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Abstract

Background—Studies on ragweed and birch pollen extracts suggested that the adenosine content 

is an important factor in allergic sensitization. However, exposure levels from other pollens and 

considerations of geographic and seasonal factors have not been evaluated.

Objective—This study compared the metabolite profile of pollen species important for allergic 

disease, specifically measured the adenosine content, and evaluated exposure to pollen-derived 

adenosine.

Methods—An NMR metabolomics approach was used to measure metabolite concentrations in 

twenty-six pollen extracts. Pollen count data was analyzed from five cities to model exposure.

Results—A principal component analysis of the various metabolites identified by NMR showed 

that pollen extracts could be differentiated primarily by sugar content: glucose, fructose, sucrose, 

and myo-inositol. In extracts of 10 mg of pollen/ml, the adenosine was highest for grasses (45 μM) 

followed by trees (23 μM) and weeds (19 μM). Pollen count data showed that tree pollen was 

typically 5–10 times the amount of other pollens. At the daily peaks of tree, grass, and weed 

season the pollen-derived adenosine exposure per day is likely to only be 1.1, 0.11, and 0.12 μg, 

respectively. Seasonal models of pollen exposure and respiration suggest that it would be a rare 

event limited to tree pollen season for concentrations of pollen-derived adenosine to approach 

physiological levels.

Conclusions—Sugar content and other metabolites may be useful in classifying pollens. Unless 

other factors create localized exposures that are very different from these models, pollen-derived 

adenosine is unlikely to be a major factor in allergic sensitization.

Introduction

Recent studies in the United States show that allergic sensitization rates to pollens vary from 

10–20%.(Salo et al. 2014) Among the major sources of allergen for adults, IgE antibodies to 

rye grass allergens are the most prevalent (~20%), followed by ragweed and bermuda grass 
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(~15%), and finally oak, thistle and birch (~10%). It is fascinating to consider that while 

trees produce the greatest pollen load, the prevalence of allergic disease is the lowest. The 

symptomatic response is directed against the allergens but understanding the other factors 

that initiate allergic sensitization is a major area of research. For example, the low molecular 

weight components of aqueous pollen extracts were shown to alter bronchial epithelial 

barrier function in a cell model.(Blume et al. 2015) Pollen-associated lipid mediators 

(PALMs) have been extensively studied for their ability to recruit inflammatory cells and 

skew the immune response towards allergy.(Behrendt et al. 2001; Plotz et al. 2004) These 

PALM compounds elute from pollen grains and contribute to a Th2 response.(Mariani et al. 

2007; Gilles et al. 2009)

A recent study on the birch pollen metabolome identified pollen-derived adenosine as 

another contributor to allergic sensitization.(Gilles et al. 2011) These studies showed that 

birch pollen extract activated cAMP in dendritic cells through the adenosine mediated A2 

receptor, but failed to do so when the extract was treated with adenosine deaminase. 

Similarly, in studies of animals sensitized with ragweed extract the recruitment of 

eosinophils and airway resistance upon challenge depended on whether or not the extract 

was depleted of adenosine.(Wimmer et al. 2015) Elevated adenosine signaling can provide a 

protective effect in response to acute stress or injury, however, prolonged excessive 

adenosine signaling is detrimental and contributes to the development and progression of 

certain chronic disease states (Liu and Xia 2015), including Parkinson’s disease (Jenner et 

al. 2009), pre-eclampsia (Iriyama et al. 2015) and sickle cell anemia (Zhang et al. 2011).

Although these studies provide strong support for the conclusion that adenosine can play an 

important role in the allergic response, it is less clear whether the adenosine content of 

pollen is sufficient to contribute significantly to the physiological response. An estimate that 

pollen-derived adenosine could accumulate in the nasal fluid to 500 nM was determined.

(Gilles et al. 2011) However, this appears to be below the amount needed to demonstrate an 

effect in the dendritic cells, and significant details of the exposure model were not presented. 

For comparison, the levels of adenosine in human plasma are typically measured at less than 

200 nM, but can be in excess of 500 nM in people with sickle cell disease.(Ramakers et al. 

