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The folding competence of HIV-1 Tat mediated by interaction with TAR RNA
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ABSTRACT
The trans-activator Tat protein of HIV-1 belongs to the large family of intrinsically disordered proteins
(IDPs), and is known to recruit various host proteins for the transactivation of viral RNA synthesis. Tat
protein interacts with the transactivator response RNA (TAR RNA), exhibiting RNA chaperone activities for
structural rearrangement of interacting RNAs. Here, considering that Tat-TAR RNA interaction is mutually
cooperative, we examined the potential role of TAR RNA as Chaperna – RNA that provides chaperone
function to proteins - for the folding of HIV-1 Tat. Using EGFP fusion as an indirect indicator for folding
status, we monitored Tat-EGFP folding in HeLa cells via time-lapse fluorescence microscopy. The live cell
imaging showed that the rate and the extent of folding of Tat-EGFP were stimulated by TAR RNA. The
purified Tat-EGFP was denatured and the fluorescence was monitored in vitro under renaturation
condition. The fluorescence was significantly increased by TAR RNA, and the mutations in TAR RNA that
affected the interaction with Tat protein failed to promote Tat refolding. The results suggest that TAR RNA
stabilizes Tat as unfolded, but prevents it from misfolding, and maintaining its folding competence for
interaction with multiple host factors toward its transactivation. The Chaperna function of virally encoded
RNA in establishing proteome link at the viral-host interface provides new insights to as yet largely
unexplored RNA mediated protein folding in normal and dysregulated cellular metabolism.

Abbreviations: DNA, DNA; EDTA, EthyleneDiamineteTraacetic Acid; EGFP, Enhanced Green Fluorescent Protein;
E. coli, Escherichia coli; FBS, Fetal Bovine Serum; GFP, Green Fluorescent Protein; HIV, Human Immunodeficiency
Viruses; HPLC, High-Performance Liquid Chromatography; IPTG, IsoPropyl-b-D-ThioGalactopyranoside; IUPs, Intrinsi-
cally Unstructured Proteins; MEM, Minimum Essential Media; NLS, Nuclear Localization Signal or Sequence; PBS,
Phosphate-Buffered Saline; PCR, Polymerase Chain Reaction; P-TEFb, Positive Transcription Elongation Factor; RBD,
RNA-Binding Domain; RNA, RiboNucleic Acid (also, mRNA, nRNA, rRNA, tRNA); RNase, RiboNuclease; RNP, Ribonu-
cleoprotein; rNTPs, riboNucleoside Tri-Phosphate; ROI, Region Of Interest; RRE, Rev Responsive Element; SDS-PAGE,
Sodium Dodecyl Sulfate-PolyAcrylamide Gel Electrophoresis; ssDNA, single-stranded DNA molecules; TAR, Trans-
Activation Response Element; Tat, Trans-activating Protein
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Introduction

RNA molecules play a central role and support functions in cel-
lular processes. Many cellular RNAs have functions that extend
well beyond the central dogma.1–5 Though versatile roles of
RNA have been newly discovered, the functions of many non-
coding RNAs transcribed from the genome are not well charac-
terized yet.6–8 Varieties of IDPs of human and viral origins are
known to interact with RNA molecules for establishing protein
networks.9 IDPs, due to intrinsically unstable nature, are prone
to misfolding, and possibly are stabilized by interaction with
RNAs. And yet, the potential role of RNAs in assisting the fold-
ing of IUPs, either in normal cellular environment or in patho-
genic conditions, remains largely unexplored.

Proteins frequently encounter off-pathways in the folding
process such as misfolding and consequent aggregation in the
folding process. Productive folding into native conformation
often requires the assistance from molecular chaperones.10 Chap-
erones and chaperonins interact with nascent polypeptide and,

by shielding exposed hydrophobic residues, influence its kinetic
network in favor of folding into native conformation11–16 How-
ever, genetic and biochemical analyses showed that only a lim-
ited number of proteins are folded by the assistance of molecular
chaperones17–20 Limited role of molecular chaperones implies
that other factors may involve, directly or indirectly, to ensure
the folding of proteins in the crowded cellular environment.
Experimental evidences are being accumulated that RNAs pro-
vide potential chaperone function.21 Polyanionic macromolecules
have been suggested as a candidate for another chaperone type.
For instance, refolding of Arc repressor can be accelerated by
binding nucleic acids and other polyanions.22 RNAs strongly
potentiates the chaperone function of DnaK in vitro.23 In addi-
tion, 23S rRNA, the component of 50S ribosomal subunit in
E. coli, has shown to stimulate refolding of proteins in vitro.24

Moreover, it was demonstrated that RNAs have a chaperoning
effect on the protein linked to RNA-binding domain (RBD).25,26

The results suggest that RNAs can function as a stabilizer of
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highly dynamic folding intermediates, which, otherwise, would
yield non-functional aggregates or even toxic consequences. It
has been reported that the natively unfolded or partially disor-
dered proteins or domains turn into an ordered structure upon
binding to their cognate RNA.27,28 For instance, the a-helical
conformation of an HIV-1 RRE peptide become stable upon
interaction with RRE RNA.29 In the phenylalanine tRNA synthe-
tase, a disordered N-terminus of the protein shapes into a long
coiled-coil helical domain upon binding with cognate RNA.30

