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ABSTRACT

Cumulative verified experimental studies have demonstrated that microRNAs (miRNAs) could be closely
related with the development and progression of human complex diseases. Based on the assumption that
functional similar miRNAs may have a strong correlation with phenotypically similar diseases and vice
versa, researchers developed various effective computational models which combine heterogeneous
biologic data sets including disease similarity network, miRNA similarity network, and known disease-
miRNA association network to identify potential relationships between miRNAs and diseases in biomedical
research. Considering the limitations in previous computational study, we introduced a novel
computational method of Ranking-based KNN for miRNA-Disease Association prediction (RKNNMDA) to
predict potential related miRNAs for diseases, and our method obtained an AUC of 0.8221 based on leave-
one-out cross validation. In addition, RKNNMDA was applied to 3 kinds of important human cancers for
further performance evaluation. The results showed that 96%, 80% and 94% of predicted top 50 potential
related miRNAs for Colon Neoplasms, Esophageal Neoplasms, and Prostate Neoplasms have been
confirmed by experimental literatures, respectively. Moreover, RKNNMDA could be used to predict
potential miRNAs for diseases without any known miRNAs, and it is anticipated that RKNNMDA would be
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of great use for novel miRNA-disease association identification.

Introduction

MicroRNAs (miRNAs) are one class of small non-coding RNAs
(~22 nt) that functions in post-transcriptional regulation of
gene expression. It normally suppresses the expression of the
target mRNAs (mRNAs) by binding to the 3’ untranslated
regions (UTRs) of the target mRNAs through sequence-specific
base pairing.'* However, some scientific studies have shown
that miRNAs also act as positive regulators.”® In recent years,
the research about the associations between miRNAs and dis-
eases has aroused more attention than ever before especially
considering that miRNAs have already been confirmed to play
an essential role in many significant biologic processes includ-
ing cell proliferation,” development,® differentiation,” and apo-
ptosis,'® metabolism,'"'* aging,'"'? signal transduction,'’ viral
infection” and so on. For example, the serum levels of miR-103
expression in the breast cancer patients were significantly
higher than healthy control group.'* Further study on these
cancer patients showed that high miR-103 expression was sig-
nificantly correlated with advanced clinical stage and lymph
node metastasis. Also, researchers observed that miR-126 were
expressed with significantly higher levels in the blood from
patients with Crohn Disease compared with the healthy con-
trols.'> Furthermore, the circulating levels of miR-15b were sig-
nificantly reduced in patients with end-stage renal disease.'®
Therefore, identifying disease-related miRNAs can enhance the

study of biomarker detection for prognosis, diagnosis and treat-
ment of human complex diseases.

In the past few years, a large number of computational mod-
els for predicting potential associations between miRNAs and
diseases have been developed. For example, Jiang el al.'” devel-
oped a hypergeometric distribution-based computational
model which combined miRNA similarity network, disease
similarity network, and known miRNA-disease interactions
and finally prioritized the human miRNAs retrieved from miR-
Base database for diseases of interest. Shi et al.'® further pro-
posed a method which focused on the functional link between
miRNA targets and disease genes by implementing random
walk algorithm on protein-protein interaction (PPI) network.
Meanwhile, Mork et al.'” developed a method in which miR-
NAs were linked to diseases via proteins involved. This method
ranked candidate miRNA-disease associations based on known
and predicted miRNA-protein associations and protein-disease
associations in the framework of a novel scoring scheme. How-
ever, these methods relied much on miRNA-target interactions
which have a pretty high ratio of false-positive and false-nega-
tive results, thus they did not have satisfying prediction perfor-
mance. Furthermore, Xuan et al®® presented a new
computational method called HDMP for predicting potential
disease-related miRNAs, which was based on the weighted k
most similar neighbors. After calculating the functional

CONTACT Xing Chen @ xingchen@amss.ac.cn e School of Information and Control Engineering, China University of Mining and Technology, No.1, Daxue Road,

Xuzhou, Jiangsu 221116, China.

*co-first author.

@ Supplemental data for this article can be accessed on the publisher’s website.
© 2017 Taylor & Francis Group, LLC


https://crossmark.crossref.org/dialog/?doi=10.1080/15476286.2017.1312226&domain=pdf&date_stamp=2017-08-01
mailto:xingchen@amss.ac.cn
https://doi.org/10.1080/15476286.2017.1312226
https://doi.org/10.1080/15476286.2017.1312226

