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Abstract

Continuing efforts from large international consortia have made genome-wide epigenomic

and transcriptomic annotation data publicly available for a variety of cell and tissue types.

However, synthesis of these datasets into effective summary metrics to characterize the

functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus,

an extension of our previous work through integration of an expanded set of epigenomic

and transcriptomic annotations to produce high-resolution, single tissue annotations.

After validating our annotations with a catalog of tissue-specific non-coding elements pre-

viously identified in the literature, we apply our method using data from 127 different cell

and tissue types to present an atlas of heritability enrichment across 45 different GWAS

traits. We show that broader organ system categories (e.g. immune system) increase sta-

tistical power in identifying biologically relevant tissue types for complex diseases while

annotations of individual cell types (e.g. monocytes or B-cells) provide deeper insights into

disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth

case study of late-onset Alzheimer’s disease (LOAD). Our analyses suggest a strong

connection between LOAD heritability and genetic variants contained in regions of the

genome functional in monocytes. Furthermore, we show that LOAD shares a similar

localization of SNPs to monocyte-functional regions with Parkinson’s disease. Overall,

we demonstrate that integrated genome annotations at the single tissue level provide

a valuable tool for understanding the etiology of complex human diseases. Our
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GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/

GenoSkyline.

Author summary

After years of community efforts, many experimental and computational approaches have

been developed and applied for functional annotation of the human genome, yet proper

annotation still remains challenging, especially in non-coding regions. As complex disease

research rapidly advances, increasing evidence suggests that non-coding regulatory DNA

elements may be the primary regions harboring risk variants in human complex diseases.

In this paper, we introduce GenoSkyline-Plus, a principled annotation framework to iden-

tify tissue and cell type-specific functional regions in the human genome through integra-

tion of diverse high-throughput epigenomic and transcriptomic data. Through validation

of known non-coding tissue-specific regulatory regions, enrichment analyses on 45 com-

plex traits, and an in-depth case study of neurodegenerative diseases, we demonstrate the

ability of GenoSkyline-Plus to accurately identify tissue-specific functionality in the

human genome and provide unbiased, genome-wide insights into the genetic basis of

human complex diseases.

Introduction

Large consortia such as ENCODE [1] and Epigenomics Roadmap Project [2] have generated a

rich collection of high-throughput genomic and epigenomic data, providing unprecedented

opportunities to delineate functional structures in the human genome. As complex disease

research rapidly advances, evidence has emerged that disease-associated variants are enriched

in regulatory DNA elements [3, 4]. Therefore, functional annotation of the non-coding

genome is critical for understanding the genetic basis of human complex diseases. Unfortu-

nately, categorizing the complex regulatory machinery of the genome requires integration of

diverse types of annotation data as no single annotation captures all types of functional ele-

ments [5]. Recently, we have developed GenoSkyline [6], a principled framework to identify

tissue-specific functional regions in the human genome through integrative analysis of various

chromatin modifications. In this work, we introduce GenoSkyline-Plus, a comprehensive

update of GenoSkyline that incorporates RNA sequencing and DNA methylation data into the

framework and extends to 127 integrated annotation tracks covering a spectrum of human tis-

sue and cell types.

To demonstrate the ability of GenoSkyline-Plus to systematically provide novel insights

into complex disease etiology, we jointly analyzed summary statistics from 45 genome-wide

association studies (GWAS; Ntotal�3.8M) and identified biologically relevant tissues for a

broad spectrum of complex traits. We next performed an in-depth, annotation-driven investi-

gation of Alzheimer’s disease (AD), a neurodegenerative disease characterized by deposition

of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. Late-onset AD (LOAD)

includes patients with onset after 65 years of age and has a complex mode of inheritance [7].