The HIV Tat, as intrinsically disordered protein,31 is able to
interact with multiple cellular proteins. This ability plays a piv-
otal role in HIV transactivation by recruiting the kinase activity
of the P-TEFb complex to the viral mRNA’s stem-bulge-loop
structure of TAR into stabilized transcriptional elongation com-
plex.32 Previously, Tat was known to exhibit RNA chaperoning
activity assisting the folding and structural rearrangement of
RNA molecules,33 possibly mediated by interaction with intrinsi-
cally disordered region.34 These results prompted us to investi-
gate if HIV TAR RNA in turn provides a chaperoning function
to its interacting Tat protein. Wealth of information is accumu-
lated on specific interaction between Tat and TAR RNA35–37 Tat
acts by binding to TAR RNA of a stem-loop structure located at
the 5’ end of the HIV-1 transcript,38,39 and this specific interac-
tion is required for efficient transcription elongation of the HIV-
1 genome40–42 Despite detailed studies on the structure and func-
tion of Tat-TAR RNA complexes, a direct role of TAR RNA on
the folding status of Tat protein has not been studied yet. In
fact, the majority of Tat exists as extended random coil where
the structure is highly dictated by an extensive contact with
binding partners.43 As such, highly dynamic nature of folding
intermediates or intrinsically disordered region (IDR) of IDPs
precludes detailed characterization of their structures,44 and
could be inferred from various in vitro and in vivo evidences.
Here, the potential role of TAR RNA on the folding status of the
HIV-1 Tat was addressed by the time-lapse fluorescence micros-
copy in live cells and in vitro refolding condition using EGFP
fusion as reporter for folding.45–47 Our data suggests that the
virally encoded TAR RNA keeps the Tat protein as ‘folding-
competent’, which enables its interaction with multiple cellular
factors for transactivation, underlying the pathogenesis associated
with HIV-infection.

Materials and methods

Construction of protein and RNA expression vectors

The HIV Tat plasmid was constructed as follows: the HIV-1 tat
gene was chemically synthesized (GenScript). The sequence of
the gene was selected from the HIV-1 complete genome (Gen-
Bank ID: NC_001802) and used as a template DNA for PCR.
The plasmid pGE-LysRS, a derivative of pGEMEX-1 (Prom-
ega), was used for the construction of plasmids for Tat and
Tat-EGFP expression. The tat gene was ligated into the NdeI
and SalI sites of pGE-LysRS, yielding pGE-Tat. Tat mutants
replacing the residues R52, R53 by alanine were produced by
site-directed mutagenesis. BamH1 and EcoRI restriction sites
were generated by insertion into pcDNA3.1C (Invitrogen)
using standard restriction cloning methods. The oligonucleo-
tide forward primer was: 50-GGC ACA AGC TGG AGT ACA

AC-30and reverse primer was 50-ATG CCG TTC TTC TGC
TTG TC-30for EGFP. The vector modified from pcDNA3.1C
(Invitrogen) was used for the construction of the expression
vectors for the human wild type HIV Tat-EGFP protein using
standard restriction cloning methods. The EGFP gene was
amplified from pEGFP-N1 (Clontech), and inserted, using
KpnI and SalI sites, into the 30 end of the tat gene that was
ligated into the NdeI and KpnI sites of pGE-LysRS, yielding
pGE-Tat-EGFP. For in vitro transcription, a template including
T7 promoter-TAR RNA gene-T7terminator was ligated into
the NdeI and SalI sites of pGE-LysRS, yielding pGE-TAR. Simi-
larly, TAR RNA mutant were produced by site-directed muta-
genesis and used to generate pGE-TAR derivatives. To
construct a TAR RNA co-expression vector, a DNA fragment
that contained the arabinose promoter, the TAR RNA gene,
and the rrnB terminator was inserted into the SphI and SalI
sites of pLysE (Novagen), yielding pLysE-TAR. E. coli strain
BL21 StarTM (DE3) (Invitrogen), 1 mM IPTG, and 0.04% L-
arabinose were added to induce the expression of protein and
RNA simultaneously. After culture for 3 h, the cells were har-
vested. For HeLa cells, TAR RNA oligos (57mers) were synthe-
sized with 100 nmol from M-biotech Inc. (the Korean branch
of IDT Inc.) (50- GGU CUC UCU GGU UAG ACC AGA UCU
GAG CCU GGG AGC UCU CUG GCU AAC UAG GGA
ACC -30 in RNase Free water by HPLC purification).

Cell culture and Tat protein & TAR RNA co-transfection

HeLa cells were grown in MEM (Welgene Inc., Korea) supple-
mented with 10% FBS (v/v) and 1% penicillin/streptomycin (v/
v) in a 5% CO2 atmosphere at 37�C. Cells grown at 60–90%
confluence were transfected with 500 ng plasmid per 2 £ 106

cells using 2 mL Lipofectamine 2000 (Invitrogen). Cells were
washed once with growth medium, twice with 10X PBS at pH
7.4 and finally with PBS alone. Co-expression of HIV Tat and
TAR RNA was performed by co-transfection of HIV Tat-EGFP
fusion pCDNA3.1C (Invitrogen) and TAR RNA oligos
(57mers).