similarity scores between any 2 miRNAs, HDMP assigned
higher weights to members in the same miRNA family or clus-
ter since they were more likely associated with similar diseases.
At last, all miRNAs were ranked by their relevance weight score
assigned by HDMP with a certain disease, and the higher score
a miRNA obtained, the more likely this miRNA is related to
the disease. However, using local network similarity would
potentially decrease their prediction accuracy. Additionally, the
number of neighbors was a huge influence factor to the predic-
tion results and there were no parameter differences among dif-
ferent diseases. Xu et al®' introduced an approach which
combined the expression files of miRNAs in tumor or non-
tumor tissues. This method constructed the miRNA target-dys-
regulated network (MTDN), extracted network topological fea-
tures, and distinguished positive or negative disease related
miRNAs by Support Vector Machine (SVM). Nevertheless, it is
difficult even impossible to obtain negative associations. Chen
et al*® proposed the first global network similarity based
computational method of RWRMDA which implemented ran-
dom walk on the miRNA-miRNA functional similarity net-
work, but it cannot be applied to diseases without any known
related miRNAs. Xuan et al.>* also developed a novel method
based on random walk. Unlike RWRMDA, this method
extended the walking on the miRNA-disease bilayer network
which was composed of the miRNA network derived from the
miRNA-associated diseases (Mnet), the disease network
(Dnet), and the edges between 2 networks, thus it can be used
for diseases without any related associations. There are also
some other methods that can predict potential miRNAs for dis-
eases without known associated miRNAs. RLSMDA** is a
semi-supervised learning method based on regularized least
squares. One important improvement is that it did not require
negative known samples. WBSMDA® introduced Gaussian
interaction profile kernel similarity, which was later combined
with miRNA functional similarity, disease semantic similarity
and known miRNA-disease associations, and finally ranked the
potential associations by within and between score.
RBMMMDA?®® is a method that used the model of Restricted
Boltzmann machine, and it could predict not only novel
miRNA-disease associations but also the category of the new
association. The categories are divided according to the differ-
ent supporting evidences, including the evidences of genetics,
epigenetics, circulating miRNAs, and miRNA-target interac-
tions. Recently, the method of HGIMDA? integrated miRNA
functional similarity, disease semantic similarity, Gaussian
interaction profile kernel similarity and known miRNA-disease
associations into a heterogeneous graph. HGIMDA calculated
the probability between disease d and miRNA m by summariz-
ing all paths with the same length.

It is obvious that using traditional experimental methods for
disease detection is an extremely time-consuming task, and the
previously developed computational methods have some afore-
mentioned limitations. Therefore, we developed a novel
computational model of Ranking-based KNN for MiRNA-Dis-
ease Association prediction (RKNNMDA). We first combined
miRNA functional similarity, disease semantic similarity,
Gaussian interaction profile kernel similarity, and known
miRNA-disease associations to search for k-nearest-neighbors
both for miRNAs and diseases by using K-Nearest Neighbors
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(KNN) algorithm. The k-nearest-neighbors were obtained in a
descending order from the similarity scores between other
miRNAs (diseases) and the central miRNA (disease). Then we
reranked these k-nearest-neighbors according to SVM Ranking
model. Finally we did weighted voting and obtained the final
ranking of all possible miRNA-disease associations. As a result,
RKNNMDA showed superior performance to 5 classical
miRNA-disease association prediction methods (HGIMDA,”
WBSMDA,** RLSMDA,* HDMP,"* and RWRMDA*?) accord-
ing to leave-one-out cross validation (LOOCV). This method
has obtained an AUC of 0.8221, showing the reliability and pre-
cision of RKNNMDA. Besides, RKNNMDA can be applied to
diseases without any known related miRNAs. Moreover, it has
a satisfying result in case studies as well: 48, 40, and 47 out of
top 50 predicted miRNA-disease associations for Colon Neo-
plasms, Esophageal Neoplasms, and Prostate Neoplasms have
been validated by experimental reports respectively.

Results
Leave-one-out cross validation

LOOCYV is a validation method using one known association as
the test sample and the remaining known associations as the
training samples. In this study, we have already obtained 5430
known miRNA-disease associations from HMDD database.”® In
the gold standard data set, each disease is associated with 14.18
miRNA-disease associations on average, which means that there
exists little difference between leave-one-out cross validation and
10-fold cross validation. Out of 383 diseases investigated in this
paper, 105, 45, 23, 23, 16 diseases have 1, 2, 3, 4, 5 known related
associations respectively. In consideration of the substantial pro-
portion of diseases that have limited associations, it is not feasible
for us to implement multi-fold cross validation. Therefore, here
we use leave-one-out cross validation to evaluate the perfor-
mance of RKNNMDA. Assume that a certain disease d is associ-
ated with n miRNAs (seed miRNAs), each time a seed miRNA
is regarded as a test miRNA and the association between this
miRNA and disease d is considered unrelated, the remaining n-1
miRNAs are considered as training miRNAs, and other miRNAs
that are currently irrelevant to the disease d are considered as
candidate miRNAs. Accordingly, we rank test miRNA among all
the candidate miRNAs. If the ranking of the test miRNA is
higher than the given threshold, it is thought to be a successful
prediction of this miRNA-disease association.
Receiver-Operating Characteristics (ROC) curve is a 2 dimen-
sional plotting graphic that shows the performance of a binary
classifier system as its discrimination threshold varies. The verti-
cal axis displays the true positive rate (TPR), also known as sen-
sitivity, which equals to the ratio of the test miRNA-disease
associations that exceed the threshold compared with all the
associations; while the horizontal axis displays the false positive
rate (FPR), which can be calculated as 1-specificity. Specificity
refers to the percentage of the negative miRNA-disease associa-
tions that are ranked below the threshold. The corresponding
values of TPR and FPR could be calculated by changing different
thresholds. The area under the curve (AUC) refers to the proba-
bility that a randomly chosen positive association ranks higher
than a randomly chosen negative one, which evaluates the
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performance of computational models. To be specific, AUC = 1
indicates that the prediction has a perfectly precise performance,
and AUC = 0.5 demonstrates that the prediction has random
performance. In this case, the AUC of 0.8221 demonstrated the
reliable performance of RKNNMDA.