Around 20 risk-associated genetic loci have been identified in LOAD GWAS [8]. However,

our understanding of LOAD’s genetic architecture and disease etiology is still far from com-

plete. Through integrative analysis of GWAS summary data and GenoSkyline-Plus annota-

tions, we identified strong enrichment for LOAD associations in immune cell-related DNA
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elements, consistent with other data suggesting a crucial role for the immune system in AD eti-

ology [9–11]. Jointly analyzing GWAS summary data for LOAD and Parkinson’s disease (PD),

we identified substantial enrichment for pleiotropic associations in the monocyte functional

genome. Our findings provide support for the critical involvement of the immune system in

the etiology of neurodegenerative diseases, and suggest a previously unsuspected role for an

immune-mediated pleiotropic effect between LOAD and PD.

Results

Identify tissue and cell type-specific functionality in the human genome

We use our previously established statistical framework to calculate the posterior probability

of functionality for each nucleotide in the human genome [12]. Integrating tissue and cell-spe-

cific genomic functional data available through Epigenomics Roadmap Project [2], we make

available GenoSkyline-Plus scores for 127 individual tissue annotation tracks (Methods; S1

Table). H3K4me3 and H3K9ac, known markers of open chromatin and active transcription

[13], are shown to have the largest odds ratios of predicting functionality across the genome

(Fig 1A). Identifying H3K4me3 and H3K9ac as strong indicators of genomic functionality is a

finding consistent with previous studies of gene regulation through chromatin marks [14]. In

contrast, H3K9me3, a well established repressive mark [13], has a reversed effect on genome

functionality. The bimodal pattern of GenoSkyline scores [6] allows us to impose a score cutoff

to robustly define the functional genome. Using a cutoff of 0.5, 3% of the genome is considered

functional on average across all annotation tracks (Fig 1B). This functionality percentage varies

from 1% in pancreatic islet cells to 8% in PMA-I stimulated T-helper cells. Our findings on

functionality across all tracks are consistent with previous findings [12]; 34% of the intergenic

human genome is predicted to be functional in at least one annotation track (Fig 1C). Addi-

tionally, coding regions of the genome are predicted to have much greater proportions of func-

tionality in multiple tissues than intronic and intergenic regions.

To assess the ability of GenoSkyline-Plus to capture tissue and cell-specific, non-coding

functionality in the human genome, we consider a diverse set of known non-coding regulatory

elements studied across the genome. To start, we examined microRNAs (miRNA), which are

known to regulate a variety of cellular processes through the translational repression and

Fig 1. Basic characteristics of GenoSkyline-Plus annotation. (A) Odds ratio of predicting functionality.

Each box represents the odds ratio for the same data type across 127 GenoSkyline-Plus tracks. (B)

Histogram of predicted functional proportion across 127 annotation tracks. Dashed line marks the mean

functional proportion. (C) Distribution of tracks with predicted functionality. For example, 26% of exon regions

are predicted to be functional in more than 10 GenoSkyline-Plus tracks.

https://doi.org/10.1371/journal.pgen.1006933.g001
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degradation signaling of transcripts [15]. Recent work by Ludwig et al. profiled miRNA

expression in 61 different human tissues and identified miRNAs with functionality unique to

single tissues through a tissue specific index [16, 17] (TSI; Methods). We applied GenoSkyline-

Plus scores to miRNA with tissue-specific functionality by calculating the total proportion of

nucleotides predicted to be functional in each tissue. We next looked for which annotation

tracks are able to predict the highest proportion of functionality for these known functional

regions. The best predictors of high functionality for the three tissues with the largest sample

sizes (i.e. brain, liver, and muscle) are tracks for brain structures, the liver track, and the muscle

track, respectively (Fig 2A).