Time-lapse live cell fluorescence microscopy

Time-lapse, multicolor images in living cells as well as direct
EGFP fluorescence images in HeLa cells were obtained using
the A1Rsi confocal microscope system (Nikon). To maintain
physiologic temperature during live observation, the micro-
scope was kept at 37�C in a temperature-controlled chamber.
The light intensity was set to 7 at the sample plane. Transfec-
tions with EGFP or Tat -EGFP fusion plasmid were performed
using Lipofectamine 2000 at 37�C for 24 h. Cells were grown in
a 12-well culture dish (Nunc). The EGFP fusion plasmids
(0.5–0.8 mg) were transfected into cells with Lipofectamine
2000 according to the manufacturer’s protocol. A 20X phase-
contrast objective was used with a Nikon perfect focus system
(PFS) was used to maintain focus throughout the time-lapse
imaging every 10 min for 2 h. PFS requires cells plated on
35 mm Petri dish containing a 14 mm glass microwell
(MatTek). The system was equipped with a temperature-con-
trolled 37�C chamber and is provided with an oxygen supply;
images were acquired using a 40X short distance 0.75 NA air
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objective. Analysis was performed with NIS-Elements Viewer
4.20 software (Nikon), which compensates for stage shift, vibra-
tion, or similar small whole field movement that can occur dur-
ing time-lapse acquisition. Whole HeLa cell extracts were made
using EzRIPA Lysis kit (Atto Co.). The concentration of the
isolated proteins was determined using BCA Protein Assay
Reagent (Pierce).Western blot was performed according to
standard methods, using an anti-GFP antibody (1:100 in
TBST) (Clontech) and b-Actin antibody (1:2000 in TBST)
(Cell signaling) for the detection of Tat-EGFP protein.

Protein expression

The E.coli strain BL21 StarTM(DE3) pLysS (Invitrogen) was
used as a host for protein expression. pGE-Tat-EGFP and
pGE-EGFP were ligated into the restriction sites of pGE-LysRS
using standard restriction cloning methods and pLysE-TAR
synthesized by in vitro transcription. A single transformation
colony was selected and inoculated into 3 mL LB containing
50 mg/mL ampicillin and 30 mg/mL chloramphenicol, and cul-
tured overnight at 37�C. 1 mL culture was diluted into 15 mL
fresh LB with the same antibiotics, and cultured until the opti-
cal density (OD) reached to 0.5»0.8 at 600 nm. Proteins were
expressed for 3 h after the addition of 1 mM IPTG. The har-
vested cells from 10 mL culture were suspended in 0.3 mL PBS,
then lysed by sonication. The total lysates were centrifuged at
12 000 rpm for 15 min to separate the soluble and pellet frac-
tions from the total lysates. The separated pellet fractions were
resuspended with PBS having the same volume as the soluble
fractions. Each 50 mL of soluble and pellet fractions was mixed
with the same volume of 2X SDS loading buffer. After boiling,
the samples were loaded and run on SDS-PAGE. The loading
volume of each sample was adjusted to the equivalent amount
based on the final cell OD600 nm. The gels were stained with
Coomassie brilliant blue and the solubility of proteins was esti-
mated using a gel densitometer. Precipitated His-tagged HIV
Tat proteins were further analyzed by SDS-PAGE and western
blot according to standard methods, using an anti-His penta
antibody (1:1000 in TBST) (Qiagen) for detection.

Protein purification

E.coli cells were harvested from 500 mL culture by centrifuga-
tion, suspended, and lysed by addition of 10 mL buffer A
(50 mM Tris-Cl (pH 7.5), 300 mM NaCl, 10% glycerol, 10 mM
imidazole, 2 mM b-mercaptoethanol, 0.5% NP-40) with 1 mM
PMSF followed by sonication. After centrifugation, the soluble
fraction of the lysates was loaded on a HisTrap HP column
(GE Healthcare). After sufficient washing with buffer A, pro-
teins were eluted under an imidazole gradient from 10 to
300 mM by mixing buffer A and buffer B (50 mM Tris-Cl (pH
7.5), 300 mM NaCl, 10% glycerol, 300 mM imidazole, 2 mM
b-mercaptoethanol, 0.5% NP-40). The fractions were analyzed
by SDS-PAGE, and then the fractions containing the proteins
of interest were pooled and dialyzed against a buffer containing
50 mM Tris-Cl (pH 7.5), 50 mM NaCl, 1 mM DTT, and
0.1 mM EDTA.

In vitro RNA transcription

The linear DNA templates for in vitro transcription were
obtained by PCR. Templates containing a T7 promoter
upstream of the RNA coding sequence and restriction enzyme
sites at the 50 and 30 ends were digested with restriction
enzymes, and RNA was transcribed using the RiboMAXTM

large scale RNA production system-T7 (Promega). Following
transcription, the DNA templates were removed by digestion
with RNase-free DNase for 15 min at 37� C. One volume of cit-
rate-saturated phenol (pH 4.7): chloroform: isoamyl alcohol
(125:24:1) was added to the sample, which was vortexed and
centrifuged at 12 000 rpm for 2 min. The upper, aqueous phase
was transferred to a new tube, and then 1 volume of chloro-
form: isoamyl alcohol (24:1) was added. After vortexing and
centrifugation, the aqueous phase was carried to a new tube,
and 0.1 volume of 3 M sodium acetate (pH 5.2) and 1 volume
of isopropanol were added to the sample. The pellet obtained
from centrifugation was washed with 1 mL 70% ethanol, dried,
and suspended in nuclease-free water. The unincorporated
rNTPs were removed by illustraTM MicroSpin G-25 columns
(GE Healthcare). The concentration of RNA was measured by
the absorbance in 260 nm.