Compared with other methods

We further compare RKNNMDA with 5 other classical methods
and then we are able to make a more objective evaluation for
RKNNMDA:' HGIMDA,”” which predicted potential associations
between disease d and miRNA m by summarizing all paths with
the length equal to 37 WBSMDA,?® which calculated Within-
Scores and Between-scores for miRNA-disease pairs to calculate
their association probabilities;” RLSMDA,** which is a semi-super-
vised method based on the framework of regularized least
squares;* HDMP,” which took advantage of weighted k most sim-
ilar neighbors and new similarity measures;” RWRMDA,* which
implemented global network similarity-based random walk on the
miRNA functional similarity network. Fig. 1 shows the compari-
son performances in the framework of LOOCV. HGIMDA,
RLSMDA, HDMP, WBSMDA, RWRMDA and RKNNMDA
achieved AUCs of 0.8077, 0.6953, 0.7702, 0.8031, 0.7891 and
0.8221, respectively. In conclusion, RKNNMDA has made
advance in improving the prediction accuracy.

Case studies

To further evaluate the performance of RKNNMDA, we here
applied this method to predict 3 major human cancers: Colon
Neoplasms, Esophageal Neoplasms, and Prostate Neoplasms.
Training samples were downloaded from HMDD database,”®
while potential predicted miRNA-disease associations were val-
idated according to other 2 independent databases: miR2Di-
sease” and dbDEMC.?® The entire prediction list for miRNA-
disease association contains 184155 miRNA-disease pairs
ranked by RKNNMDA model, which could be used for further
experimental validation (See Table S1).

Colon Neoplasms, also known as colon cancer or colorectal
cancer, is the third most common type of cancer constituting
about 10% of all cancer cases. Since colon neoplasms is a fairly
hard-to-detect cancer at an early stage,”"** there is an increas-
ing need of novel sensitive biomarkers that could help improve
the early detection of Colon Neoplasms. Studies have con-
firmed some miRNAs have been related to Colon Neoplasms,
for instance, miR-145 is constantly downregulated in colorectal
tumors.”® Moreover, miR-127 was reported to play a role as a
possible tumor suppressor gene.* By implementing
RKNNMDA to prioritize candidate miRNAs for Colon Neo-
plasms, 20 out of the top 20, and 48 out of the top 50 predicted
potential Colon Neoplasms related miRNAs were validated
based on miR2Disease and dbDEMC (See Table 1). For exam-
ple, in our prediction outcome, miR-143 expression level was
extremely reduced in the colon cancer cells.”” What's more,
miR-21, as an oncogene, may lead to the downregulation of
transforming growth factor B receptor 2 (TGFBR2) and medi-
ate the expression of Sprouty2 protein which was identified as a
tumor suppressor in colon cancer cells.***’

Esophageal Neoplasms, or esophageal cancer, can be divided
into 2 main categories: esophageal squamous-cell carcinoma
(ESCC), which is more common in the developing world, and
esophageal adenocarcinoma (EAC), which is more common in
the developed world.”® In 2012, Esophageal Neoplasms ranked
the eighth most common cancer globally with 456,000 new
cases during that year. By the time when imperceptible symp-
toms such as difficulty in swallowing and weight loss first
appear, the cancer has already further exacerbated.” Besides,
treatment of surgical removal is a difficult operation with a rel-
atively high risk of mortality or post-surgical difficulties.*’
Therefore, reliable prediction model for potential Esophageal
Neoplasms related miRNAs is seriously needed. Up to now,
experiments have already confirmed several related miRNAs,
for instance, miR-148a improved response to chemotherapy in
sensitive and resistant squamous-cell carcinoma cells.*' Also,
overexpression of miR-200c induced chemoresistance in esoph-
ageal cancers through the Akt signaling pathway.*” Taking
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Figure 1. The comparison results between RKNNMDA and other 5 classical computational methods (HGIMDA, RLSMDA,
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HDMP, WBDMDA, and RWRMDA). As a result,

RKNNMDA achieved AUC of 0.8221 which significantly outperformed all the previous classical models.



