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Abstract

In this paper, we quantify the extent to which shoulder orientation, upper-arm electromyography 

(EMG), and forearm EMG are predictors of distal arm joint angles during reaching in eight 

subjects without disability as well as three subjects with a unilateral transhumeral amputation and 

targeted reinnervation. Prior studies have shown that shoulder orientation and upper-arm EMG, 

taken separately, are predictors of both elbow flexion/extension and forearm pronation/supination. 

We show that, for eight subjects without disability, shoulder orientation and upper-arm EMG 

together are a significantly better predictor of both elbow flexion/extension during unilateral (R2 = 

0.72) and mirrored bilateral (R2 = 0.72) reaches and of forearm pronation/supination during 

unilateral (R2 = 0.77) and mirrored bilateral (R2 = 0.70) reaches. We also show that adding 

forearm EMG further improves the prediction of forearm pronation/supination during unilateral 

(R2 = 0.82) and mirrored bilateral (R2 = 0.75) reaches. In principle, these results provide the basis 

for choosing inputs for control of transhumeral prostheses, both by subjects with targeted motor 

reinnervation (when forearm EMG is available) and by subjects without target motor reinnervation 

(when forearm EMG is not available). In particular, we confirm that shoulder orientation and 

upper-arm EMG together best predict elbow flexion/extension (R2 = 0.72) for three subjects with 

unilateral transhumeral amputations and targeted motor reinnervation. However, shoulder 
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orientation alone best predicts forearm pronation/supination (R2 = 0.88) for these subjects, a 

contradictory result that merits further study.
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1. Introduction

In this paper, we quantify the extent to which different combinations of shoulder orientation, 

upper arm electromyography (EMG), and forearm EMG are predictors of distal arm joint 

angles during arm movements. Prediction of these joint angles is useful for enabling 

position-based control of upper-limb prostheses [1, 2, 3, 4, 5]. In particular, the results of 

this study are important to improving simultaneous control of elbow flexion/extension and 

forearm pronation/supination in prostheses used by people with transhumeral amputations.

1.1. Prediction of Distal Arm Joint Angles Using EMG or Shoulder Orientation

Two prior studies have shown that shoulder orientation and upper arm EMG, taken 

separately, are predictors of both elbow flexion/extension and forearm pronation/supination. 

Pulliam et al. [6] used EMG recordings from the upper arm and chest to predict the angles of 

the elbow and forearm simultaneously. Specifically, they implemented a time-delayed 

adaptive neural network (TDANN) to predict the angles of elbow flexion/extension (EFE) 

and forearm pronation/ supination (FPS) [7, 8]. Their results showed that across multiple 

types of reaching movements (single-joint movements, single-joint movements with a load, 

simultaneous degree-of-freedom movements, and activities of daily living), the network 

could on average predict elbow flexion/extension within 10–15° and forearm pronation/

supination within 20–25° of their actual values. A separate study by Kaliki et al. [9] suggests 

that when reaching, distal arm kinematics can be predicted by using shoulder orientation as 

the input to a cascade correlation neural network. In this study, subjects were seated and 

asked to reach to a vertical handle that moved to uniformly distributed positions in the 

subjects reaching workspace. Motion capture was used to determine the joint angles at the 

shoulder. Their network resulted in R2 values above 0.7, denoting a strong correlation.

1.2. Combining EMG and Shoulder Orientation for Prediction

Preliminary results from a single subject without disability have suggested that the 

combination of shoulder orientation and EMG can improve the accuracy of estimating distal 

arm joint angles [10]. Blana et al. [1] showed that subjects without disability could control a 

virtual arm using EMG and arm kinematics, suggesting that this combination of inputs could 

be feasible for prosthesis control. However, they did not quantify the extent to which this 

combination outperforms EMG and kinematic inputs individually, nor did they test their 

control strategy on subjects with amputations. In this paper, we compare the performance of 

our predictors for eight subjects without disability and three subjects with unilateral 

transhumeral amputations and targeted reinnervation when using shoulder orientation, upper 

arm EMG, forearm EMG, and combinations of these as inputs. In principle, these results 

Akhtar et al. Page 2

J Electromyogr Kinesiol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provide the basis for choosing inputs for control of transhumeral prostheses, both by people 

with targeted motor reinnervation (when forearm EMG is available) and without 

reinnervation (when forearm EMG is not available).