In vitro EGFP refolding assay

Purified EGFP and Tat-EGFP was denatured in 6M guanidine
hydrochloride and 1 mM DTT at 40�C for 20 min. The dena-
tured protein was 25-fold diluted in the refolding buffer con-
taining 50 mM Tris-Cl (pH 7.5), 50 mM NaCl, and 5 mM
MgCl2, either in the absence or the presence of RNAs. The fluo-
rescence intensity of the refolded EGFP was monitored by a
fluorescence spectrophotometer (Varian) with excitation at
489 nm and emission at 509 nm. Alternatively, the fluorescence
emission at 491 nm after excitation at 517 nm was also moni-
tored by FlexStation 3 plate reader (Molecular Devices).

Figure 1. Subcellular localization of Tat-EGFP fusion protein folding in HeLa cells.
HeLa cells were transfected with EGFP or wild type (WT) EGFP-Tat fusion con-
structs, and subcellular localization was determined by imaging EGFP using a fluo-
rescence microscope (40X). The EGFP is present in the cytosol as evident in the
merged (DAPI C GFP) image. Tat-EGFP localizes predominantly in the nucleus, fre-
quently as nuclear speckles. GFP filtered images correspond to the location of
EGFP or Tat-EGFP protein expression. DAPI stains the nucleus of all fixed cells. The
merged image contains the combined images of GFP, DIC (Differential Interference
Contrast), and DAPI staining, and shows a representative area under microscopic
observation. Scale bar, 20 mm.
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Results

The subcellular localization of HIV Tat-EGFP fusion protein

To test the feasibility of EGFP as a folding reporter of Tat in liv-
ing cells, the HeLa cells were transfected with a Tat-EGFP
fusion vector and the cellular localization of the Tat protein
was analyzed. Among the 3 major versions of the Tat protein,
we used the most widely studied 86-amino acid form where res-
idues 1–72 are encoded by the first exon.48–52 Tat contains mul-
tiple functional domains in which the amino acids 49–72 are
responsible for the binding of TAR RNA and in particular 3
amino acids (59–61) functions as basic nuclear localization sig-
nal (NLS).49,53–57

Fig. 1 compares the location of Tat-EGFP protein in trans-
fected HeLa cells. Each construct is featured in 3 images: GFP
filtered images corresponding to the location of Tat-EGFP pro-
tein, DAPI stains of the nucleus, and the merged image of both
GFP and DAPI staining. As shown in Fig. 1, EGFP was uni-
formly distributed throughout the cell, whereas Tat-EGFP was
mainly localized in the nucleus with or without nuclear speckles
of variable sizes and irregular shapes. The morphology and
nuclear location of Tat was consistent with its known role as a
trans-activator, which colocalized with the spliceosome assem-
bly factors such as nuclear speckles.50,58–60 These results suggest
that Tat in its EGFP fusion form is suitable as a folding reporter
in living cells.45

Tat-EGFP folding enhancement by TAR RNA in HeLa cells

A ‘folding reporter’ in which a test protein is expressed as an
N-terminal fusion with GFP, gives a fluorescence signal directly
proportional to the amount of correctly folded protein, and
requires no functional assay for the protein of interest or
knowledges on its structure or biologic function45–47 The ratio-
nale behind the reporter system is that the test protein, if folded
properly, would not interfere with the folding of EGFP, hence
emitting fluorescence. It should be noted, however, that Tat in
itself is prone to misfolding due to the disordered nature, and
consequently misfolds its linked EGFP domain. Thus, any fac-
tor that would stabilize Tat from misfolding, TAR RNA in this
case, increases the fluorescence in the EGFP fusion construct.
Thus, fluorescence reports not so much a stable folding of Tat,
but rather its inability to misfolding.

Cells were co-transfected with Tat-EGFP and TAR RNA,
and the fluorescent cells were traced and monitored by live
cell time-lapse fluorescence microscopy. The time-lapse
imaging monitored the formation of Tat-EGFP and the cell
migration in real time (Fig. 2 and Fig. S1, Video S1- S3).
After transfection and incubation for 5 hours, the initial
rate and the yield of wild type Tat-EGFP folding were esti-
mated by monitoring the increase in intrinsic EGFP fluores-
cence. The temporal change of Tat-EGFP fluorescence was
monitored at every 10 minutes for 2 hours by tracking
ROIs (region of interest; matched to the fluorescence of the
cell) in the videos and graphically represented in Fig. 2B.
ROIs were traced using DIC (Differential Interference Con-
trast) by which the location of the Tat-EGFP fluorescence
intensity was clearly identified. The TAR RNA co-expres-
sion (TAR RNA C in blue) clearly stimulated the