We next examined long non-coding RNAs (lncRNA), another non-coding element known

for its tissue-specific regulatory action [18]. Using a custom-designed microarray targeting

GENCODE lncRNA, Derrien et al. profiled the activity of 9,747 lncRNA transcripts [19]. In

order to reidentify and validate the set of lncRNA transcripts that are specific to their

Fig 2. Identify tissue and cell type-specific functionality. Predicted functional proportions of different

classes of previously identified tissue-specific non-coding elements. Sample sizes count the number of non-

coding elements with specificity for the titled tissue or cell type (see Methods). Darker bars represent

annotation tracks that physiologically match the tissue to which the corresponding set of non-coding elements

are specific. (A) miRNAs with TSI > 0.75 identified in Ludwig et al. (B) lncRNAs with TSI > 0.75 identified in

Derrien et al. (C) Enhancers with differential expression within a cell type facet identified by Andersson et al.

(D) Predicted functional elements based on GenoSkyline-Plus annotations in the IL-17A LCR. Orange boxes

mark identified CNS sites. (E) Predicted functional proportion in CNS sites and their 200-bp flanking regions

across different T-cell subsets.

https://doi.org/10.1371/journal.pgen.1006933.g002
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respective tissues, we calculated the previously described TSI and selected lncRNAs with

expression specific to only a few cell types. Physiologically matching tracks show a higher pro-

portion of predicted functionality than unmatched tracks in complex, heterogeneous tissue

structures like the midbrain. More functionally uniform tissues, such as the thymus or pla-

centa, show the highest functional proportion in matching annotation tracks (Fig 2B).

We also assessed enhancers, non-coding elements that can remotely regulate transcription

of an associated promoter elsewhere on the genome with important roles in cell-type specific-

ity [20]. We extracted tissue and cell type-specific enhancer facets identified through the FAN-

TOM5 cap analysis of gene expression (CAGE) atlas and positive differential expression when

compared against other defined facets [21]. To determine the utility of the large library of

immune cells available in the Epigenomics Roadmap Project for which we developed annota-

tion tracks, we focused on enhancer facets with differential CAGE expression in immune cells.

While the method by which enhancers are defined to be differential in a facet is liberal (Meth-

ods) and does not imply facet-specific expression, GenoSkyline-Plus still showed outstanding

ability to identify matching cell types. Indeed, matched annotation tracks for T-cells, natural

killer cells, and monocytes show consistently higher functional proportions than other, non-

matched immune cell annotation tracks (Fig 2C).

Finally, we present a case study of the IL17A-IL17F locus control region (LCR) in humans,

a ~200kb regulatory region surrounding the IL17A gene locus. IL17A encodes the primary

secreted cytokine effector molecule IL-17 of T helper 17 (Th17) cells [22]. The LCR has been

studied in mouse models and is found to contain many potential human-conserved intergenic

regulatory elements that bind transcription factors that are essential for Th17 cell differentia-

tion and effector function [23, 24]. Experimentally, these conserved noncoding sequences

(CNS) acquire functionally permissive H3 acetylation marks at much greater magnitudes

under Th17-inducing conditions than naïve or combined Th1 and Th2 populations [25].

Comparing annotation tracks for naïve CD4+ T-cells, differentiated Th17 cells, and differenti-

ated Th1/Th2 cell populations, we identified highly Th17-specific functionality in the con-

served regions of the human genome corresponding to known murine CNS regions (Fig 2D

and 2E). CNS sites and their flanking regions showed substantially higher functional propor-

tion in Th17 cells than in naïve CD4+ T-cells or Th1/Th2 cell subsets.

Stratify heritability by tissue and cell type for 45 human complex traits

We jointly analyzed three tiers of annotation tracks that respectively represent the overall func-

tional genome, 7 broad tissue clusters, and 66 tissue and cell types (Methods; S2 Table), with

summary statistics from 45 GWAS covering a variety of human complex traits (S3 Table). We

applied LD score regression [26] to stratify trait heritability by tissue and cell type, and identi-

fied a total of 226 significantly enriched annotation tracks for 34 traits after correcting for mul-

tiple testing (S4–S7 Tables). In general, GWAS with a large number of significant SNP-level

associations showed stronger heritability enrichment in the predicted functional genome (Fig

3A and 3B). Tissue and cell tracks refined the resolution of heritability stratification and pro-

vided additional insights into the genetic basis of complex traits (Fig 3C and 3D).