1.3. Simultaneous Control of Multiple Degrees of Freedom

The results of this study are important in enabling simultaneous control of distal arm joint 

angles in upper limb prosthetic devices. Simultaneous control of multiple degrees of 

freedom in the arm are required to easily complete activities of daily living, such as pouring 

water from a bottle or reaching for objects [2]. Muceli and Farina [2] and Jiang et al. [3] 

have shown that wrist kinematics during mirrored movements of multiple degrees of 

freedom simultaneously could be predicted using neural networks from forearm EMG, 

which would be useful for people with transradial amputations to control a prosthetic hand. 

Ameri et al. [4, 5] used support vector regression and artificial neural networks to estimate 

multiple wrist joint angles and forces in subjects without impairment. Young et al. [11] 

classified simultaneous hand movements using EMG-based pattern recognition. Our work 

looks at predictors for elbow and forearm joint angles from EMG and shoulder orientation in 

order to enable simultaneous control of prostheses for people with transhumeral 

amputations.

It should be noted that the prediction of the distal arm joint angles was done in an offline 

context—data collected from subjects were not used in real-time for myoelectric control. 

Jiang et al. [12] have shown that when simultaneous control of hand kinematics is performed 

online in real-time, predictors that performed significantly differently in offline studies gave 

similar performances in online tasks, with respect to R2. We discuss this limitation of our 

study in Section 4.4.

1.4. Outline of Paper

The paper is organized as follows. In Section 2, we explain the methods used for acquiring 

upper arm EMG and arm joint angles during reaching, as well as the predictors we use for 

estimation. In Section 3, we present the results of the predictors in estimating the distal arm 

joint angles using different inputs consisting of EMG, shoulder orientation, and their 

combinations. We give recommendations on choosing inputs for transhumeral prosthetic 

controllers as well as discussing the rationale for these recommendations in Section 4, 

followed by our overall conclusions in Section 5.

2. Methods

Eight adult subjects (ages 20–25, four male, four female) without disability and three adult 

subjects (ages 28–48, three male) with unilateral right transhumeral amputations and 

targeted motor reinnervation (TMR) surgery volunteered for the experiments. Subjects were 

asked to perform a standard center-out reaching task [1, 13], simultaneously actuating elbow 

and forearm joint angles to achieve various target arm configurations (Fig. 1). Subjects 

without disability were used as controls and performed two experiments on separate days. In 

the first experiment, the control subjects were asked to make unilateral reaches with their 

right arms, while in the second experiment they were asked to make mirrored bilateral 
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reaches. Finally, the TMR subjects participated in an experiment in which they were asked 

to perform mirrored bilateral reaches as though both of their arms were unimpaired. Further 

details for the three experiments are given below. All subjects gave informed consent to 

participate in this research study and to have their data published. The study was approved 

by the Institutional Review Board at the University of Illinois at Urbana-Champaign (IRB 

#12823).

2.1. Experimental Setup

2.1.1. Control: Unilateral Reaches with Ipsilateral EMG Placement—The control 

subjects were seated in a chair, placing their right forearms on their laps, palms down, 

elbows bent at 90° with respect to the humerus. Subjects were asked to make four types of 

center-out reaches, as shown in Fig. 1a. The reaching types can be described as 1) full 

length, forearm supinated (open hand with thumbs pointing up), 2) half length, forearm 

supinated, 3) full length, forearm pronated (open hand with thumbs pointing down), and 4) 

half length, forearm pronated). The subjects were asked to perform each type of reach to 

four mediolateral locations at three heights for a total of 12 reaches per type (Fig. 1b). The 

four mediolateral locations were across the body, directly in front, 45° lateral to the front, 

and directly out to the side. The heights were at waist, shoulder, and eye levels. Subjects 

were asked to hold the reach for a count of three seconds before returning to the start 

position. As soon as the subject completed the 12 reaches for a particular type, recording 

stopped. All 48 of these reaches were repeated twice. The first set of 48 reaches was used as 

the training dataset, and the repeated second set of 48 reaches was used as the testing dataset 

so that each dataset had the same representative reaches for evaluation. Like in [9], a single 

testing set was used to test the generalizability of our estimation techniques. Finally, a 

validation reaching set was taken in which the subjects randomly selected and performed as 

many of the reaches from the prior sets as they could within 30 seconds.