fluorescence as compared with the control without TAR
RNA co-expression (TAR RNA – in red) (Fig. 2B). As a
control, the fluorescence of EGFP only was not affected by
TAR RNA co-expression (Fig. 2F). The level of fluctuation
in the measurement of fluorescence signal reflects the
degree of difficulties in tracking live, migrating single cells
before reaching confluence (Fig. 2B). And yet, the average
intensity, taking statistical significance of signals from indi-
vidual cells into account, reflects notable stimulation of sig-
nals in the presence of TAR RNA (Fig. 2D). Of note, the
level of Tat-EGFP protein in the transfected cells was
increased by co-expression of TAR RNA by western blot
analysis (Fig. 2E). The EGFP only as a control, however,
was similar regardless of TAR co-expression. As monitored
by the movie, there was a marked cytoplasmic EGFP fluo-
rescence representing properly folded Tat (Video
S1-S3), which was quantified by the measured mean fluores-
cence of the ROI. Indicative of the localization/abundance
of the Tat-EGFP in the cytoplasm and nucleus at particular
time points, the fluorescence by EGFP expression represents
Tat-EGFP folding as affected by TAR RNA. Moreover, after
co-transfection of Tat-EGFP and TAR RNA plasmids, the
number of fluorescent cells was increased over 2–24 h as
compared with the Tat-EGFP transfection only controls
(Fig. 2A and 2C). The enhancement of both the initial rate
and intensity of fluorescence is consistent with potential
chaperoning role of TAR RNA for the folding of Tat pro-
tein inside cells (Fig. 2D). The results are consistent with
the stabilization of Tat by interaction with TAR RNA from
misfolding into unstable conformation vulnerable to degra-
dation in the cellular environment.

TAR RNA-mediated solubility enhancement of Tat

Maintaining the solubility of a protein by preventing it
from misfolding is necessary for keeping it as folding com-
petent inside the cells. The potential effect of TAR RNA on
the solubility of Tat was studied in E.coli system. We con-
structed 2 independent plasmids, expressing either Tat-
EGFP under the T7 promoter or TAR RNA under the arab-
inose promoter, which could be induced by IPTG and arab-
inose, respectively. After expression, the total extract [T]
were separated into soluble[S] and pellet [P] fractions by
centrifugation and analyzed by SDS-PAGE, and representa-
tive data are shown in Fig. 3. The band intensity of Coo-
massie staining (Fig. 3A, upper panel) was estimated by
densitometric scanning of the band corresponding to that
identified by Western blot with anti-his-antibody (Fig. 3A,
lower panel). The relative solubility was calculated by com-
paring the band intensities of [S] and [P] fractions. The sol-
ubility of wild type Tat (wtTat) was greatly increased upon
co-expression of TAR RNA (96%) as compared with the
control without TAR RNA expression (75%) (Fig. 3A).
Consistent with SDS-PAGE Coomassie staining, western
blot analysis also showed a notable decrease of Tat protein
in the pellet fraction upon co-expression of TAR RNA
(50%), as compared with TAR RNA(-) control (36%). A
similar observation was also made in Tat-EGFP, where
modest increase in solubility was observed by TAR
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expression (57%) as compared with the control (38%) in
Coomassie staining (Fig. 3B), as well as in western blot
(46% and 42%, respectively). The overall solubility of Tat-
EGFP was relatively lower than Tat, both with and without
TAR RNA co-expression (Fig. 3A and 3B), probably reflect-
ing additional requirements for folding of GFP, including
auto-catalytic cyclization and oxidation reactions for

chromophore formation.61 The arginine-rich motif of Tat
has been shown to be important for the recognition and
binding of TAR RNA,35 and the relative importance of spe-
cific amino acids within the motif have been determined.62

We therefore constructed Tat mutants by site-directed
mutagenesis, to evaluate the effect of TAR RNA binding to Tat
on the solubility in vivo. We replaced the arginines at positions

Figure 2. Time course Tat folding by TAR RNA in HeLa cells. After transfection and 5 h of incubation, HeLa cells were co-transfected with plasmids encoding Tat-EGFP and
TAR RNA and observed under time-lapse fluorescence microscopy at 10 min intervals for 2 h. (A) Merged images (40X, left) of the Differential Interference Contrast (DIC)
and the fluorescence (GFP) after 3 h after transfection. (B) Time-dependent increase of EGFP based on a scatterplot of region of interest (ROI) corresponding to Videos
S1–S3 of EGFP fluorescence in the control (blue) and TAR RNA co-expressed (red) cells. Time-lapse images of Tat-EGFP expression in HeLa cells at 4 independent positions
were captured. Mean fluorescence of ROIs were traced using DIC (Differential Interference Contrast) covered the entire numbering field. (C) Overlaid image (10X) used to
generate numbers of Tat-EGFP expressing cells 24 h after transfection. Scale bar, 200 mm. (D) Graphical presentation of Fig. 2B for the time dependent increases of Tat-
EGFP expression in HeLa cells. (E) SDS-PAGE and western blot analysis of HeLa extracts for EGFP proteins. (F) Time-lapse fluorescence observations of EGFP expression
with (red) and without TAR RNA co-expression (blue).

