circles indicate where all worker nodes were terminated and subsequently restarted 

shortly thereafter.
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