Thirteen bipolar surface EMG electrodes (Delsys, Inc. 16-channel Bagnoli system) were 

positioned on the right arm of each subject: three on the anterior, middle, and posterior 

deltoid, two on the long and short heads of the biceps, two on the long and lateral heads of 

the triceps, and six equidistant around the circumference of the forearm. The subjects wore a 

wrist brace to restrict wrist movement during reaching tasks.

An OptiTrack motion capture system (NaturalPoint, Inc., Corvallis, OR) was used to 

determine the location of bony landmarks. Specifically, reflective markers were placed over 

the radial styloid, ulnar styloid, lateral epicondyle, olecranon, and acromion. From the 

locations of these markers, the angles for the shoulder, elbow, and forearm were calculated 

according to ISB standards [14]. Rotation about the global x, y, and z axes corresponded to 

shoulder abduction/adduction, internal/external rotation, and flexion/extension, respectively. 

Rotation about the forearm’s y-axis (the vector formed from the lateral epicondyle to ulnar 

styloid) corresponded to forearm pronation/supination, and rotation about the z-axis of the 

humerus (the cross product of the forearm’s y-axis and the vector formed from the lateral 

epicondyle to acromion) corresponded to elbow flexion/extension. The coordinate frames 

are shown in Fig. 1b. Clinically meaningful Euler angles were extracted to determine the 
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orientation for the shoulder (YXY) and the forearm (ZXY) according to ISB standards. A 

hardware trigger was used to sync the recording of motion capture and EMG data.

2.1.2. Control: Mirrored Bilateral Reaches with Contralateral EMG Placement—
To more closely match the experimental conditions used with the TMR subject, control 

subjects were asked to participate in a second experiment in which they performed bilateral 

mirrored reaching movements. The reaches performed were the same as the unilateral 

reaches, but they were mirrored with the left arm so that the shoulder, elbow, and forearm 

joint angles would match. Training using mirrored bilateral movements has been 

successfully implemented in previous studies to estimate arm forces [15] and hand 

kinematics [2, 16, 17] using EMG from the contralateral arm.

Motion capture markers were placed on the left arm, while EMG was recorded on the 

contralateral arm in order to match experimental conditions to be used with the TMR 

subjects. However, because standard practice is to use bony landmarks to compute joint 

angles, and in the case of the TMR subjects all the bony landmarks used to compute 

shoulder angles were only present in their umimpaired left arms, shoulder markers were 

placed on the left arm for both the control subjects and TMR subjects rather than the 

contralateral arm. For control subjects, when performing reaches where each arm crossed the 

midline of the body, the right arm crossed under the left arm in order to prevent occlusion of 

the markers on the left.

2.1.3. TMR Subject: Mirrored Bilateral Reaches with Contralateral EMG 
Placement—For the TMR subject, the arm movements performed were the same as the 

mirrored bilateral reaches with contralateral EMG placement for the control subjects. Eleven 

EMG sensors were placed on the impaired right arm: three on the anterior, middle, and 

posterior deltoid, one on the long head of the biceps, one on the reinnervated short head of 

the biceps used for closing the hand, one on the long head of the triceps, one on the 

reinnervated lateral head of the triceps used for opening the hand, and four placed near the 

reinnervated sites used for pattern recognition to control forearm pronation/supination, wrist 

flexion/extension, as well as various hand grips. Electrodes were not placed on the 

unimpaired ipsilateral side since we had a limited number of electrodes and would expect 

those results to be similar to those of the control subjects performing unilateral reaches with 

ipsilateral EMG placement. Due to the absence of the distal portion of the right arm, the 

TMR subjects did not need to place their impaired right arms underneath their left arms 

when performing mirrored reaches across the body—instead, they were kept at the same 

height.