930 J. M. KIM ET AL.



52 and 53 (R52 and R53), both of which are crucial for binding,
yielding 2 single point mutants, R52A (M1) and R53A (M2),
respectively, and a double mutant R52A/R53A (M3) (Fig. 3C).
Co-expression of TAR RNA only partially rescued M1 and M2
solubility, whereas the combination of the 2 mutations (M3)
strongly abolished the rescue. These results show that the argi-
nine residue in the conserved basic region of Tat crucial for
binding with TAR RNA is required for maintaining the solubil-
ity of Tat protein. Besides the affinity, the size of RNA may also
influence the solubility and folding of interacting proteins.63

Thus, to examine if TAR RNA size influenced the Tat solubil-
ity, RNAs of varying sizes were tested, including the 50-end
proximal TAR and downstream secondary stem-loop struc-
tures. Thus, TAR (80 nt) and TAR (104 nt), corresponding
to C1 to C80 and C1 to C104 of the HIV-1 transcript, respec-
tively, were compared with TAR (57 nt) (Fig. 4A). The solubil-
ity of co-expressed Tat-EGFP, was similar regardless of the size
of the TAR RNAs tested (Fig. 4B). The results show that direct
interaction at specific residues is more important than RNA
size for preventing Ta from misfolding into insoluble
aggregates.

In vitro refolding of Tat-EGFP in the presence of TAR RNA

The influence of TAR RNA on Tat protein folding was further
investigated in vitro. The sites of mutations on TAR and Tat
were guided by previous reports.64–68 Tat-EGFP containing a
C-terminus His-tag was expressed from E. coli and purified by
Ni-affinity chromatography (Fig. S2). The protein was solubi-
lized in 6M guanidium chloride, and diluted 25 fold in a refold-
ing buffer in the presence or absence of TAR RNAs and the

extent of folding was monitored by the fluorescence. The extent
of refolding was enhanced by the presence of TAR RNAs, and
the degree of enhancement was dependent on its concentration
(Fig. 5A). Based on the fluorescence of native EGFP of equal
amount, the refolding yield was 31% and 40% for 0 and
0.14 mM TAR RNA, respectively, and appeared saturated at
higher RNA concentration (0.28 mM) (Fig. 5A). The experi-
ment was repeated 3 times and the average refolding yield
shown in Fig. 5B. The data showed that maximum stimulation
(»40%) was achieved at about equimolar concentration, e.g.,
0.14 mM TAR RNA and 0.14 mM Tat-EGFP, suggesting that
folding is enhanced by a direct 1:1 interaction. Therefore, in
subsequent experiments, the final concentration of protein in
the refolding buffer was kept at 0.14 mM. As a negative control,
the refolding of EGFP was insensitive to the presence of TAR
RNA, even at the highest concentration tested (12 uM)
(Fig. 5G). As another control, the native Tat-EGFP was treated
with TAR RNA in the refolding buffer. At varying concentra-
tions of TAR RNA and incubation times, the fluorescence
remained similar without appreciable changes (Fig. S3). The
results suggest that the increases in fluorescence by TAR RNA
in refolding condition is actually due to a stimulation of folding
rather than a post-folding event such as stabilization of Tat
structure by RNA binding. When TAR RNA was replaced with
tRNALys in the refolding mixture, we failed to observe a similar
increase in fluorescence (Fig. 5C). Alternatively, RNAase treat-
ment during refolding quenched the stimulation of Tat-EGFP
refolding (Fig. 5D), demonstrating that the refolding of Tat-
EGFP was mediated by TAR RNA interaction. A low level stim-
ulation even after the RNAse treatment may be due to the pres-
ence of short RNA fragment, which was investigated no

Figure 3. In- cell solubility of Tat protein in E.coli by TAR RNA. The effect of TAR RNA enhances Tat protein co-expression on the solubility in vivo. (A) The expression of
wild type Tat was controlled by T7 promoter and induced by IPTG, whereas the expression of wt TAR RNA was under the control of arabinose promoter and induced by
L-arabinose. The band intensity of each Tat protein fraction on the SDS-PAGE gel was estimated by densitometric scanning. T, S, and P represent total lysate, soluble frac-
tion, and pellet fraction, respectively. (B) Increase of Tat-EGFP solubility by TAR co-expression as analyzed by Coomassie staining and western blot using the anti-His anti-
body. (C) SDS-PAGE gel analysis of Tat mutants. The relative solubility of Tat mutants based on the Coomassie stained band intensities is shown in bars: with (white) and
without (black) TAR RNA coexpression. The band intensity of each Tat protein fraction was measured by a densitometer. The mutants M1, M2, and M3 Tat carry amino
acid substitutions, R52A, R53A, and both R52A and R53A, respectively. T, S, and P represent total lysate, soluble fraction, and pellet fraction.
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further. As an analog of TAR RNA, TAR ssDNA (0.14 mM)
was also shown to stimulate Tat-EGFP refolding similar to that
of TAR RNA at the same concentration (Fig. 5E). It has been
shown that the 3-nucleotide bulge in the TAR RNA sequence is
important for Tat protein recognition.68 This bulge was either
deleted (M1 TAR) or substituted (M2 TAR) by site-specific
mutagenesis. As shown in Fig. 5F, the refolding yields of Tat-
EGFP in the presence of TAR RNA mutants at the equimolar
concentration (0.14 mM) were either decreased (M1 TAR) or
as low as in the absence of wt TAR RNA (M2 TAR). Together,
our data support that the refolding of Tat-EGFP is mediated by
direct interaction with TAR RNA through its specific recogni-
tion site.