RNA BIOLOGY 955

Table 1. Here we implemented RKNNMDA to predict potential Colon Neoplasms-related miRNAs. As a result, 10 out of the top 10, 20 out of the top 20, and 48 out of the
top 50 predicted Colon Neoplasms related miRNAs were confirmed based on dbDEMC and miR2Disease (1st column: top 1-25; 2nd column: top 26-50).

miRNA score Evidence miRNA score Evidence
hsa-mir-143 12 dbdemc; miR2Disease hsa-mir-31 4 dbdemc; miR2Disease
hsa-mir-21 10 dbdemc; miR2Disease hsa-mir-449a 4 unconfirmed
hsa-mir-155 10 dbdemc; miR2Disease hsa-mir-92a 4 dbdemc

hsa-mir-20a 10 dbdemc; miR2Disease hsa-let-7e 4 dbdemc; miR2Disease
hsa-mir-223 6 dbdemc; miR2Disease hsa-mir-101 4 unconfirmed
hsa-mir-125b 6 dbdemc; miR2Disease hsa-mir-18a 4 dbdemc; miR2Disease
hsa-mir-132 6 miR2Disease hsa-mir-19b 4 dbdemc; miR2Disease
hsa-mir-125a 6 dbdemc; miR2Disease hsa-mir-30a 4 dbdemc; miR2Disease
hsa-mir-29a 6 dbdemc; miR2Disease hsa-mir-30c 4 dbdemc; miR2Disease
hsa-mir-29b 6 dbdemc; miR2Disease hsa-mir-34a 4 dbdemc; miR2Disease
hsa-let-7a 6 dbdemc; miR2Disease hsa-let-7b 4 dbdemc; miR2Disease
hsa-mir-141 4 dbdemc; miR2Disease hsa-let-7c 4 dbdemc; miR2Disease
hsa-mir-15a 4 dbdemc; miR2Disease hsa-let-7d 4 dbdemc; miR2Disease
hsa-mir-16 4 dbdemc hsa-mir-106b 4 dbdemc; miR2Disease
hsa-mir-1 4 dbdemc; miR2Disease hsa-mir-137 4 dbdemc; miR2Disease
hsa-mir-133b 4 dbdemc; miR2Disease hsa-mir-23b 4 miR2Disease
hsa-mir-146a 4 dbdemc hsa-mir-424 4 dbdemc

hsa-mir-10b 4 dbdemc; miR2Disease hsa-mir-107 4 dbdemc; miR2Disease
hsa-mir-152 4 dbdemc hsa-mir-128 4 dbdemc; miR2Disease
hsa-mir-191 4 dbdemc; miR2Disease hsa-mir-9 4 dbdemc; miR2Disease
hsa-mir-192 4 dbdemc; miR2Disease hsa-mir-140 4 miR2Disease
hsa-mir-200b 4 dbdemc; miR2Disease hsa-mir-19a 4 dbdemc; miR2Disease
hsa-mir-200c 4 dbdemc; miR2Disease hsa-mir-498 4 dbdemc

hsa-mir-205 4 dbdemc hsa-let-7f 4 dbdemc; miR2Disease
hsa-mir-221 4 dbdemc; miR2Disease hsa-let-7 g 4 dbdemc; miR2Disease

Esophageal Neoplasms as a case to implement RKNNMDA, we
successfully verified all the top 20 predicted miRNA-disease
associations by scientific literatures. Moreover, among the top
50 pairs predicted by RKNNMDA, the accuracy reached 80%
(See Table 2). For example, miR-194 was elevated in cancerous
tissue from patients with Esophageal Neoplasms compared

Table 2. Here we implemented RKNNMDA to predict potential Esophageal Neo-
plasms-related miRNAs. As a result, 10 out of the top 10, 20 out of the top 20, and
40 out of the top 50 predicted Esophageal Neoplasms related miRNAs were con-
firmed based on dbDEMC and miR2Disease (1st column: top 1-25; 2nd column:
top 26-50).

miRNA Score Evidence miRNA Score Evidence
hsa-mir-660 10  dbdemc hsa-mir-638 10 unconfirmed
hsa-mir-16 10  dbdemc hsa-mir-96 10  dbdemc
hsa-mir-1 10  dbdemc hsa-mir-302e 10  dbdemc
hsa-mir-135a 10  dbdemc hsa-mir-370 10  dbdemc
hsa-mir-17 10  dbdemc hsa-mir-602 10  dbdemc
hsa-mir-191 10  dbdemc hsa-mir-612 10  dbdemc
hsa-mir-194 10  dbdemc; hsa-mir-615 8 dbdemc
miR2Disease

hsa-mir-200b 10  dbdemc hsa-mir-637 8 unconfirmed
hsa-mir-429 10  dbdemc hsa-mir-657 8 unconfirmed
hsa-mir-93 10  dbdemc hsa-mir-185 8 dbdemc
hsa-mir-125b 10 dbdemc hsa-mir-518c 8 dbdemc
hsa-mir-148b 10  dbdemc hsa-mir-622 8 dbdemc
hsa-mir-18a 10  dbdemc hsa-mir-596 8 dbdemc
hsa-mir-30a 10  dbdemc hsa-mir-583 8 dbdemc
hsa-mir-324 10  dbdemc hsa-mir-557 8 dbdemc
hsa-mir-139 10  dbdemc hsa-mir-600 8 unconfirmed
hsa-mir-335 10  dbdemc hsa-mir-601 8 unconfirmed
hsa-mir-376¢ 10  dbdemc hsa-mir-611 8 unconfirmed
hsa-mir-30d 10  dbdemc hsa-mir-654 8 unconfirmed
hsa-mir-30e 10  dbdemc hsa-mir-662 8 unconfirmed
hsa-mir-23a 10  dbdemc hsa-mir-769 8 dbdemc
hsa-mir-127 10  dbdemc hsa-mir-125a 8 dbdemc
hsa-mir-142 10  dbdemc hsa-mir-198 8 dbdemc
hsa-mir-608 10 unconfirmed hsa-mir-29a 8 dbdemc
hsa-mir-629 10 unconfirmed hsa-mir-29b 8 dbdemc

with noncancerous tissue from normal people.*> Also, Esoph-
ageal Neoplasms patients with high levels of miR-135 in the
post treatment biopsy specimens had significantly shorter
median disease-free survival (DFS) than did those with low
levels.**