2.2. Data Processing

All data were processed using MATLAB (MathWorks, Inc., Natick, MA). EMG data were 

recorded at 1000 Hz. After acquisition, the data were filtered with a 5th-order Butterworth 

high-pass filter with a cutoff frequency of 10 Hz to remove movement artifacts. The EMG 

data were windowed at 200 ms with an overlap of 75 ms to make an effective timestep of 

125 ms. Four time-domain features were extracted from each channel: mean absolute value, 

waveform length, number of zero crossings, and number of slope sign changes [6, 18].
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Motion capture data were recorded at 100 Hz. After the motion capture data were cleaned, 

the data were filtered using a 4th-order Butterworth high-pass filter with a cutoff frequency 

of 15 Hz to remove movement artifacts. To reduce data size, the data were then 

downsampled to 8 Hz to match the effective timestep of the post-processed EMG data. To 

allow a full window width for the EMG data, the first sample was offset to 200 ms before 

sampling every 125 ms afterwards. The three Euler angles for the shoulder and two for the 

elbow and forearm were then extracted.

The data were arranged into sets of predictors and targets for the estimation techniques. The 

predictors consisted of the shoulder orientation angles, upper arm EMG, EMG from TMR 

sites (or their anatomical analogues in control subjects), and their combinations. The targets 

were the two forearm Euler angles described previously, corresponding to EFE and FPS.

2.3. Estimation Techniques

Two nonparametric estimation methods were separately used to predict EFE and FPS: locally 

weighted projection regression (LWPR) and a time-delayed adaptive neural network 

(TDANN).

2.3.1. Locally Weighted Projection Regression (LWPR)—LWPR [19] is a form of 

nonlinear regression suited especially for data with a high number of input dimensions that 

include redundant or uninformative dimensions. Consequently, a separate dimensionality 

reduction step is not necessary. Since our input dimensions range from 3 (shoulder angles 

only) to 55 (shoulder angles, upper arm EMG, and forearm EMG), LWPR is particularly 

useful for our data. The input space is divided into a number of local receptive fields over 

which linear regression is performed. LWPR has been used in previous studies to estimate 

the grasping force of a prosthetic hand using EMG [20]. We used the version 1.2.4 of the 

LWPR library written in C with MATLAB bindings from the University of Edinburgh [21]. 

Because of the differences in input dimension sizes, the initial distance metrics were tuned 

for each set of inputs. A grid optimization search between 10 to 300 in steps of 10 was used 

to find the optimal size of the initial distance metric. The initial distance metric that worked 

best for shoulder orientation only was a diagonal matrix of ones, size 250 × 250. For all the 

other inputs, a diagonal matrix of ones, size 20 × 20, generally gave the best performance. A 

Gaussian kernel was used for the activation function of each receptive field. A grid 

optimization search for the weight activation threshold and pruning weight was performed 

with values ranging from 0.1 to 1.0 in steps of 0.1. A weight activation threshold of 0.2 and 

a pruning weight of 0.7 generally gave the best performance.

2.3.2. Time-Delayed Adaptive Neural Network (TDANN)—A two-layer TDANN was 

created using MATLAB’s neural network toolbox. This type of network was used to 

effectively capture the sequential nature of motion capture and EMG time-series data. The 

network used a hidden layer size of 20 and had an input delay of 7, found to be optimal to 

predict distal arm joint angles in [6], making a separate dimensionality reduction step 

unnecessary. Initial weights and biases were randomly assigned. Data were split into 

training, testing and validation sets, as previously described in Section 2.1.1. To prevent 
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overfitting, the network would stop after 1000 weight updates or earlier if the performance 

of the validation set failed to improve after five weight updates.

2.4. Analysis

Root mean square error (RMSE) and the coefficient of determination (R2) are standard 

metrics used to assess the performance of joint angle estimation [6, 9, 10]. RMSE is reported 

in degrees and the lower the value, the better the fit to the data. We calculate RMSE as 

follows:

where xt is the actual joint angle at data point t,  is the estimated joint angle at data point t, 
and N is the total number of data points. R2 indicates the amount of variance explained by 

the estimation model, and ranges from 0 to 1. Values higher than 0.7 indicate a strong fit to 

the data. We calculate R2 as follows:

where xt is the actual joint angle at data point t,  is the estimated joint angle at data point t, 
 is the average of xt over all N data points, and N is the total number of data points.

3. Results

Results for control subjects with ipsilateral EMG placement are shown in Table 2. The 

following abbreviations will be used in describing the input feature sets: SO=shoulder 

orientation, U=upper arm, F=forearm. Combinations of inputs are denoted with a + symbol. 