Discussion

The present results show that TAR RNA influences the folding
status of its bound Tat protein preventing it from misfolding
both in vivo and in vitro. As a typical example of IDPs,44 Tat
protein exists as extended random coil where the structure is
highly dictated by an extensive contact with binding partners.43

As such, addressing to the structure of its folding intermediates
is even more difficult and could be inferred from various in
vitro and in vivo evidences. As a means to approach to this

problem, here we adopted EGFP fluorescence as an indirect
reporter for the folding status as EGFP-Tat fusion. As such, the
system does not report the stable folding of Tat, which in itself
is unfolded, but rather its inability to misfold and interfere with
folding of interacting partners. Thus, the assay is relevant for
the chaperone activity, considering that the major function of
molecular chaperones is the prevention of aggregation of
unfolded proteins rather than active promotion of folding.16

The time-lapse fluorescence microscopy was used for direct
visualization of live cells for EGFP fluorescence as a tracer and
an indirect indicator for Tat folding in real time in migrating
HeLa cells. HeLa cells co-transfected with TAR RNA and the
Tat-EGFP indicator displayed a gradual, but distinct increase
of the in - cell fluorescence intensities (Fig. 2). Of note, the
amount of Tat-EGFP was increased by the coexpression of
TAR RNA (Fig. 2E). In vitro refolding experiment indeed
showed that TAR RNA stimulates Tat folding (Fig. 5), whereas
TAR itself exerts little effects on the stability of Tat (Fig. S3).
Overall, the results are interpreted to mean that Tat protein
acquired protein stability by TAR RNA binding, which kept
Tat form misfolding and subsequent degradation in the cellular
environment. The results are reminiscent of the proteostasis
function of molecular chaperones that provide quality control
over their cargo proteins from folding to expedited clearance of

Figure 4. The effect of the length and the structure of TAR RNA on the solubility of Tat-EGFP. (A) The predicted secondary structure of the 5’-end of the HIV-1 transcript
including the 5-proximal TAR sequence84 and the relative solubility of Tat protein upon co-expression with TAR RNAs of varying size. (B) SDS-PAGE gel shows the wild
type Tat protein co-expressed with TAR RNAs of various size: 57, 80, or 104 nt in length.
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misfolded proteins.69,70 The solubility of the Tat protein was
increased upon TAR RNA co-expression as tested in the E.coli
recombinant system (Fig. 3). Misfolding usually results in insol-
uble aggregates, and therefore, the increased solubility is an

important indicator for proper folding of Tat in the presence of
TAR RNA. Mutations in either Tat or TAR RNA that affected
their mutual interactions decreased the solubility and folding of
Tat in vivo (Fig. 3C) and in vitro refolding (Fig. 5F). Studies

Figure 5. In vitro refolding of Tat-EGFP. (A) Time course of fluorescence intensity and (B) refolding yield as measured by EGFP fluorescence at different TAR RNA concen-
trations. Error bars represent the standard error of the means. The denatured Tat-EGFP in 6M guanidine-HCl was diluted to a final concentration of 0.14 mM in the refold-
ing buffer containing different concentrations of TAR RNA. Refolding of Tat-EGFP (C) in the presence of cognate TAR RNA or irrelevant Lys tRNA, or (D) after RNase
treatment (25 mg/mL RNase A at 37�C for 30 min). The concentration ratio of Tat-EGFP to RNA was adjusted to 1:1. Error bars represent the standard error of the means.
To verify it TAR RNA binding is an important factor for HIV-1 Tat refolding, a mutation of the TAR RNA binding site was constructed. (E) Secondary structures and free
energies of TAR RNA and single-stranded (ssDNA) were predicted by the Mfold program68. The effects on Tat-EGFP refolding are compared. The concentration of Tat pro-
tein, ssDNA and TAR RNA was 0.14 mM. The folding yield is shown as relative to the self-refolding of Tat-EGFP only, which was taken as 1. (F) The refolding of Tat-EGFP in
the presence of TAR mutants. (G) Time course of refolding of EGFP as control at various concentrations of TAR RNA.
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with TAR RNA size variants showed that the specific Tat-TAR
interaction, rather than the size of the TAR RNA, was impor-
tant in the enhancement of Tat protein solubility (Fig. 4). Con-
sistent with the co-expression study, the refolding yield of
Tat-EGFP in vitro was increased in the presence of TAR RNA,
whereas the RNAase treatment abolished the stimulation
(Fig. 5D). Non-cognate RNA (Lys tRNA) or mutants of TAR
RNAs that affected Tat interaction failed to promote Tat refold-
ing (Fig. 5C and 5F). Thus, the analyses in vivo both in HeLa
and E. coli cells, as well as refolding in vitro, suggest that TAR
RNA binding stabilizes Tat from misfolding into non-func-
tional form vulnerable to degradation.

