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Abstract

Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various 

proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs 

either through the outward budding of the plasma membrane or through the inward budding of the 

endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles 

upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular 

communication by contact with or by internalization of contents, either by fusion with the plasma 

membrane or by endocytosis into “recipient” cells. Although the interest in extracellular vesicle 

research is increasing, there are still no real standards in place to separate or classify the different 

types of vesicles. This review provides an introduction into this expanding and complex field of 

research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of 

extracellular vesicles.
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Introduction

Extracellular vesicles (EVs) are a heterogeneous family of membrane-limited vesicles 

originating from the endosome or plasma membrane. Pan and Johnstone (1983) were among 

the first to describe EVs. Initially, it was shown that the release of EVs was part of a disposal 

mechanism to discard unwanted materials from cells. Subsequent research has shown that 

the release of EVs is also an important mediator of intercellular communication that is 

involved in normal physiological process as well as in pathological progression (Frühbeis et 

al. 2012, 2013; Marcilla et al. 2012; Luga et al. 2012; Regev-Rudzki et al. 2013; Barteneva 

et al. 2013).
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EVs are currently classified based on their mode of release or size. EVs can be released by 

“donor” cells either through the outward budding of the plasma membrane, termed shedding 

microvesicles (MVs) or ectosomes (Minciacchi et al. 2015). Another release process 

involves the inward budding of the endosomal membrane, resulting in the formation of 

multivesicular bodies (MVBs), with exosomes released by fusion of the outer MVB 

membrane to the plasma membrane (Théry et al. 2009; Denzer et al. 2000). Vesicles may 

also be released from nanotubular structures extending from the plasma membrane (Rilla et 

al. 2013, 2014). In addition to the differences in the mode of release, the size of the vesicles 

is also used for characterization. Although different scales are used, MVs range from 50 to 

10,000 nm, and exosomes are smaller with a diameter of 30 to 150 nm (György et al. 2011; 

Baietti et al. 2012; Colombo et al. 2013). Overall EVs comprise a wide variety of vesicles 

ranging from 30 to 1000 nm in size with a variety of cargos, and the different types of 

vesicles overlap in their size distribution. It must be emphasized that there is some 

controversy on nomenclature and sizes of the different types of vesicles (Gould and Raposo 

2013; Witwer et al. 2013); however, basic requirements of criteria for EVs have been 

established (Lötvall et al. 2014). So far no real standards have been set to classify the 

different types of vesicles, so one should be careful with the use of size alone in defining 

different types of vesicles. In the future the mode of biogenesis, means of isolation and cargo 

may turn out to be far more important criteria. Given how the different isolation methods 

may influence the nature of EVs, methods should be compared in order to develop a gold 

standard for the different protocols and measurements (Momen-Heravi et al. 2012). To be 

able to compare results, it must be stressed that publications on EVs need to clarify their 

isolation methods in detail, and in general term, EVs should be used unless there are specific 

markers defined to classify the different types of vesicles.

So far, extensive evidence on all these different types of vesicles indicates that EVs are a key 

player in the inter-cellular communication between cells, along with secretion of small 

soluble molecules (the secretome) and cell–cell contact (Raposo and Stoorvogel 2013; 

Cocucci et al. 2009). Once released the EVs can be internalized via endocytosis or 

membrane fusion, releasing their contents into “recipient” cells (Mulcahy et al. 2014). 

Recent studies have shown that these EVs contain various proteins, sugars, lipids, and a 

wide variety of genetic materials, such as DNA, mRNA, and non-coding (nc)RNAs with the 

content protected from proteases and nucleases in the extracellular space by the limiting 

membrane (Henderson and Azorsa 2012; Théry et al. 2002). EVs have the potential to 

deliver combinatorial information to multiple cells in their tissue microenvironment and 

throughout the body (Baj-Krzyworzeka et al. 2006; Ratajczak et al. 2006; Skog et al. 2008).