The immune annotation track was significantly enriched for 7 immune diseases, namely

celiac disease (CEL), Crohn’s disease (CD), ulcerative colitis (UC), primary biliary cirrhosis

(PBC), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and multiple sclerosis

(MS). Using tracks for cell types, we identified several significant enrichments, including

monocytes for CD (p = 2.9e-11) and B cells for PBC (p = 2.3e-6), RA (p = 1.2e-5), and MS

(p = 2.2e-6). Inflammatory bowel diseases showed significant enrichment in the gastrointesti-

nal (GI) annotation track (CD: p = 1.4e-4; UC: p = 5.6e-5). Another autoimmune disease with

Tissue-specific functional annotation and Alzheimer’s disease genetics
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a well-established GI component, CEL, also showed nominal enrichment in the GI annotation

track (p = 3.7e-4).

Several brain annotation tracks were significantly enriched for associations of schizophre-

nia (SCZ), education years (EDU), and cognitive performance (IQ). Bipolar disorder (BIP),

neuroticism (NEU), and chronotype (CHT) all showed nominally significant enrichment in

the anterior caudate annotation track. Body mass index (BMI) and age at menarche (AAM)

Fig 3. Enrichment analysis for 45 human complex traits. (A) Relationship between GWAS sample size, total

count of significant associations, and signal enrichment in the functional genome. Traits significantly enriched in at

least one annotation are highlighted in red. (B) Enrichment in the general functional genome predicted by

GenoCanyon annotation. The dashed line marks the Bonferroni-corrected significance cutoff. (C) Enrichment

across 7 broadly defined tissue tacks. Asterisks highlight significance after correcting for 45 traits and 7 tissues. (D)

Enrichment in 66 tissue and cell tracks. Asterisks highlight significant enrichment after correcting for 45 traits and 66

annotations. Details for annotation tracks and different traits are summarized in S2 and S3 Tables.

https://doi.org/10.1371/journal.pgen.1006933.g003

Tissue-specific functional annotation and Alzheimer’s disease genetics

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006933 July 24, 2017 6 / 24

https://doi.org/10.1371/journal.pgen.1006933.g003
https://doi.org/10.1371/journal.pgen.1006933


were significantly enriched in multiple brain annotation tracks. Compared to other brain

regions, the substantia nigra annotation track showed weaker enrichment for these brain-

based traits, which is consistent with its primary function of controlling movement.

Hundreds of height-associated loci have been identified in GWAS [27]. Such a highly

polygenic genetic architecture is also reflected in our analysis. 59 of 66 tier-3 tissue and cell

annotation tracks were significantly enriched for height associations, with breast myoepithe-

lial cell (p = 6.2e-14) and osteoblast (p = 8.5e-14) being the most significant. Waist-hip ratio

(WHR), birth weight (BW), and three blood pressure traits showed significant enrichment in

the adipose annotation track. Overall, cardiovascular (CV) annotation tracks showed strong

enrichment for blood pressure and coronary artery disease (CAD). Interestingly, the aorta

annotation track is significantly enriched for pulse pressure (PP) but not systolic or diastolic

blood pressure (SBP and DBP). CAD and 4 lipid traits, i.e. high and low density lipoprotein

(HDL and LDL), total cholesterol (TC), and triglycerides (TG), shared a similar enrichment

pattern in liver, adipose, and monocyte annotation tracks, which is consistent with the causal

relationship among these traits [28].