Prostate Neoplasms, also known as Prostate Cancer, is a
kind of cancer that develops in a gland in the male reproductive
system. Though most Prostate Neoplasms are slow-growing,
the potential risks lie in that once it begins to develop, it may
spread to other parts of human body particularly bones and
lymph nodes. Besides, Prostate Neoplasms initially causes no
symptoms, which easily leads to delayed treatment.*® Thus, sci-
entists developed computational models that identified the
associations between Prostate Neoplasms and miRNA together.
Some miRNAs have been validated to be related to Prostate
Neoplasms. For instance, bioinformatics analysis confirmed
that miR-99a/let-7c/miR-125b-2 were enriched in androgen-
induced gene sets which stimulate and repress gene expression
to promote the initiation and development of Prostate Can-
cer.*” Moreover, miR-183 expression was significantly higher
in Prostate Cancer cells and tissues, while its knockdown
decreased cell growth and mobility of Prostate Cancer cells.*®
By applying RKNNMDA to the case study of Prostate Neo-
plasms, 9 out of top 10, 19 out of top 20, and 47 out of top 50
predicted potential related miRNAs were confirmed (See
Table 3). For example, the aberrant expression of miR-143 has
been detected in Prostate Neoplasms.*” Also, ectopic expression
of miR-126" regulated protein translation and led to invasive-
ness of prostate cancer LNCaP cells.*®

Discussion

Nowadays, plenty of researches have confirmed that miRNAs
are closely related with the development and progression of
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Table 3. Here, we implemented RKNNMDA to predict potential Prostate Neoplasms-related miRNAs. As a result, 9 out of the top 10, 19 out of the top 20, and 47 out of
the top 50 predicted Esophageal Neoplasms related miRNAs were confirmed based on dbDEMC and miR2Disease (1st column: top 1-25; 2nd column: top 26-50).

miRNA Score Evidence miRNA Score Evidence
hsa-mir-143 10 dbdemc; miR2Disease hsa-mir-194 2 dbdemc; miR2Disease
hsa-mir-126 10 dbdemc; miR2Disease hsa-mir-195 2 dbdemc; miR2Disease
hsa-mir-203 10 unconfirmed hsa-mir-200a 2 dbdemc

hsa-mir-223 10 dbdemc; miR2Disease hsa-mir-200b 2 dbdemc

hsa-mir-96 10 dbdemc; miR2Disease hsa-mir-200c 2 dbdemc

hsa-mir-198 4 dbdemc; miR2Disease hsa-mir-204 2 dbdemc

hsa-mir-29a 4 dbdemc; miR2Disease hsa-mir-205 2 dbdemc; miR2Disease
hsa-mir-29b 4 dbdemc; miR2Disease hsa-mir-20a 2 dbdemc; miR2Disease
hsa-let-7a 4 dbdemc; miR2Disease hsa-mir-221 2 dbdemc; miR2Disease
hsa-mir-141 4 miR2Disease hsa-mir-25 2 dbdemc; miR2Disease
hsa-mir-15a 2 dbdemc; miR2Disease hsa-mir-31 2 dbdemc; miR2Disease
hsa-mir-16 2 dbdemc; miR2Disease hsa-mir-34b 2 dbdemc; miR2Disease
hsa-mir-21 2 dbdemc; miR2Disease hsa-mir-449a 2 miR2Disease
hsa-mir-1 2 dbdemc hsa-mir-92a 2 dbdemc; miR2Disease
hsa-mir-133a 2 dbdemc hsa-mir-93 2 unconfirmed
hsa-mir-133b 2 dbdemc hsa-mir-99b 2 dbdemc; miR2Disease
hsa-mir-146a 2 dbdemc; miR2Disease hsa-mir-101 2 dbdemc; miR2Disease
hsa-mir-106a 2 dbdemc; miR2Disease hsa-mir-146b 2 dbdemc; miR2Disease
hsa-mir-151a 2 dbdemc; miR2Disease hsa-mir-148a 2 miR2Disease
hsa-mir-152 2 dbdemc hsa-mir-196b 2 dbdemc

hsa-mir-17 2 miR2Disease hsa-mir-27a 2 dbdemc; miR2Disease
hsa-mir-181b 2 dbdemc; miR2Disease hsa-mir-27b 2 dbdemc; miR2Disease
hsa-mir-182 2 dbdemc; miR2Disease hsa-mir-30c 2 dbdemc; miR2Disease
hsa-mir-191 2 dbdemc; miR2Disease hsa-mir-34a 2 dbdemc; miR2Disease
hsa-mir-193b 2 dbdemc hsa-mir-378a 2 unconfirmed