This review provides an introduction into the world of EVs, focusing primarily subtypes 

labeled as exosomes and MVs, and discusses basics of the biogenesis, nucleic acid cargo 

loading, content, release, and uptake of these vesicles. Thus, it provides the necessary 

background for interpretation of the articles in this Special Issue on the role of EVs in the 

neurobiology and diseases of the nervous system.
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The Ins and Outs of EVs

Vesicle Biogenesis

As EVs have traditionally been classified based on differences in biogenesis, we will focus 

on the different molecular mechanisms resulting in either the release of vesicles upon the 

fusion of the MVBs with the plasma membrane or the release via the outward budding and 

fission of the plasma membrane (Akers et al. 2013).

Exosome Biogenesis

Exosomes are derived from the endosomal system, and are formed as intraluminal vesicles 

(ILVs) in the MVBs. This network of ILVs is used to degrade, recycle or exocytose proteins, 

lipids, and nucleic acids. Within the endosomal system or endocytic pathway, the endosomes 

are divided into different compartments—early endosomes, late endosomes, and recycling 

endosomes (Grant and Donaldson 2009). Endosomes form by invagination of the plasma 

membrane. The early endosomes can fuse with endocytic vesicles, at which point the 

content is destined for degradation, recycling or secretion. Contents to be recycled are sorted 

into recycling endosomes (Morelli et al. 2004). The remaining early endosomes transform 

into late endosomes (Stoorvogel et al. 1991). The late endosomes accumulate ILVs formed 

by inward budding of the endosomal membrane. During this process, cytosolic proteins, 

nucleic acids, and lipids are sorted into these small vesicles. Late endosomes containing a 

multitude of small vesicles are termed MVBs. These MVBs can either fuse with the 

lysosome if the content is fated for degradation or fuse with the cellular membrane releasing 

the ILVs as exosomes into the extracellular space (Grant and Donaldson 2009).

The formation of the ILVs within MVBs is the start of the biogenesis of exosomes. ILV 

formation requires two distinct processes. First, the endosome membrane is reorganized 

such that it becomes highly enriched for tetraspanins (Pols and Klumperman 2009). The two 

tetraspanins that are thought to play a critical role in exosome formation are CD9 and CD63. 

Second, the endosomal sorting complexes required for transport (ESCRTs) are recruited to 

the site of ILV formation (Wollert and Hurley 2010; Colombo et al. 2013). Four different 

ESCRTs have been identified, ESCRT 0, I, II, and III (Henne et al. 2011). ESCRT 0 

recognizes ubiquitinated proteins on the outside of the endosomal membrane (Raiborg and 

Stenmark 2009). ESCRT I and II are recruited to cytosolic side of the early endosomes via 

various stimuli. For example, ESCRT recruitment is stimulated by the presence of 

phosphatidylinositol 3-phosphate (PIP3), the hepatocyte growth factor-regulated tyrosine 

kinase substrate (HRS), the ubiquitination of the cytosolic tail of endocytosed proteins 

and/or the curved membrane topology (Tamai et al. 2010; Shields et al. 2009; Razi and 

Futter 2006; Katzmann et al. 2001; Bache et al. 2003; Fernandez-Borja et al. 1999). It has 

been suggested that ESCRT I and II are the initiators and drivers of the intraluminal 

membrane budding, whereas ESCRT III completes this process (Babst et al. 2002; Henne et 

al. 2013). In short, ESCRT I binds the ubiquitinated cargo on the endosomes, upon which 

ESCRT II is activated (Katzmann et al. 2001). In turn, ESCRT III is recruited through 

programmed cell death 6 interacting protein (PDCD6IP or ALIX), and associates with the 

tumor susceptibility gene 101 (TSG101) as part of the ESCRT I complex (Matsuo et al. 

2004; Baietti et al. 2012). To conclude, ALIX serves as intermediate between the association 
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between ESCRT I and ESCRT III, as it binds the TSG101 component of ESCRT I and the 

charged MVB protein 4A (CHMP4A) components of ESCRT III (McCullough et al. 2008). 

This process is finalized through the sequestration of MVB proteins and recruitment of a 

deubiquitinating enzyme, which removes the ubiquitin tag from the cargo proteins prior to 

sorting them into the ILVs. Finally, ESCRT-III is disassembled for recycling by AAA-

ATPase suppressor-of-potassium-transport-growth-defect-1 protein (SKD1) (Bishop and 

Woodman 2001; Benedetto et al. 2006) (Fig. 1a).