2008; Zhang et al. 2011) Airway surface liquid is normally 150–200 nM adenosine (Zuo et 

al. 2008) although recent evidence suggests that at the cell surface, where many of the 

regulatory enzymes and receptors are positioned, the concentration may be 5 to 10 times 

higher (Amarante et al. 2014).

Two key points needed to evaluate the importance of adenosine would seem to be accurate 

measurements of the adenosine content in various pollens, and an evaluation of human 

exposure models. The amount of adenosine that was measured in 10 mg of pollen/ml birch, 

ragweed, and timothy grass pollen extract was typically in the low micromolar range.(Gilles 

et al. 2011) This is a reasonable range for metabolomic characterization by NMR. Since 

numerous other compounds present can be measured simultaneously by NMR, it was 

apparent that other compounds could be quantified for rapid comparisons of the metabolites 

from various pollens. This may be useful in generating metabolic fingerprints to identify 

pollens or in assessing other compounds as potentially allergenic factors. Twenty-six pollens 

were chosen from major families of allergens. The three major goals of this study were to 
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compare the metabolomes of aqueous pollen extracts, specifically measure the adenosine 

content, and then to further evaluate the human exposure to pollen-derived adenosine. The 

last goal was accomplished by extrapolating human pollen exposure from pollen count data 

from various cities across the United States.

Methods

Twenty-six species of pollen from major sources of airborne allergens in North America 

were purchased from Greer Laboratories, Lenoir, NC. Supplementary Table 1 lists the 

pollens with a two-letter code, scientific name, and common name for each that will be used 

in figure legends throughout this article. Pollen extracts were prepared by standard methods 

as described in the Supplemental Material. NMR NOESY experiments were performed on a 

14.7 T magnet and analyzed with Chenomx NMR Profiler software (Version 8.2, Edmonton, 

AB, Canada) for metabolite concentrations. Pollen count data was obtained from public 

government resources or kindly provided as described in the Supplemental Material.

Results

Aqueous pollen metabolomics

Aqueous pollen extracts were prepared from seven grasses, three weeds, and twelve species 

of trees from a variety of biomes in North America. Figure 1 shows four example NMR 

spectra from Birch, Cypress, Ragweed, and Timothy pollen, as representatives of the tree, 

the western pine (Cupressaceae), weed, and grass spectra, respectively. The spectra were 

usually dominated by carbohydrates that were the most abundant compounds identified, as 

can been seen in the crowded spectral region from 4.2–3.2 ppm. The exceptions were the 

western pines (Cupressaceae) Cupressus arizonica (Figure 1B) and Juniperus ashei (data not 

shown) that contained many fewer compounds in the extract and in fact the largest peaks 

were due to glycerol. There is strong evidence for endogenous glycerol in the aqueous 

extracts, but due to contamination with exogenous glycerol from the concentrators and filters 

it was not analyzed further. A few of the isolated peaks for sucrose, glucose, and fructose 

that were used for fitting the concentrations are annotated in Figure 1. The differences in 

these four spectra are primarily due to the different combinations of carbohydrates present in 

the different species (Figure 2). Another very strong resonance was due to betaine at 3.3 

ppm, as annotated in figure 1, which was confirmed by the corresponding weaker resonance 

at 3.9 ppm. Betaine was found prominently in the weeds, grasses, and red maple, but usually 

an order of magnitude less in other pollens (Supplementary Figure 1). Betaine is an organic 

osmolyte and its presence in pollen is likely protective against desiccation.

The concentrations of the carbohydrates and other metabolites present in the different 

pollens were measured by fitting the peaks with the Chenomx software. Figure 2 shows a 

bar graph of carbohydrate content in each pollen extract. The grass pollens contain myo-

inositol, while the grasses and red maple pollen contain considerably more glucose than the 

other species. Red maple pollen (AR) contained the most total sugar, while the Cupressaceae 

(JA and AZ) were nearly devoid of extracted sugars. Besides the carbohydrates, 

Supplementary Table 2 shows all the metabolites that were identified and concentrations 

determined relative to the DSS standard by Chenomx for all five samples of each pollen. 
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Comparisons of the measured concentrations of a few other specific compounds (betaine, 

arginine, methanol, and proline) in the pollen are shown in Supplemental Figure 1.