various human complex diseases, thus more attention has been
paid to identify potential miRNA-disease associations to better
understand the pathogenesis of disease at the miRNA level.
Potential miRNA-disease associations could be predicted and
ranked by computational models, and the most possible associ-
ations could be given priority for further experimental valida-
tion, which greatly speeds up the experimental validation
processes. On the basis of the hypothesis that functional similar
miRNAs are expected to be involved in similar diseases and
vice versa, we developed a novel computational method of
RKNNMDA which integrated miRNA functional similarity,
disease semantic similarity, Gaussian interaction profile kernel
similarity, and known miRNA-disease associations. First, we
took advantage of KNN algorithm to obtain each miRNA’s or
each disease’s k-nearest-neighbors which were sorted by the
similarity scores between other miRNAs (diseases) and central
miRNA (disease). Second, we calculated the Hamming loss of
every miRNA pair, as well as the Hamming loss of every disease
pair. Third, we constructed the SVM Ranking model on the
basis of Hamming loss to rerank previously obtained k-nearest-
neighbors of each miRNA and k-nearest-neighbors of each dis-
ease. Therefore, we obtained a group of miRNAs which con-
tains each miRNA and its reranked k-nearest-neighbors, and a
group of diseases which contains each disease and its reranked
k-nearest-neighbors. Finally, we could infer possible diseases
derived from miRNA’s k-nearest-neighbors for each miRNA,
as well as infer possible miRNAs derived from disease’s k-near-
est-neighbors for each disease. Thus we obtained 2 miRNA-dis-
ease association matrices. Finally, we assigned corresponding
weight score to the 2 miRNA-disease association matrices
respectively according to weighted voting and added the weight
scores up. The weight score sum represents the possibility of
associations which we used as the basis to obtain the final rank-
ing list. RKNNMDA obtained a reliable AUC = 0.8221 in the

LOOCYV, indicating its reliable performance. Furthermore, 96%
(Colon Neoplasms), 80% (Esophageal Neoplasms), and 94%
(Prostate Neoplasms) of top 50 predicted miRNA-disease asso-
ciations have been confirmed in case studies of 3 important
human cancers. It is believed that RKNNMDA will be a useful
tool with potential value in human disease prognosis, treat-
ment, and prevention.

One important advantage of RKNNMDA is that it inte-
grated several trustable biologic data sets and thus we obtained
a much larger data pool compared with previous methods. Sec-
ondly, our method is a bilateral process which means that we
adopted the same procedure of KNN, SVM Ranking, and
weighted voting to both miRNA and disease to reduce predic-
tion bias. A unilateral process might lead to false high weights
for some miRNA-disease associations due to the incomplete-
ness of initial data set from HMDD database. However,
through our method, we were able to obtain 2 sets of weighted
voting scores for miRNA-disease associations. Sequentially we
added these 2 weighted voting scores together, and treated the
sum as the final ranking basis. Furthermore, RKNNMDA could
be applied to diseases without any known related miRNAs and
miRNAs without any known related diseases which greatly
expanded the application scope. Of course, RKNNMDA has
some limitations and need improvements in the future. Firstly,
obtaining sufficient experimental verified miRNA-disease asso-
ciations still are in need, thus combing larger and heteroge-
neous biologic data sets will enhance the model effectiveness
and accuracy.* > Secondly, RKNNMDA may cause bias to
miRNAs with more known associated diseases. Furthermore, it
needs further study to better integrate similarity networks,
KNN algorithm, and SVM Ranking model to calculate associa-
tion scores, such as introducing a practical algorithm to decide
weighting parameters during calculation.> In additional, some
state-of-the-art computational models of other research fields



could be introduced to the prediction of miRNA-disease associ-
ation.”>"*” Finally, we would further improve the current ver-
sion of RKNNMDA to realize the miRNA-disease association
types,”* disease-related miRNA-target interactions, and dis-
ease-related miRNA-environmental factors.”®>’

A cancer hallmark network framework provides solu-
tions to solve the mentioned limitations of RKNNMDA,
which can effectively evaluate cancer risks based on
miRNA profiles. As for personalized medicine, there
remain 3 crucial problems in the term of miRNAs that
could be considered in the future:' how to obtain the
tumor recurrence and metastases probability of patients;
how to predict potential consequences after applying a
specific drug to patients;’ how to identify molecular signa-
tures to evaluate and predict chemotherapeutic results
after cancer treatment.’”®' In addition, scientists discov-
ered that tumors often contain subclones, which has
already been confirmed by tumor sequencing. Through
tumor genome sequencing, scientists are able to quantify
and computationally dissect clones, and then clone-based
analysis is available. By using miRNA-disease prediction
method like RKNNMDA and combining the clone-based
similarity network (eg. using the phenotypic data of dif-
ferent cancer subpopulations to construct cancer subclone
similarity network) with miRNA similarity network, we
are able to predict potential miRNAs-subclone
associations.’>®

Materials and methods
MIiRNA-disease associations

In the past few years, some experiment-supported evidences
have already confirmed a certain number of miRNA-disease
associations. Here, we downloaded 5430 verified miRNA-dis-
ease associations from the Human microRNA Disease Database
(HMDD),*® which includes 495 miRNAs and 383 diseases. Fur-
thermore, we constructed an adjacency matrix A, in which the
entity A(i,j) represented whether miRNA m(i) was related to
disease d(j). If there was association between m(i) and d(j), then
the entity A(i,j) was equal to 1, otherwise 0.