Recent evidence has revealed an alternative ESCRT pathway, the syndecansyntenin-ALIX 

pathway, where heparanase, syndecan heparan sulfate proteoglycans, ADP ribosylation 

factor 6 (ARF6), phospholipase D2 (PLD2), and syntenin mediate exosome biogenesis, 

including vesicle formation and loading of proteins (Baietti et al. 2012). The formation of 

ILVs is facilitated by the interaction of syntenin with ALIX and depends on the availability 

of heparan sulfate, syndecans, ALIX, and ESCRTs (Baietti et al. 2012). Heparanase 

stimulates release of exosomes containing syntenin-1, syndecan, and CD63 and facilitates 

endosomal membrane budding and the biogenesis of exosomes by enzymatic digestion of 

heparan sulfate chains on syndecans (Roucourt et al. 2015). This mode of ILV budding is 

controlled by ARF6 and PLD2 (Ghossoub et al. 2014) (Fig. 1b).

Although the ESCRT pathway is generally thought to be the main driver of exosomal 

biogenesis, different studies have shown the existence of ESCRT-independent exosome 

biogenesis. For example, inactivation of the ESCRTs does not inhibit the formation of 

MVBs (Stuffers et al. 2009). Other mechanisms of exosome biogenesis could operate in 

parallel to the ESCRT pathway and vary depending on the cell type and vesicle content. 

Trajkovic and colleagues (2008) found that the formation of ILVs through the inward 

budding of the limiting membrane of the MVBs required sphingolipid ceramide. This lipid 

could facilitate the membrane invagination of ILVs through its cone-shaped structure. The 

release of exosomes could even be reduced after the inhibition of neutral sphingomyelinase 

(nSMase), a protein responsible for the production of ceramide. Adding to this observation 

is the abundance of ceramide and its derivatives in exosomes, as well as the presence of 

proteolipoprotein (PLP), CD63, CD81, and TSG101 (Wubbolts et al. 2003; Brouwers et al. 

2013). However, in some cell types, e.g., human melanoma cells depletion of nSMase does 

not inhibit the formation of MVB or exosome release (Fig. 1b). To summarize, the 

difference in exosome content relates, at least in part, to the various machineries involved in 

exosome biogenesis (Fig. 1).

Exosome Release

Release of exosomes into the extracellular space is facilitated by the fusion of the MVB 

limiting membrane with the plasma membrane. Similar to the different mechanisms 

proposed for the biogenesis of exosomes, a variety of mechanisms have also been proposed 

for the release of exosomes. A number of Rab GTPases, including RAB11 and RAB35, or 

RAB27A and RAB27B, are recognized to play an important role. Release of exosomes 

through fusion of the MVB with the plasma membrane facilitated by RAB11 and RAB35 

was first found when screening with dominate-negative Rab GTPase mutants (Savina et al. 

2003; Hsu et al. 2010). The exosomes release via this mechanism are enriched in proteins, 
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such as flotillin and other cell-specific proteins, including Wnt, PLP, and the transferrin 

receptor (TfR) (Laulagnier et al. 2004) (Fig. 2a). The exosomes released via RAB27A/B are 

linked to late endosomal and secretory compartments and are enriched in late endosomal 

proteins (e.g., CD63, ALIX, and TSG101) (Stenmark 2009; Ostrowski et al. 2010). 

Interestingly, a different Rab GTPase, RAB7, is involved in the release of exosomes 

containing ALIX and syntenin by breast tumor cells (Baietti et al. 2012), although depletion 

of RAB7 does not affect exosome release in some other cells, e.g., HeLa cells (Ostrowski et 

al. 2010). In addition, some exosomes may be released through budding from the plasma 

membrane independently of Rab GTPases. For example, diacylglycerol kinase α(DGKα) 

has been shown to negatively control release of LAMP1/CD63 positive exosomes containing 

Fasligands (Alonso et al. 2007). But since DGKαis a negative regulator of MVB formation, 

the inhibition of exosome release could also result from decreased exosome generation 

(Alonso et al. 2011, 2007). SNARE proteins have been implicated in the membrane fusion 

of two organelles (Rao et al. 2004; Logan et al. 2006; Puri and Roche 2008; Tiwari et al. 