Principal Component Analysis of Metabolites

A principal component analysis (PCA) of the 52 identified compound concentrations 

confirms the initial assertion above that the carbohydrates primarily differentiate the various 

pollen extracts. Figure 3A plots the first two principal components, which reasonably 

differentiate the various pollen extracts. Principal component 1 accounts for 69% of the 

variance and component 2 accounts for 18% of the variance. The western pines with the low 

sugar content are farthest from the red maple, and the weeds are closer to the main tree 

group since their combination of sugars more closely resembles that group as shown in 

Figure 2. Figure 3B shows the loadings plots for the first two principal components, which 

shows which compounds were most important for differentiating the pollen extracts in 

Figure 3A. The sucrose component clearly dominates the second component (y-axis), and is 

orthorgonal to the fructose and glucose, which dominate the first component (x-axis).

Since the high abundance metabolites appeared to dominate the evaluations in Figures 3A 

and 3B, a second multivariate analysis was performed to look for more subtle metabolite 

differences using a log base 2 transform of all the concentrations. As can be seen in the PCA 

plot in Figure 3C this analysis gives a very clean separation of the trees, grasses, and weeds. 

The loadings plot in Figure 3D reports the metabolites most responsible for the separation. 

The trees contain higher levels of certain amino acids and flavonols, while the grasses are 

higher in methanol, betaine, and myo-inositol. The Cupressaceae can be easily identified by 

the presense of quinic and shikimic acids. Also of note, the vector labeled Flavanol, and the 

data in Supplementary Table 2, refers to an unknown flavanol compound that resembled 

quercitin, but the shifts were outside of the tolerance limits for quercitin, and were variable 

in the different pollens. This data should be regarded as an approximate measure of the most 

abundant flavanol in the pollens where it is noted. Given the interest in adenosine, the data 

was examined for other common metabolites in which the concentrations were correlated. 

Among metabolites that occurred in at least half the pollen extracts, adenosine most strongly 

correlated with methanol and choline (r=0.55–56). Using the log2 transform of the 

concentrations, adenosine again correlated strongly with choline (r=0.69) (See supplemental 

Figure 2)

Adenosine measurements

Supplementary Figure 3 shows two selected downfield regions of the spectra that contain 

peaks corresponding to adenosine. Of note, the downfield region of the spectra was 

especially sparse in the Cupressaceae, with the exception of the shikimate peak, that was 

confirmed by the presence of the corresponding upfield peaks centered at 4.4, 2.8, 2.7, and 

2.2 ppm (data not shown). Figure 4 presents a bar graph of the adenosine concentrations for 

each pollen extract. Adenosine was barely detectable in the loblolly pine (4.7 μM) and not 

detected in the western pines, nor the nettle, Urtica dioica. The highest concentrations of 

adenosine (~ 45 μM) were in the grass and elm pollen extract. Where it was detectable, 

adenosine ranged roughly an order of magnitude from 5–56 μM. The average adenosine 
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concentration was highest for grasses (45 μM) followed by trees (23 μM) and weeds (19 

μM).

Example Seasonal and Geographical Pollen Load

To provide perspective on pollen exposure from different geographic locales and seasonal 

variations, pollen data was acquired from publicly available sources or kindly provided for 

the following five cities: Raleigh, NC, Dayton, OH, Minneapolis, MN, Springfield MO, and 

Houston TX. The data was divided into tree, grass, and weed pollen. Figure 5 overlays the 

pollen levels on a log scale for three recent years as a scatter plot, since continuous data was 

not available in all locales for all days. The years were 2012–2014, for Raleigh and Houston, 

while the other three were 2013–2015. The plots show the relative contribution of the tree, 

grass, and weed pollens over the course of the year. The peak levels of tree pollen grains in 

the spring are typically an order of magnitude greater than the peak levels of weed pollen in 

the fall. Peak levels of grass pollen are typically 100 times less than the peak levels of tree 

pollen, although in Springfield and Houston, the grass season can peak at 10 fold less than 

that of the tree pollen. In summary, the peak of tree season contributes the highest pollen 

load. For modeling the maximum adenosine exposure, the peak days for each season are 

modeled as 103, 103, and 104 grains/m3 for grasses, weeds, and trees respectively.