MiRNA functional similarity

Based on the hypothesis that miRNAs with similar functions
tend to be associated with diseases with similar phenotypes, we
constructed miRNA functional similarity matrix FS.** MiRNA
functional similarity data set was downloaded from http://
www.cuilab.cn/files/images/cuilab/misim.zip in January 2010.
In miRNA functional similarity matrix FS, the entity FS(ij)
represented the functional similarity score between miRNA m

(i) and m(j).

Disease semantic similarity

The relationship of different diseases can be described through
a structure of Directed Acyclic Graph (DAG). A disease d can
be described as DAG(d) = (d, T(d), E(d)), where T(d) is the
node set including all ancestors of d and d itself, and E(d) is the
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edge set including the direct edges linking parent nodes to child
nodes.**°%%4% We defined the contribution value of a disease ¢
to disease d as follows:

{ Dy(d)=1 1)
Dy(t) =max{A*Dy(t") |t" € children of t} if t#d

Here A is the semantic contribution factor. For disease d, the
contribution of itself is 1, while the contribution of another dis-
ease t decreases as the distance between d and ¢ increases.
Hence, the semantic value of disease d can be calculated
according to the contribution of ancestor diseases and disease d
itself, i.e.

DV(d)= ) Du(t) )

teT(d)

According to the assumption that similar diseases tend to
share more parts of their DAGs, we define the semantic similar-
ity between disease a and b as follows:

ZteT(u) M CAORSA0)
DV(a) + DV (b)

SS(a,b) = (3)

Gaussian interaction profile kernel similarity for miRNAs

Based on the assumption that functionally similar miRNAs
tend to be associated with similar diseases, we constructed
Gaussian interaction profile kernel similarity for further
similarity calculation.®” First, we introduced a binary vector
IP(m(i)) to denote the interaction profile of miRNA m(i).
IP(m(i)) represented the presence or absence of associations
between each disease and miRNA m(i) in the known
miRNA-disease association network, namely, the row i of
the adjacency matrix A. Then we can calculate the Gaussian
interaction profile kernel similarity between miRNA m(i)
and m(j) as follows:

KM(m(i), m(j)) = exp(— y,, || IP(m(i)) — IP(m(})) [|*) (4)

Here, the parameter vy,, was used to control the kernel band-
width, and was calculated by normalizing a new bandwidth
parameter vy,,” by the average number of associations with dis-
eases for all miRNAs. Therefore, the bandwidth parameter v,,
was defined as follows:

— (ﬁimm(f)f) ©

i=1

In principle, the new bandwidth parameter vy, could be set
with further cross-validation. In this paper we simply set
Y = 1 according to some previous researches.®”%®

Gaussian interaction profile kernel similarity for diseases

Similar to Gaussian interaction profile kernel similarity calcula-
tion for miRNAs, we used binary vector IP(d(i)) to denote the


http://www.cuilab.cn/files/images/cuilab/misim.zip
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interaction profiles of disease d(i). Therefore, disease Gaussian
interaction profile kernel similarity matrix could be calculated
as follows:

KD(d(i),d(j)) = exp( — v I IP(d(i)) — IP(d(j)) II*) ~ (6)

nd
Ya=VYa / (%le(d(i))z) (7)

Here, K, refers to the Gaussian interaction similarity for dis-
eases, and the bandwidth parameter -y, is obtained through the
normalization that a new bandwidth parameter vy, is divided
by the average number of associations with miRNAs for all the

diseases. Here, the new bandwidth v,” was similarly set equal to
1.67:68

Integrated similarity for miRNAs and diseases

Given that miRNA functional similarity and Gaussian interac-
tion similarity for miRNAs do not cover the whole miRNA-
miRNA similarity network, we then integrated these 2 similar-
ity matrices to enhance the prediction performance. That is to
say, if miRNA m(i) and m(j) have functional similarity, we use
the miRNA functional similarity value. Otherwise, we use the
Gaussian kernel similarity value. Hence, the integrated similar-
ity matrix for miRNAs is constructed as follows:

SM(m(i), m(j))

_ { ES(m(i), m(j))

if m(i) and m(j) has functional similarity (8)
KM(m(i), m(j))

otherwise

Similarly, the integrated similarity matrix for diseases could
be constructed as follows:

$D(m(i), m(j))