Across all estimation techniques, the best performance in estimating EFE was given by the 

combination of shoulder orientation and upper arm EMG, SO+EMGU, when using LWPR 

(RMSE=10.65, R2=0.72). The combination of all inputs—shoulder orientation, upper arm 

EMG, and forearm EMG (SO+EMGU+F)—also performed well with an RMSE=10.87 and 

R2=0.7. For FPS, the best performance was given by SO+EMGU+F using LWPR 

(RMSE=21.35°, R2=0.82). EMGU+F and SO+EMGU also showed strong performances with 

mean R2 values of 0.74 and 0.77, respectively. An example of the LWPR estimation of EFE 

and FPS for a single reach is shown in Fig. 2.

Similar results were achieved for control subjects performing mirrored bilateral reaches, as 

shown in Table 3. Specifically, using SO+EMGU as inputs in LWPR again gave the best 

performance in estimating EFE (RMSE=11.09, R2=0.72), followed closely by SO+EMGU+F 

(RMSE=11.38, R2=0.71). In estimating FPS, SO+EMGU+F again gave the best performance 

(RMSE=25.42, R2=0.75).
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Table 4 shows the results for the TMR subjects when performing mirrored bilateral reaches. 

Similar to the control subjects, SO+EMGU using LWPR performed the best for estimating 

EFE (RMSE=12.12, R2=0.72). All the inputs combined performed almost as well 

(RMSE=12.61, R2=0.71). For estimating FPS, the best performance was achieved by SO 

alone (RMSE=12.07, R2=0.88) and the subsequent addition of EMG inputs to shoulder 

orientation had degraded performance. This result is in contrast to the performance of the 

estimators for control subjects, in which the combination of all inputs performed best. Figure 

3 shows the performance of LWPR using SO+EMGU as the input feature set for EFE, and 

SO as the feature set for FPS.

ANOVAs were used to statistically evaluate the performance of each set of input features. 

For control subjects, a total of four three-way ANOVAs with repeated measures were 

performed, comparing RMSE and R2 values for both estimated joint angles. Within-subject 

factors were input feature set (SO, EMGU, EMGU+F, SO+EMGU, SO+EMGU+F), estimator 

(LWPR, TDANN), and laterality (unilateral, bilateral). For TMR subjects, a total of four 

two-way ANOVAs with repeated measures were performed, again comparing RMSE and R2 

values for both estimated joint angles. The same within-subject factors as with the control 

subjects were analyzed, except for laterality due to amputation. Greenhouse-Geisser 

corrections were applied as necessary and the significance level was 0.05. Post-hoc analysis 

was performed using paired t-tests with Bonferroni corrections.

3.1. Control: Elbow Flexion/Extension

For EFE in control subjects, we a found significant main effect of input feature set for both 

RMSE (F(4, 28) = 7.48, p ≪ 0.001) and R2 (F (4, 28) = 6.28, p = 0.001). When comparing 

input feature sets, pairwise t-tests with a Bonferroni correction applied to the confidence 

intervals showed that SO+EMGU performed significantly better than SO (p < 0.05) in 

RMSE and R2, and performed better than EMGU (p < 0.05) in RMSE. SO+EMGU+F 

performed better than EMGU (p < 0.05) in RMSE and R2. A significant main effect of the 

estimator was also found, with LWPR outperforming the TDANN in both RMSE (F(1, 7) = 

62.44, p ≪ 0.001) and R2 (F(1, 7) = 85.75, p ≪ 0.001).

In addition, there was a significant interaction between the estimator and the input feature 

set (F(4, 28) = 2.98, p < 0.05) for both RMSE and R2. As the number of input features 

increased, LWPR increasingly outperformed the TDANN. Finally, there was also a 

significant interaction between laterality, estimator, and input feature set (F(4, 28) = 3.32, p 
< 0.05) for R2. For a given estimator and input feature set, unilateral reaches performed 

better than bilateral reaches.

3.2. Control: Forearm Pronation/Supination

For FPS in control subjects, there was a significant main effect of the input feature set for 

both RMSE (F(1.52, 10.63) = 6.94, p < 0.05) and R2 (F(1.52, 10.64) = 7.57, p < 0.05). 