Modeling Pollen-derived Adenosine Exposure

Studies with personal air samplers have provided evidence that the background pollen count 

is a reasonable proxy for personal exposure.(Peel et al. 2013) Pollen counts measure the 

grains/m3, while the adenosine concentration measured here can be easily converted to 

grams of adensosine/gram of pollen. Therefore a conversion of grams per grain of pollen is 

needed. Supplementary Figure 4 shows the data from many grass, weed, and tree pollens.

(Brown and Irving 1973) A similar range of values is reported in other studies.(Gunawan et 

al. 2008) Most pollens are approximately 100 grains per microgram, with a few notable 

exceptions. Nettle pollen is 10 fold less dense, but this should not affect the adenosine 

modeling since there was no detectable levels of adenosine in Urtica dioica. At the other 

extreme, corn pollen is more than ten times denser.(Porter 1981) This however is also likely 

not to be problematic for general exposure calculations since denser pollen will fall out of 

the air faster reducing human exposure. Eliminating the extreme values of nettle and corn, 

the mean values from Brown and Irving utilized in this model are 1 grain = 12 × 10−9, 6 × 

10−9, and 16 × 10−9 grams for trees, grasses, and weeds, respectively.

Three models for personal exposure were created, detailed in Supplementary Table 3. The 

first is a daily dose (DD) that uses the pollen count from the peak day of each class (above) 

and assumes a breathing rate of 10 liters per minutes, which converts to 14.4 m3/day. The 

second model is the peak 2-hour (P2) exposure that assumes the same breathing rate. 

However, pollen is not released continuously and the peak hours are 4–10 times the daily 

reported average.(Barnes et al. 2001; Davies 1985; Skjoth et al. 2008). The P2 model uses a 

factor of 10 to exaggerate the effect. For comparison, environmental exposure units 

generally target 3.5 × 103 grains/m3 for grass and weed pollens, (Ellis et al. 2015; Ellis et al. 

2013) so the P2 model using 105, 104, and 104 for tree, grass, and weed, respectively, is 

rather high. The third model (EX) uses the same peak pollen count, but assumes exercise for 
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1 hour that increases the volume of air 7 fold, (Berry et al. 1996) which we consider a rather 

extreme exposure model. The example of exercise is only intended to set a reasonable upper 

limit for respiration in 1 hour. Table 1 presents the results of the exposure calculations 

separately for trees, grasses and weeds. At the peaks of tree, grass, and weed season the 

pollen-derived adenosine daily dose (DD) is likely to only be 1.1 0.11, and 0.12 μg, 

respectively. The microgram to sub-microgram dosage of adenosine derived from pollen per 

day calculated here is in stark contrast to the 0.1–5mg dose previously suggested. (Gilles et 

al. 2011) The total dose for the other two models, P2 and EX, changes only slightly due to 

the fact that while the pollen count is higher, the time of exposure is reduced.

To model a concentration of adenosine due to pollen, the following factors are utilized. Most 

pollen particles are deposited in the nasal cavity, (Okuda et al. 2005) which can produce up 

to 1 liter of nasal fluid per day.(Parent 1992; Brofeldt et al. 1987) Therefore, the volume of 

dilution assumed for the various models are 1 l, 0.083 l, and 0.042 l for DD, P2, and EX 

respectively. At the peak of tree season the DD model calculates 4.0 nM adenosine, which is 

sub-physiological, (Ramakers et al. 2008; Zhang et al. 2011) but the validity of this model is 

questionable. The P2 and EX models show much higher concentrations due the higher 

pollen count due to much lower volumes of nasal fluid per unit time. EX suggests that rapid 

respiration during the very peak hour of tree season could add 278 nM exogenous adenosine, 

although this model is an extreme case. Normal levels in human plasma are around 200 nM.

(Zhang et al. 2011)

Discussion

Motivated by reports that the adenosine content of pollen could affect allergic sensitization, 

the initial goal of this study was to measure the adenosine content from a variety of pollens.

(Gilles et al. 2011; Wimmer et al. 2015) While utilizing NMR methods to assess the 

adenosine levels, the content of other highly abundant metabolites could be directly 

evaluated as well. These comparisons showed that various groups of pollens could be 

differentiated primarily by the sugar content similar to the NMR based classifier developed 

for Vaccinium leaf extracts.(Markus et al. 2014) This may be useful in developing an 

automated pollen classifier in the future. A literature search was performed on the list of 

assessed compounds from aqueous extract (Supplementary Table 2) for other possible 

connections to allergic disease and adenosine appeared to be the most relevant compound in 

the current literature.