2008). One of the SNARE proteins, the vesicle-associated membrane protein 7 (VAMP7), 

has been described to stimulate the release of acetylcholinesterase-containing exosomes 

(Fader et al. 2009). To conclude, exosomes can be generated and released from different 

subtypes of endosomes by various mechanisms and harbor different cargos as a function of 

cell type and probably physiologic state (Fig. 2a).

Microvesicle Biogenesis and Release

The biogenesis of the MVs is far less defined as compared to exosomes. Biogenesis and 

release of MVs has been investigated in several cellular model systems. Different 

mechanisms are found to be responsible for the shedding of MVs. In general, these types of 

vesicles appear to be formed though the outward budding and fission of the plasma 

membrane (Fig. 2b). A combination of factors will result in the formation of MVs such as 

the redistribution of phospholipids, including the repositioning of phosphatidylserine to the 

outer leaflet, and contraction of the actin-myosin machinery (Akers et al. 2013). In detail, 

ADP-ribosylation factor 6 (ARF6) initiates a cascade that activates phospholipase D (PLD). 

Next, the extracellular signal-regulated kinase (ERK) is recruited to the plasma membrane, 

where it phosphorylates and activates the myosin light chain kinase (MLCK). Finally, the 

phosphorylation and activation of the myosin light chain by MLCK trigger the release of the 

MVs. These MVs have been described as being specifically loaded with ARF6, MHC-I, β1-

integrin, VAMP3, and MT1MMP (Muralidharan-Chari et al. 2009). Interestingly, a recent 

study provided evidence for the recruitment of the ESCRT-I subunit TSG101 to the plasma 

membrane through its binding to a tetrapeptide protein within the Arrestin 1 domain–

containing protein 1 (ARRDC1), resulting in the release of MVs containing TSG101, 

ARRDC1, and other cellular proteins (Nabhan et al. 2012; Tauro et al. 2012). The formation 

of these MVs required VPS4 ATPase with E3 ligase WWP2 interacting and ubiquitinating 

ARRDC1 (Nabhan et al. 2012). Furthermore, external factors can induce MV release. For 

example, the influx of calcium induces the redistribution of the phospholipids resulting in 

increased release of MVs (Bucki et al. 1998; Pasquet et al. 1996). In addition, hypoxia is 

been shown to promote MV release via HIF-dependent expression of RAB22A (Wang et al. 

2014). Again, the different mechanisms underlining the release of MV from the plasma 

membrane can be distinguished based on the content of the released MVs (Fig. 2b). Some of 
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these mechanisms are similar to those described for extracellular budding of virus particles, 

such as retroviruses (Gould et al. 2003), and, in fact, a substantial portion of EVs released 

from cancer cells are retrovirus-like particles (Akers et al. 2013; Balaj et al. 2011).

Contents of the Different Types of Vesicles

The contents of vesicles vary with respect to mode of biogenesis, cell type, and physiologic 

conditions. In general, all EVs are loaded with various proteins, lipids, and nucleic acids. 

The loading of the different types of cargo can be specific per vesicle and cell type. 

Extensive research has been carried out to characterize the content of EVs. This has resulted 

in the assembly of different databases collecting the datasets from the many EV studies. 

Three different databases are publicly accessible: Exocarta, Vesiclepedia, and EVpedia (Kim 

et al. 2013; Kalra et al. 2012; Mathivanan and Simpson 2009; Simpson et al. 2012; 

Mathivanan et al. 2012). All databases include the protein, nucleic acid, and lipid content 

together with the isolation and purification procedures used to generate the data. Here we 

give a broad overview of various cargos within EVs, with an emphasis on the nucleic acid 

content.