Pairwise tests showed that SO+EMGU+F performed significantly better than EMGU in both 

RMSE and R2 (p < 0.005) and EMGU+F in R2 (p = 0.05). SO+EMGU performed 

significantly better than EMGU (p < 0.05) in both RMSE and R2, and EMGU+F performed 

significantly better than EMGU (p = 0.01) in R2. As before, there was a significant main 
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effect of the estimator in RMSE (F(1, 7) = 50.51, p ≪0.001) and R2 (F(1, 7) = 131.55, p ≪ 
0.001) and a significant interaction between the estimator and input feature set in RMSE 

(F(4, 28) = 4.82, p < 0.005) and R2 (F(4, 28) = 4.52, p < 0.01). Again, LWPR outperformed 

the TDANN, especially as the number of input features increased. While unilateral reaches 

typically gave better performance than the bilateral reaches, statistical significance was not 

achieved.

3.3. TMR Results

For EFE in TMR subjects, there was a significant main effect of the input feature set for both 

RMSE (F(4, 8) = 4.44, p < 0.05) and R2 (F(4, 8) = 17.49, p = 0.001). Pairwise tests showed 

that SO+EMGU performed significantly better than EMGU+F (p < 0.05) and SO+EMGU+F 

performed significantly better than EMGU (p < 0.05), with respect to R2. A significant main 

effect for the estimator was found (F(1, 2) = 19.51, p < 0.05), with LWPR outperforming the 

TDANN in RMSE. No significant interaction was found between input feature set and 

estimator.

For FPS in TMR subjects, there was also a significant main effect of the input feature set for 

both RMSE (F (4, 8) = 57.10, p ≪ 0.001) and R2 (F (4, 8) = 36.13, p ≪ 0.001). SO alone 

performed significantly better than EMGU (p < 0.05) for RMSE, and SO+EMGU+F 

performed significantly better than EMGU (p < 0.005) for RMSE and EMGU+F for R2 (p < 

0.05). While LWPR outperformed the TDANN in most cases, there was no significant main 

effect of the estimator or interaction between the estimator and the input feature set.

4. Discussion

4.1. Recommendations for Control of Elbow Flexion/Extension

In designing controllers that predict elbow flexion/extension for people with transhumeral 

amputations, we make the following recommendations for choosing inputs:

• Use a combination of shoulder orientation and upper arm EMG for the best 

performance.

The results in control subjects (Results – Control: Elbow Flexion/Extension 

section, Tables 2a & 3a) and the TMR subjects (Results – TMR Results section, 

Table 4a) point to this set of inputs producing the lowest RMSE and highest R2 

values. These results also provide evidence to support a previous result suggested 

in [10]. The addition of forearm EMG did not provide any statistically significant 

difference in performance—in fact, performance slightly decreased in most 

cases.

• If only shoulder angle or upper arm EMG can be chosen, choosing either one 

will give similar results.

The results in control subjects (Results – Control: Elbow Flexion/Extension 

section, Tables 2a & 3a) and the TMR subjects (Results – TMR Results section, 

Table 4a) show the similarity in RMSE and R2 values between these inputs and 

there was no statistically significant difference.
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The addition of forearm EMG did not aid significantly in improving estimation, most likely 

because the EMG signals acquired from the forearm region are largely irrelevant in the EFE 

movement. While brachioradialis, a known elbow flexor, may have shown up in the EMG, 

its contribution was likely greatly overshadowed by the biceps brachii EMG signals. 

Furthermore, the brachioradialis muscle was not specifically targeted for EMG recording, 

since forearm electrodes were arranged to mimic TMR sites, and not target specific muscles. 

As a result, the addition of forearm EMG channels may have reduced the accuracy of the 

estimators by not allowing them to achieve more optimal weights for more relevant input 

features. An advantage of omitting forearm EMG as an input is that the recommended input 

set of shoulder orientation and upper-arm EMG can be chosen for most people with 

transhumeral amputations, even if they lack targeted reinnervation.

4.2. Recommendations for Control of Forearm Pronation/Supination

In designing controllers that predict forearm pronation/supination for people with 

transhumeral amputations, we conclude the following for choosing inputs:

• We cannot make a clear recommendation due to conflicting results between 

control subjects and TMR subjects. However, the results in TMR subjects point 

to using shoulder orientation for best performance.