The range of measured values of adenosine was 5–56 μM in 10 mg pollen/ml of aqueous 

extract. Compared to the previously reported values determined using mass spectrometry 

and UPLC, the Timothy grass pollen adenosine levels were nearly were 2-fold higher.(Gilles 

et al. 2011) Ragweed-derived adenosine was about 4-fold higher measured by NMR. Using 

comparable amounts of pollen, Gilles et al report values for Birch pollen derived adenosine 

from 4–45 μM, with a mean of 17, utilizing several different sources of pollen and species of 

Birch. Our study relied on multiple measurements from a single batch purchased from Greer 

Laboratories, and we found that the adenosine concentration in Birch pollen extract was 

32±1 μM, which appears in the range of natural variation reported previously. Previous in 

vitro studies of Japanese cedar and cypress required sonication to extract allergens and 
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eicosanoids from the pollen grains, (Gunawan et al. 2008) which may be related to the lack 

of adenosine, as well as the paucity of compounds extracted from the related Cupressaceae 

pollens. Figure 4 presents the adenosine values for all 26 pollens and the values range from 5 

to 56 μM, where 5 is close to the limit of detection. Given this narrow range of values, and 

assuming that human exposure is unlikely due to a single species, it seemed reasonable to 

use averages for tree, weed, and grass pollens in modeling exposure.

Using this data on the amount of adenosine present in pollen, we sought to estimate the 

human exposure to pollen-derived adenosine from pollen count data on a geographic and 

seasonal basis. This was not intended to be an all-encompassing review of pollen exposure 

in N. America, rather it was intended to evaluate two main hypotheses. First, the major 

pollen load is derived from trees, and second the extreme values of pollen used in the 

exposure model are temporally rare. These points are discussed in further detail below.

References to other geographic locales

Studies from Washington DC and Florida, which is a tropical biome, confirm that trees 

produce 80–90% of the total pollen load.(Jelks 1990; Kosisky et al. 2010) This confirms the 

observations in Figure 5 that the pollen load from trees is 5–10 times that of the grasses and 

weeds. The five cities studied in Figure 5 are located in the East and Mid-West of the United 

States. Data from San Diego, CA also showed that the grass allergies were much more 

prevalent, but the tree pollen load was much higher.(Street and Hamburger 1976) Studies 

from Tucson, AZ showed that planted vegetation contributed significantly to the pollen load, 

and again the highest values were from trees.(Sneller et al. 1993) In this case the maximum 

values were 3–5 times the levels of weeds and grasses. Data from Frenz and coworkers 

confirms that the ragweed pollen counts can be very high in other parts of Texas and 

Nebraska, in the high hundreds of grains per m3, and in Tulsa, OK can be in the thousands.

(Frenz et al. 1995; Frenz 1999) (The DD model set weed pollen at 103 grains/m3 and the P2 

and EX models used 104.) The overarching conclusion is that the pollen load is dominated 

by trees, followed by weeds, and then grasses. This runs counter to the rates of sensitization 

of allergens in the United States with grass allergens more important than weeds, followed 

lastly by trees.(Salo et al. 2014) In other words the dose response of pollen-derived 

adenosine and pollen in general does not track with the prevalence of allergen sensitization.

Timing of adenosine exposure

The second point above was that high levels of adenosine derived from pollen will only 

occur rarely. The exposure model developed here suggests that in only a few days per year 

during the tree season would a person experience levels of exogenous adenosine from pollen 

approaching physiological relevance. Wimmer et al in fact modeled acute dosages of 

ragweed extract and found aggravated allergic lung inflammation compared to adenosine-

depleted ragweed extract.(Wimmer et al. 2015) The mice were exposed by nasal lavage with 

20 μl of ragweed extract (10 mg of pollen/ml) per day. Using the 25 μM adenosine measured 

in Figure 4 in ragweed extract, this would correspond to 133 ng of pollen-derived adenosine. 