:{$mwﬁw>

if d(i) and d(j) has semantic similarity )
KD(d(i), d(j))

otherwise

RKNNMDA

We developed the computational model of RKNNMDA to predict
potential miRNA-disease associations by integrating miRNA-dis-
ease association adjacency matrix A, miRNA functional similarity
matrix FS, disease semantic similarity matrix SS, Gaussian interac-
tion profile kernel similarity matrices for miRNAs (KM) and dis-
eases (Kp) (the code of this method could be downloaded from
http://www.escience.cn/system/file?fileld=87100). Fig. 2 demon-
strates the entire process in the form of a flowchart. To begin with,
based on the KNN algorithm, we could find k-nearest-neighbors
neim(i) of a selected miRNA m(i). However, the initial similarity-
based ranking of k-nearest-neighbors was not reliable for further
prediction because KNN is a type of instance-based learning, or
lazy learning, whose drawback lies in that the class which contains
larger training examples tends to dominate the prediction of the
new example and leads to the unbalanced outcome for the new

example. Therefore, we introduced the SVM Ranking model to
rerank these previously sorted neighbors.”””> SVM Ranking model
is an variant of the SVM algorithm, and is used to solve certain
ranking problems via learning, i.e., it extracts special features from
training data sets and ranks the given examples according to previ-
ously learned features. Hamming loss, which calculates the incon-
sistent proportion of 2 examples, acts as an essential training data
set which the SVM Ranking model learns from. Given the selected
miRNA m(i), we need to obtain associated disease label sets for
each neighbor m(j), marked as mad(j), and the associated disease
label set for m(i) itself, marked as md(i), from adjacency matrix A,
respectively. Then the Hamming loss could be defined as follows:

HammingLoss(m(i), m(j)) = | md(i)Amd(j) | (10)

= Tmd(i) Umd(j) |

Here, the denominator refers to the number of elements of
union set of md(i) and mad(j), while the numerator refers to the
number of elements in the symmetric difference set between md(i)
and md(j). After calculating the Hamming loss between (i) and all
its neighbors, we inputted these outcomes as training data set to the
SVM Ranking software which we downloaded from http://www.cs.
cornell.edu/people/tj/svm_light/svm_rankhtml. Then, the SVM
Ranking model outputted reranked reliable k-nearest-neigh-
bors neim’(i) for miRNA m(i). Next, by examining adjacency
matrix A, we identified diseases having known associations
with the neighboring miRNAs of m(i), i.e., miRNAs in neim’(i),
thus obtained corresponding association probability between
(i) and these diseases. The next step is to give the corresponding
weight score to each miRNA-disease association that we
obtained from the last step for the final possibility sorting by
means of weighted voting. The weight score (WS) between m(i)
and disease d was defined as the following formula:

k
WS1(m(i),d) = Z disease(neim’ (i,j)) * 2K=1 (11)

j=1

Here, neim’(i,j) refers to the jth neighboring miRNA of m(i) and
disease(neim’(i,j)) refers to disease d’s feature score with regard to
miRNA m(i) and its neighbor m(j). Because we lacked real feature
data for diseases, we used miRNA functional similarity score between
m(i) and m(j) as the feature score of d since m(j) was related to d and
thus m(j) represented one of &s features, so this similarity score
between m(i) and m(j) to some extant represented the relationship
between m(i) and d. As the weight score value increases, the miRNA
m(i)ismorelikelytobeassociated with diseased.

To further enhance the accuracy of the computational
model, we also applied similar methodology to achieve k-near-
est-neighbors of disease d(i), reranked these neighbors by the
SVM Ranking model based on Hamming loss input and imple-
mented weighted voting to each predicted miRNA-disease
association. Hamming loss for disease d(i) and d(j), and weight
score by means of weighted voting between d(i) and miRNA m
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Gaussian interaction
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k-nearst-neighbors for d(i)
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Reranked k- ,_l__________\
nearest- 3 g
- d(i)Amj)
neighbors for el v |m
disease gLoss(m(i),m(j)) = ————-—
md(i)\J md|
(neid’ ) I HU G)I
k -
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Figure 2. Flowchart of potential miRNA-disease association prediction based on the computational model of RKNNMDA.! Obtaining integrated similarity matrices by combining
miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity;> Applying KNN algorithm and searching for k-nearest-neighbors for
miRNA and disease;® Calculating Hamming loss, reranking k-nearest-neighbors by SVM Ranking model, and implementing prediction based on weighted voting.

could be defined as follows:

| dm(i)Adm(j) |

HammingLoss(d(i),d(j)) = Tdm() Udm() |

(12)

k
WS2(m,d(i)) =  miRNA(neid (i,j)) 2"~ (13)
j=1

Here, dm(i) and dm(j) refers to the related miRNA label
sets of disease d(i) and d(j), respectively. The denominator
of HammingLoss(d(i),d(j)) refers to the number of elements
of union set of dm(i) and dm(i), while the numerator refers
to the number of elements in the symmetric difference set
between dm(i) and dm(i). Besides, neid’(ij) represents jth

neighboring disease of d(i), and miRNA(neid’(i,j)) represents
miRNA m’s feature score with regard to disease d(i) and its
neighbor d(j). Similarly, as the lack of real feature data for
miRNAs, we used disease semantic similarity score between
d(i) and d(j) as the feature score of m since d(j) related to
m and thus d(j) represented one of m’s features, so this
similarity score between d(i) and d(j) to some extant repre-
sented the relationship between d(i) and m.

Finally, we added WSI and WS2 together and ranked the
potential miRNA-disease associations.
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