In TMR subjects (Results – TMR Results section, Table 4b), shoulder orientation 

produces the lowest RMSE and highest R2 values. In contrast, the results in 

control subjects (Results -Control: Forearm Pronation/Supination, Tables 2b & 

3b) point to shoulder orientation in combination with upper arm EMG and 

forearm EMG producing the best performance. Consequently, the results in 

control subjects do not corroborate the findings for TMR subjects and merit 

further study, discussed below.

For the control subjects, placing extra EMG channels around the forearm helped to improve 

estimator performance. We expect to see this improvement since the muscles that control 

FPS are located where the forearm electrodes were placed. Even in the absence of forearm 

EMG, however, the combination of shoulder orientation and upper arm EMG performed 

significantly better than each of those inputs individually. In both unilateral and bilateral 

reaches, SO+EMGU was able to achieve R2 values greater than 0.7, indicating a strong fit. 

Based on these results, we would have recommended that all available inputs (EMG and 

shoulder orientation) be used when designing controllers that predict pronation/supination 

for people with transhumeral amputations both with and without reinnervation.

However, for all three TMR subjects, both estimators performed best in predicting FPS when 

using only shoulder orientation as the input. In fact, in all three subjects, the addition of 

EMG to shoulder orientation decreased performance, as can be seen in Fig. 3d. There are 

three potential reasons why these results may conflict with those of control subjects. First, 

since the anatomy of the subjects’ TMR sites are very different from an unimpaired forearm, 

it is likely that EMG from reinnervated nerves that would correspond to controlling FPS may 

not be as strong as that from forearm muscles. Second, EMG signals corresponding to FPS 

over TMR sites may not be as clear when performing simultaneous movements with other 

degrees-of-freedom when compared to sequential, single degree-of-freedom movements 
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[22]. Third, since the subjects have been trained to control their prostheses by using 

sequential, single degree-of-freedom movements, they may have lost the ability to 

coordinate FPS movements with other joints. This loss of coordination would affect the 

quality of the EMG signals from reinnervated sites when performing simultaneous multiple 

degree-of-freedom movements. Extensive training with simultaneous movements prior to 

performing the experiments may help mitigate these differences from control subjects, 

which would improve the subject’s musculature and coordination when performing these 

reaches, thereby improving the EMG signal quality.

The conflicting results emphasize the need to perform studies that include subjects both with 

and without amputation, given their differences in anatomy and limb control strategies.

4.3. Methodological Differences from Prior Studies

There were two key differences between our study and those of Pulliam et al. [6] and Kaliki 

et al. [9]. The first difference involves the use of mirrored bilateral reaches in addition to 

unilateral reaches. The second difference was the use of LWPR in addition to the TDANN 

for methods of prediction. Both of these differences were important in determining the 

recommendations given in Sections 4.1 and 4.2.

In order to find the best performing set of inputs among EMG and shoulder orientation for 

prediction, multiple methods of prediction should be tested. The studies of Pulliam et al. [6] 

and Kaliki et al. [9] predicted distal arm joint angles only using a neural network. However, 

to find the best performing set of inputs, we included LWPR for prediction. In our study, not 

only did LWPR generally outperform the TDANN in prediction of the joint angles, but the 

statistically significant differences between input sets we reported were only apparent in 

LWPR. Across all of the experiments, 15 of the 18 sets of inputs that achieved R2 values 

greater than 0.7 occurred when using LWPR as the predictor. As a result, had we only used 

the TDANN for prediction, we would have drawn incorrect conclusions with respect to the 

best performing inputs.

In order to evaluate the performance of predictors on subjects with an amputation, mirrored 

bilateral reaches must be used. The studies of Pulliam et al. [6] and Kaliki et al. [9] predicted 

distal arm joint angles using only unilateral reaches on unimpaired subjects—sensors used in 

prediction were placed on the same arm as the predicted joint angles. However, due to 

amputation, mirrored bilateral reaches are necessary for training a person with an 

amputation, measuring distal arm joint angles on the unimpaired arm. Consequently, our 

study also looked at the performance of mirrored bilateral reaches in control subjects. While 

the estimation for unilateral reaches statistically significantly outperformed those of the 

mirrored bilateral reaches, the estimators still performed strongly in the bilateral case, since 

the best results in the mirrored bilateral experiments with control subjects still achieved R2 

values greater than 0.7. In addition, for the TMR subjects, who also performed bilateral 

mirrored reaches, the best LWPR estimation performs better than all the average RMSE and 