A 20 g mouse is 3,500-fold smaller than a 70 kg person, which would correspond to a 

human exposure of 468 μg. Using the EX exposure model, this is over 100 fold higher than 

our estimate for pollen-derived adenosine at the peak of tree season and almost 1,000 times 
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higher than our estimate for the peak of weed season. In addition to the total dose, lavage 

may also represent an unphysiologically rapid presentation of a high concentration (25 μM) 

of adenosine.

Adenosine exposure model

The part of this exposure model with greatest uncertainty is the concentration of the 

adenosine in the human nasal passage, which is subject to more assumptions, and the daily 

time dependence of pollen exposure could be highly variable. The textbook by Parent 

calculates that a human nose secretes 365–875 μl/min/nose, which translates to 0.5–1.2 l/

day, but the resting evaporative water loss is estimated at 0.25 l/day (Parent 1992), which 

would vary with humidity. So there is a complex dynamic to estimating exposure 

concentration. Diffusion may be slower in thicker mucus and this may affect local 

concentrations surrounding a pollen grain. However, Okuda and co-workers found that 80% 

of pollen grains deposited in the nasal passage were cleared within 30 minutes by 

mucocilliary action.(Okuda et al. 2005) This demonstrates that there is a rapid turnover of 

fluids and particles and elution from the pollen could be dispersed across a significant area. 

We cannot completely exclude the possibility that local concentrations in the vicinity of the 

grains could be higher than expected. More research will be needed to better understand the 

kinetics of small molecule and allergen elution from pollen, and the corresponding diffusion 

rates in mucus to accurately model these local factors.

Based on our most extreme exposure model above (EX), the concentration of adenosine 

estimated is near physiological at 278 nM – about 2-fold lower than the previous estimate of 

500 nM.(Gilles et al. 2011) However, this would be an unlikely event, and is only possible 

due to a very high load of tree pollen exposure in one hour with rapid respiration. The data 

suggests that these high levels are much less likely to result from exposure to grass or weed 

pollens. On the other hand, the overall prevalence of allergen sensitization is not 100%, so 

perhaps local factors or the occasional very high dose may skew the balance of adenosine 

toward allergic disease in susceptible individuals.

Conclusions

Pollen extracts can be classified from NMR metabolomics data primarily based on sugar 

content and other metabolites. Adenosine was detectable in most pollens in the range of 5–

56 μM in 10mg of pollen/ml extract. Two primary factors appear to disfavor the hypothesis 

that pollen-derived adenosine is significant in allergic sensitization. First, the dose response 

of pollen-derived adenosine does not track with the prevalence of allergen sensitization. 

Second, the conditions required to generate a supra-physiological level of adenosine appear 

unlikely based on our exposure models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example NMR spectra of pollen extracts A) Birch, Betula pendula, representative of tree 

pollen extracts with the exception of B) Cypress, Cupresus arizonica representative of the 

Cupressaceae family of trees. C) Ragweed, Ambrosia artemisifolia similar to other weeds, 

and D) Timothy grass, Pheleum pretense, typical of other grasses. Isolated peaks of 

important compounds discussed in the text are annotated. DSS was added to all samples for 

standardization.
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Figure 2. 
Sugar content in the various pollens. A stacked bar graph presents the amount of myo-

inositol (purple), sucrose (green), glucose (red), and fructose (blue) measured in the pollen 

extracts. The abbreviations for the species names are shown in Supplementary Table 1.
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Figure 3. 
Principal component analysis of pollen extracts. A) Principal components 1 and 2 utilizing 

the quantity of all 52 metabolites from 26 pollens, 5 preparations per species: grasses (red 

x), weeds (blue o), and trees (green +). Dashed circles and names annotate the various 

clusters. B) Loading plot for principal components 1 and 2 of panel A. Important 

compounds are labeled. C) Principal components 1 and 2 using a log2 transform of 

metabolite concentrations (see text). D) Loading plot for principal components 1 and 2 of 

panel C. Important compounds are labeled.
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Figure 4. 
Adenosine concentration in the pollen extracts. ND refers to samples where adenosine was 

Not Detected. The abbreviations for the species names are shown in Supplementary Table 1.
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Figure 5. 
Pollen counts for various North American Cities over a recent 3 year period. Pollen count 

data in grains/m3 is overlayed for 3 consecutive recent years. See text for details. Count data 

is colored red for grasses, blue for weeds, and green for trees.
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