Protein Content

Comprehensive research has been done on the protein cargo of EVs, profiling the contents of 

different-sized vesicles produced by various cell types (Conde-Vancells et al. 2008; Demory 

Beckler et al. 2013; Gonzalez-Begne et al. 2009; Graner et al. 2009; Théry et al. 2001; 

Turiák et al. 2011). However, due to the variations in isolation techniques and the different 

cell types and culture conditions used to analyze the protein content, it is difficult to give a 

conclusive view of the protein composition of the different types of vesicles. Commonly 

found proteins in EVs are those associated with the mechanisms responsible for biogenesis, 

including proteins associated with the endosomal pathway. For example, components of the 

ESCRTs are enriched in the vesicle fraction, e.g., ALIX, TSG101. Additionally, proteins 

responsible for EV formation and release, such as RAB27A, RAB11B, and ARF6, are also 

commonly found. Moreover, EVs contain different types of tetraspanins, including CD63, 

CD81, and CD9, as well as proteins involved in signal trans-duction (EGFR), antigen 

presentation (MHC I and MHC II) and other transmembrane proteins (LAMP1, TfR). In 

general, proteins associated with the endoplasmic reticulum, Golgi, and nucleus are not 

found in EVs (Théry et al. 2001), but there have been reports of transcription factors inside 

EVs, e.g., Notch, Wnt, which are normally found in the nucleus (Kalra et al. 2012). Some 

research has gone into discovering principles of how proteins can be loaded into vesicles, 

which involves association with the plasma membrane as an oligomeric complex (Yang and 

Gould 2013). As mentioned before, the discrepancies between the different datasets and the 

different techniques used to analyze the content of the vesicles calls for standardization of 

isolation and analysis techniques to clarify the protein composition of the different EV 

subtypes, as well as the signals which enrich proteins in the EVs.

Lipid Content

In addition to the proteins within EVs, the lipid composition has been extensively studied in 

various settings (Van Blitterswijk et al. 1982; Carayon et al. 2011; Llorente et al. 2013). In 

general, the lipid composition share common features with the cells of origin. Although 
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further investigation has shown that some lipids can be specifically associated with different 

types of EVs. Lipids enriched in EV include sphingomyelin, cholesterol, ganglioside GM3, 

disaturated lipids, phosphatidylserine, and ceramide (Llorente et al. 2013). In contrast, 

phosphatidylcholine and diacylglycerol are decreased compared to the lipid membrane 

composition of the cell of origin (Laulagnier et al. 2004). More examples of lipid 

enrichment are found in vesicles derived from the MVBs which contain more 

phosphatidylserine facing the extracellular environment as compared to the cellular plasma 

membrane, a feature that may facilitate their internalization by recipient cells (Subra et al. 

2007; Fitzner et al. 2011). Although the lipid composition of MVs is highly similar to that of 

their donor cell, vesicles are unique in being enriched for polyunsaturated 

glycerophosphoserine and phosphatidylserine (Bicalho et al. 2013; Zaborowski et al. 2015). 

Overall, the membrane composition of both MVs and exosomes contains more 

phosphatidylserine as compared to the cellular plasma membrane composition. But the 

differences in lipid composition between the different types of vesicles reflect the biogenesis 

of the different types of EVs, either originating from the MVBs or the plasma membrane.

Nucleic Acid Content

A diverse composition of genetic material is found in EVs. In a small number of cases, DNA 

has been found, including genomic and mitochondrial DNA (Guescini et al. 2010; Balaj et 

al. 2011; Waldenström et al. 2012). But overall, EVs are primarily enriched with small 

RNAs, with many derived from ribosomal 18S and 28S rRNAs and tRNAs. Using various 

techniques, including next-generation sequencing, an abundance of small RNAs have been 

characterized. In addition to the commonly known RNA species, such as mRNAs, miRNAs, 

and rRNAs, long and short non-coding RNA, tRNA fragments, piwi-interacting RNA, vault 

RNA, and Y RNA have been found in EVs (Crescitelli et al. 2013; Cheng et al. 2013; Huang 

et al. 2013; Ogawa et al. 2013; Xiao et al. 2012; Nolte’T Hoen et al. 2012; Li et al. 2013) 