R2 values with the control subjects.
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4.4. Expectations for Closed-Loop Control

The relationship between offline performance metrics and online, real-time performance for 

myoelectric control systems is an emerging area of research and there are currently 

conflicting results in the literature. Jiang et al. [12] showed that differences in offline 

performance, measured through R2, do not correlate—or at best correlate only weakly—to 

changes in online performance [12]. However, a study by Ameri et al. [4] showed consistent 

differences in performance in both offline joint angle estimates evaluated using R2 and 

online performance metrics when comparing two types of multiple degree-of-freedom 

prosthetic control paradigms. Given the nebulous relationship between offline and online 

performance, it is possible that R2 may not necessarily be the best predictor of online 

performance. Consequently, our results warrant further study and validation with online 

performance.

One way to implement a controller based on the techniques used in this paper is as follows. 

First, sufficient simultaneous kinematic and EMG training data would need to be collected 

with the patient, which can be done similarly to our training process. An inertial 

measurement unit mounted in the socket could replace the motion capture system to retrieve 

joint angles. A movement onset classifier (for example, using Linear Discriminant Analysis 

on the kinematic and EMG measurements) could be used to detect the onset of a movement. 

Upon classification of movement, an independent joint controller would move the prosthesis 

to the correct position and orientation based on the measured joint angles and EMG. The 

movement onset classifier would also help to smooth out noisy predictions during periods of 

no movement produced by our estimator, which can be seen in Figs. 3a–3b.

5. Conclusions

In this paper we have shown that by combining the inputs of shoulder orientation and EMG 

we can achieve better results in predicting the angle of elbow flexion/extension and forearm 

pronation/supination in reaching movements. We showed that when estimating elbow 

flexion/extension, the best results will be achieved when combining shoulder orientation 

with upper arm EMG. This result was further validated in three subjects with transhumeral 

amputations and targeted muscle reinnervation. In control subjects we showed that a 

combination of shoulder orientation, upper arm EMG, and forearm EMG representing 

reinnervation sites performs the best in estimating forearm pronation/supination. These 

results did not match the best performing input set for the reinnervated subjects (shoulder 

orientation). We suspect this mismatch is due to differences in musculature and the need for 

more training with simultaneous movements, though further study is necessary.

Anonymized raw data files containing EMG and motion capture data during arm movements 

from subjects, as well as the code to analyze the data, can be found at http://

bretl.csl.illinois.edu/prosthetics
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Figure 1. 
Reaching locations and types. The four different types of reaches are shown in (a). The 

starting position of the arms and targets are shown in (b) with three heights (top) an four 

mediolateral locations (bottom). A total of 48 reaches are made for the training set and 

repeated again for the testing set.
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Figure 2. 
Control (unilateral) single-reach joint angle prediction. Example reach showing the 

performance of LWPR with different input feature sets for (a) EFE and (a) FPS. The actual 

joint angle trajectory is shown in a solid black line, while the best performing input feature 

set is shown with a solid colored line. The other feature sets are dashed.

Akhtar et al. Page 16

J Electromyogr Kinesiol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
TMR subject joint angle prediction. Joint angle LWPR estimation for a TMR subject for (a) 

EFE, with a single reach shown in (b), and (c) FPS, with a single reach shown in (d). The best 

performing input is plotted with a solid line (shoulder orientation combined with upper arm 

EMG for EFE and shoulder orientation for FPS).
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Table 1

List of notation.

Abbreviation Meaning

EMG Electromyography

TMR Targeted Motor Reinnervation

EFE Elbow Flexion/Extension

FPS Forearm Pronation/Supination

TDANN Time-Delayed Adaptive Neural Network

LWPR Locally-Weighted Projection Regression

RMSE Root Mean Square Error

R2 Coefficient of Determination

SO Shoulder Orientation

EMGU Upper Arm EMG

EMGU+F Upper Arm EMG + Forearm/Reinnervated EMG

SO+EMGU Shoulder Orientation + Upper Arm EMG

SO+EMGU+F Shoulder Orientation + Upper Arm EMG + Forearm/Reinnervated EMG
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