With respect to the mechanism by which RNA prevents
misfolding and promotes the solubility of its interacting pro-
tein, various possibilities could be advanced. Primarily, the
chaperoning effect of RNA can be explained by its charge and
steric hindrance.71,72 These characteristics could stabilize the
folding intermediates and interfere with protein aggregation.
RNA carries a highly negative charge and, the negatively
charged ribonucleoprotein (RNP) complex would remain in a
monomeric state due to charge-charge repulsion, resisting
intermolecular interactions into misfolded aggregation. It has
been reported that the net charge of a protein is an important
factor for its rate of aggregation, and that intermolecular elec-
trostatic repulsion among charged residues of proteins influen-
ces their solubility.63,72 In addition, RNA as a macromolecule
with bulky size could exert steric hindrance, minimizing inter-
actions among folding intermediates of highly dynamic and
aggregation-prone nature. Another view is that RNA could
function as a specific ligand to its binding proteins. In this
regard, meta-stable folding intermediates might be induced to
fold into stable conformations upon binding with RNA
ligand.73 Thus, TAR RNA might dictate the folding status of
Tat as its specific ligand through a mechanism similar to the
RNA binding-induced protein folding that occurs in the RNP

complex. Thus, the conformation of Tat is stabilized or dictated
in space by the overall conformation and specific interaction
with TAR.68,74 As such, the bulge region of TAR RNA involved
in its interaction with Tat 64,75 plays a role in Tat-EGFP refold-
ing (Fig. 5F). This result suggests that the overall charge and
structure of RNA as polyanionic macromolecules are influential
factors for the folding status of Tat protein.

The present results are intriguing, especially considering
previous reports that Tat itself was shown to assist the folding
and structural rearrangement of RNA molecules,33 although
there was no direct evidence for its role in the folding of TAR
RNA. Of note, RNA chaperone activity is mediated by interac-
tion between Tat and TAR, at the similar sites in the present
analyses. It could therefore be speculated that the same Tat-
TAR interactions operate mutually and synergistically for the
folding of their binding partners. Distinct from RNA chaper-
one- a protein that assists the folding of interacting RNA, here
we suggest the chaperna activity - RNA based chaperone that
assists folding of interacting proteins. Of note, the M1 RNA, a
prototype ribozyme, was recently shown to exert potent chap-
erna activity to its interacting C5 protein in E. coli RNase P
complex.73 Both activities, RNA chaperone and chaperna, may
not be mutually exclusive, but function in a cooperative man-
ner where the intermolecular contact mediates intra-molecular
stabilization of both RNA and protein.76 This possibly also
operates in the RNA-directed remodeling of HIV Rev protein
by Rev Responsive Element (RRE) RNA.29,77,78

The RNA-mediated stabilization of folding intermediates has
been suggested in ribozymes73 and in RNA binding mediated
protein folding vehicles.79 Here, the TAR RNA ligand mediated
Tat folding further addresses to molecular pathogenesis associ-
ated with HIV infection. It has been reported that, for a full-
fledged transcriptional activation, Tat forms a multiple complex
with host proteins including cyclin T1 and P-TEFb,42,80–83 and a
dynamic role of TAR RNA has been suggested in this

Figure 6. TAR RNA as molecular chaperone for Tat protein. The folding of the HIV virulence factor Tat protein is regulated by its interacting TAR RNA. The TAR–Tat interac-
tion at the TAR interaction domain prevents Tat from misfolding and keeps it as ‘folding competent’ state, enabling Tat to further interact with cellular factors, e.g.,cyclin
T1 (pink) and P-TEFb (blue) for transactivation.
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process.43,84 How the TAR acquired folding competence plays in
this process remains to be further elucidated, although the basic
and intrinsically disordered nature of Tat may well account for
its ability to interact with RNAs and multiple cellular proteins.31

It should also be mentioned that there is no established assays so
far available for the of folding of IDPs. The reporter folding assay
used in the present report 45 directly reports on the folding of the
EGFP portion, but does not precisely describe the folding status
of Tat. The folding enhancement of the EGFP by TAR RNA is
an outcome of inability of Tat from interfering with EGFP fold-
ing. The results are interpreted to mean that the TAR interaction
with Tat at the TAR interaction domain would maintain the rest
of Tat as ‘folding competent’ (Fig. 6), escaping from a kinetic
trap into misfolding. This may enable its transition into a stabi-
lized structure upon binding with cellular proteins.28,76 The pro-
posed role of TAR on Tat is therefore reminiscent of molecular
chaperones, which does not actively promote folding, but pre-
vents aggregation of unfolded proteins.16 It is likely that the
‘entropy transfer’ between the IDR of Tat and TAR 28 could sta-
bilize Tat from misfolding, and maintains its folding competence.

In conclusion, consistent with intermolecular contact
mediated intra-molecular stabilization of both binding part-
ners, the HIV TAR RNA provides a chaperoning function
to its interacting Tat protein (Fig. 6), and a crucial role of
virally encoded RNA in establishing proteome link at the
viral-host interface into successful viral replication in
infected cells. We suggest that this aspect should be consid-
ered and reflected into current efforts on targeting HIV
transcription for the intervention of HIV infection.32 The
mechanism of RNA-mediated folding competence further
enhances our understanding of chaperone-assisted protein
folding inside the cells. The interference or modulation of
RNA-mediated protein folding either by metabolic dysregu-
lation or by infection into pathological consequences,
remains to be further explored.
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