(Fig. 3a). Most of the RNA in EVs is around 200 nucleotides in length with a much smaller 

portion extending out to 4 kb (Batagov and Kurochkin 2013). So, although there appear to 

be some intact mRNA and long ncRNAs, most are probably fragmented, both in exosomes 

and MVs (Fig. 3a, b). Interestingly, circular RNAs are also enriched and stable in EVs (Li et 

al. 2015). Packaging of RNA within the lipid bilayer membrane is thought to protect it from 

RNase digestion once released into the extracellular environment (Fig. 3b). Alternatively, 

different RNA species can also be stably associated with ribonucleoproteins (RNPs), such as 

argonaute 2 (AGO2), or high- and low-density lipoproteins (HDLs and LDLs), which can be 

associated with the EVs or included with the EV fraction depending on the isolation 

procedure (Arroyo et al. 2011; Vickers et al. 2011; Vickers and Remaley 2012).

How Does RNA Get Packaged into EVs?

One of the surprising aspects of EV content has been that it has a somewhat different profile 

as compared to the RNA content of the cells from which it is derived (Skog et al. 2008; 

Pigati et al. 2010; Guduric-Fuchs et al. 2012; Jenjaroenpun et al. 2013). Since the discovery 

that specific RNAs are enriched in EVs, the search for selective loading mechanisms has 

been underway (Fig. 3c). In general, the RNA cargo of the EVs reflects the levels and types 

of cytoplasmic content, and is based on the biogenesis of the EVs and type and physiologic 

state of the cells releasing them. As such, it has been shown that miRNA are sorted to EVs 
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by cell-activation-dependent changes of miRNA target levels in the cell of origin. This was 

found by over-expressing miRNA target sequences, resulting in relative miRNA enrichment 

in P-bodies and depletion from MVBs and EVs. Conversely, overexpression of a miRNA 

enriches it in EVs (de Jong et al. 2012; Squadrito et al. 2014). In depth analysis of the 

contents of EVs shows that specific mRNA fragments are enriched, especially the 3′UTR 

fragment of mRNAs (Batagov and Kurochkin 2013). In addition, specific sequences were 

found to be associated with loading into EVs. For example, a sequence motif within the 

3′UTR of a number of mRNAs enriched in EVs may act as a “zipcode” that targets mRNAs 

into EVs. One potential zipcode consists of a 25 nucleotide sequence which contains a short 

CTGCC core domain on a stem-loop structure and carries a miR-1289 binding site 

(Bolukbasi et al. 2012). Interaction with this miRNA with the zipcode increases loading of 

RNAs containing this sequence.

Different mechanisms have been proposed for the cargo selection of miRNAs into EVs. 

First, a four nucleotide motif (GGAG) has been found to be enriched in miRNAs in 

exosomes and an interaction between this motif and the ribonucleoprotein (hnRNPA2B1) 

appears to be involved in loading these miRNAs into MVBs (Villarroya-Beltri et al. 2013). 

This RNP is also involved in the RNA transport in oligodendrocytes and must undergo a 

post-translational modification (sumoylation) prior to loading of miRNAs into EVs (Munro 

et al. 1999). Notably, miR-1289, the binding site for which is found in the zipcode for 

mRNA (Bolukbasi et al. 2012), contains the hexanucleotide motif found to be enriched in 

the miRNAs present in EVs (Villarroya-Beltri et al. 2013). Second, posttranscriptional 

modifications of miRNAs, in the form of 3′ end uridylation, appears to contribute to direct 

miRNA sorting into EVs whereas 3′-end adenylated miRNA isoforms are relatively 

enriched in cells (Koppers-Lalic et al. 2014). Third, over-expression of nSMase2 increased 

extracellular amounts of miRNAs. Since this protein is also involved in MVB biogenesis, 

this increase in miRNA in EVs could be due to an increase in exosome production (Kosaka 

et al. 2010). Fourth, AGO2, a protein associated with the RISC complex involved in RNA 

silencing, is thought to control the loading of miRNA into EVs (Guduric-Fuchs et al. 2012) 

and RNPs (Arroyo et al. 2011). Knockout of AGO2 decreases the amount of specific 

miRNAs in EVs, which are normally enriched in this fraction. Although the role of AGO2 in 

miRNA loading remains unclear, some studies report the absence of this protein in 

exosomes, but only found localized at the site of MVBs and endosomes inside cells 

(Gibbings et al. 2009), while others report AGO2 to be present in EVs (Li et al. 2012) (Fig. 

3c). The variations on the loading mechanisms of mRNA and miRNA show the complexity 

of EV research and the probable differences among EV content and vesicle subtypes among 

cells.

Uptake of EVs

So far, it has been proposed that the cells internalize EVs either by fusion with the plasma 

membrane or via endocytosis (Mulcahy et al. 2014). Uptake via endocytosis can be 

categorized into the different types of endocytotic processes, including clathrin-mediated 

endocytosis, caveolin-mediated endocytosis, lipid raft-mediated endocytosis, 

macropinocytosis, and phagocytosis. The uptake mode of EVs may be dependent on the type 

of cell and its physiologic state, and whether ligands on the surface of the EV recognize 
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receptors on the surface of the cell or vice versa. Different mechanisms of internalization 

have been described for different cell types. For example, clathrin-dependent endocytosis or 

phagocytosis in neurons, macropinocytosis by microglia, phagocytosis or receptor-mediated 

endocytosis by dendritic cells, caveolin-mediated endocytosis in epithelial cells, and 

cholesterol- and lipid raft-dependent endocytosis in tumor cells (Morelli et al. 2004; Barrès 

et al. 2010; Feng et al. 2010; Fitzner et al. 2011; Montecalvo et al. 2012; Frühbeis et al. 

2013; Nanbo et al. 2013; Svensson et al. 2013). An important factor in EV uptake is heparin 

sulfate proteoglycans (HSPGs) of the plasma membrane of the recipient cell as blocking this 

with heparin reduces the uptake of EVs in cell culture (Atai et al. 2013; Christianson et al. 

2013). Decreased EV uptake was also achieved by blocking the scavenger receptor type B-1 

(SR-B1) with a synthetic nanoparticle mimic of HDL (HDL NP) that binds SR-B1, resulting 

in the removal of cholesterol (Plebanek et al. 2015). Lastly, membrane fusion of EVs with 

the plasma membranes could serve as method of uptake; this requires low pH conditions 

which are found within tumors. The cellular uptake and cytosolic release of EV contents is 

enhanced by combining a pH-sensitive fusogenic peptide to promote the fusion of 

endosomal and EV membranes inside cells, thus releasing the EV content into the cytosol 

(Parolini et al. 2009; Nakase and Futaki 2015).

The mode of EV interaction with and/or entry into cells determines their functional effects. 

The EV membrane surface can trigger signaling through interaction with receptors/ligands 

on the cell surface without EV entry as, for example with EGFRvIII (Al-Nedawi et al. 

2008); Notch and RHEB (Patel et al. 2015); and IFN-γ/STAT (Cossetti et al. 2014). In many 

cases functionality of the EV contents depends on entry into the cytoplasm, and potentially 

even into the nucleus. Direct entry into the cytoplasm can be achieved by fusion of EVs to 

the plasma membrane of the recipient cells, but some form or endocytosis seems to be the 

most common mode of entry (Mulcahy et al. 2014). If the EVs enter by endocytosis, their 

cargo must exit that inherently degradative pathway, as endosomes mature into lysosomes, 

or be ejected out again through the MVB-plasma membrane fusion pathway. There must be 

a way through this maze, as so far, the functional transfer of nucleic acids has been 

described both in culture as well as in vivo (e.g., Pegtel et al. 2010; Ridder et al. 2014; Lai et 

al. 2015). The mechanism of effective transfer out of the endosomal compartment is still 

unclear. This process has been visualized using fluorescent probes labeling EVs in tumor 

and dendritic cells (Parolini et al. 2009; Montecalvo et al. 2012). A different approach 

utilized luciferin-loaded EVs internalization into cytosol containing luciferase which 

allowed monitoring of the fate of the cargo (Abrami et al. 2013). To conclude, different cell 

types are able to take up EV using various mechanisms resulting in either functional transfer 

of cargo or degradation of the EV content. The fate may be determined by cell-specific 

ligands/receptors that “direct the conversation.”

Conclusion

The field of EVs is expanding rapidly. Although a lot of new exciting findings and 

applications for EVs are being published, the need for general consensus on the mode of 

isolation, classification and contents of different EV subtypes remains to be determined. By 

developing more selective isolation techniques, it should be possible to distinguish between 

the different subpopulations of vesicles and define their biogenesis, cargo, and function more 
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precisely. Once accomplished, future research can focus on new methods to manipulate the 

biogenesis, content loading, composition, release, and interaction as a means not only for 

understanding the “language” of EVs, but also for the development of novel therapeutic 

strategies.
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Fig. 1. 
Molecular mechanisms of ESCRT-dependent and -independent MVB biogenesis. Multiple 

biogenesis machineries have been described for generating ILVs in MVBs. a ESCRT-

dependent MVB biogenesis requires the ESCRT protein and ESCRT-associated proteins 

(ALIX, TSG101, Chmp4, and SKD1) to form MVBs containing CD63, MHC II, 

ubiquitinated proteins and KFERQ-containing proteins. b Three ESCRT-independent 

pathways are controlled by different proteins: 1 heparanase and ARF6/PLD2, associated 

with the presence of syntenin-1, syndecan, and CD63 in exosomes; 2 nSMase, in which the 

exosomes are enriched with PLP, CD63, CD81, and TSG101 [Components in image derived 

from Servier Medical Art Powerpoint image bank (Servier 2016)]
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Fig. 2. 
Molecular machineries of EV release. a Proteins involved in controlling the fusion of MVBs 

with the outer membrane to the plasma membrane, resulting in release of exosomes. Five 

different machineries have been described so far; 1 RAB11 and RAB35 facilitate the fusion 

of MVBs to the plasma membrane, releasing exosomes containing PLP, Wnt, flotillin, and 

TfR; 2 RAB27A and RAB27B promote release of exosomes loaded with CD63, TSG101, 

and ALIX; 3 RAB7-dependent release yields release of exosomes harboring ALIX, 

synthenin, and syndecan; 4 DGKαprotein is implicated in release of exosomes carrying 

LAMP1, CD63, and Fas ligand; and 5 VAMP7 regulates the membrane fusion associated 

with release of acetylcholinesterase-containing exosomes release. b EV released via the 

outward budding and fission of the plasma membrane controlled by different proteins and 

extracellular signaling results in release of MVs with a distinct protein profile. Three 

pathways have been described including markers found in released MVs: a ARRDC1, 

TSG101, and VSP4 are responsible for the shedding of MVs containing TSG101 and 

ARRDC1; b hypoxia following expression of RAB22A via HIF, characterizes the secretion 

of EVs carrying TGM2; and c the ARF6, PLD, ERK, and MLCK cascade induces release of 

EVs containing gelatinases, ARF6, MHC-I, β1-integrin, VAMP3, and MT1MMP. 

[Components in image derived from Servier Medical Art Powerpoint image bank (Servier 

2016)]
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Fig. 3. 
RNA loading mechanisms and RNA species found in EVs. a A graphical representation of 

the different RNA species found in EVs including mRNA, miRNA, tRNA, rRNA, vault 

RNA, circRNA, Y RNA, lncRNA, and sncRNA. b Packaging of RNA within the lipid 

bilayer membrane is thought to protect it from RNase digestion once released into the 

extracellular environment. c Different mechanisms of mRNA and miRNA loading into EV 

as shown in the left panel include: the enrichment of miRNA in EVs due to cellular stress; 

hnRNPA2B1 binding to GAGG motif present miRNA; 3′ end uridylation of miRNAs/

increasing nSMase2 activity resulting in miRNA loading; the abundance of miRNA target 

mRNA transcripts in the cell and the binding of miRNA to lipids associated with EVs. 

Loading of mRNA or mRNA fragments is based on the presence of zipcode sequence and 

association with miR1289. [Components in image derived from Servier Medical Art 

Powerpoint image bank (Servier 2016)]
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