Our results demonstrated that annotations with refined specificity could provide insights

into disease etiology while broader annotations have greater statistical power. Age-related

macular degeneration (AMD) was significantly enriched in broadly defined annotation tracks

including immune, brain, CV, and GI, despite the non-significant enrichment results using

tier-3 annotation tracks. Analyses based on all three tiers of annotations could systematically

provide the most interpretable results for most traits. Importantly, we note that greater GWAS

sample sizes will effectively increase statistical power in the enrichment analysis while leaving

the overall enrichment pattern stable (S1 Fig). Therefore, many more suggestive enrichment

results are likely to become significant as GWAS sample sizes grow. Finally, some traits, e.g.

type-II diabetes (T2D) and age at natural menopause (AANM), showed strong enrichment in

the general functional genome but not in specific tissues, suggesting that we may be able to

gain a better understanding of these traits when annotation data for tissues or cell types more

relevant to these traits are made available.

Identify enrichment in immune-related DNA elements for

neurodegenerative diseases

Next, we performed an integrative analysis of stage-I GWAS summary statistics from the

International Genomics of Alzheimer’s Project [8] (IGAP; n = 54,162) with GenoSkyline-Plus

annotations (Methods). SNPs located in the broadly defined immune annotation track, which

account for 24.4% of the variants in the IGAP data, could explain 98.7% of the LOAD herita-

bility estimated using LD score regression (enrichment = 4.0; p = 1.5e-4). Somewhat surpris-

ingly, the signal enrichment in DNA elements functional in immune cells was substantially

stronger than the enrichment in brain and other tissue types (Fig 4A). To investigate if

immune-related DNA elements are also enriched for associations of other neurodegenerative

diseases, we analyzed a publicly accessible GWAS summary dataset for PD [29] (n = 5,691;

Methods). Again, the immune annotation track was the most significantly enriched annota-

tion (enrichment = 6.3; p = 7.5e-6), followed by epithelium and CV (Fig 4A).

Analysis based on 66 tissue and cell tracks further refined the resolution of our enrichment

study. Monocyte (enrichment = 10.9; p = 2.0e-5) and liver (enrichment = 16.6; p = 4.1e-4)

annotation tracks were significantly enriched for LOAD associations (Fig 4B). In fact, the com-

bined functional regions in monocyte and liver covered 8.8% of the SNPs in the IGAP data,

but could account for 99.6% of the LOAD heritability currently captured in the IGAP stage-I

Tissue-specific functional annotation and Alzheimer’s disease genetics
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GWAS (Fig 4C). In PD GWAS, signal enrichment in liver was absent, but monocyte-func-

tional regions remained strongly enriched (enrichment = 16.3; p = 8.5e-7).

Our findings support the critical role of innate immunity in neurodegenerative diseases

[10]. Significant enrichment for LOAD associations in liver-specific DNA elements also pro-

vides additional support for the possible involvement of cholesterol metabolism in LOAD

Fig 4. Tissue and cell type-specific enrichment for AD and PD. (A) Enrichment in 7 broadly defined tissue

tracks. (B) Enrichment analysis using 66 GenoSkyline-Plus tissue and cell tracks. Dashed lines indicate

Bonferroni-corrected significance cutoff. (C) Percentage of variants covered by each annotated category and

percentage of heritability explained by variants in that category.

https://doi.org/10.1371/journal.pgen.1006933.g004
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etiology [30, 31]. LOAD signal enrichment in liver remained significant after removing the

APOE region (chr19: 45,147,340–45,594,595; hg19) from the analysis (S2 Fig), suggesting a

polygenic architecture in this pathway. Finally, some adaptive immune cells also showed

enrichment for AD and PD associations. LOAD signal enrichment in the B cell annotation

track was nominally significant, while multiple T cell annotation tracks were significantly

enriched for PD associations. These results not only suggest the involvement of adaptive

immunity in neurodegenerative diseases, but also hint at distinct mechanisms of such involve-

ment between AD and PD. Finally, for comparison, we applied several other annotations

including CADD [32], GWAVA [33], and EIGEN [34] to the LOAD GWAS data. GenoCan-

yon and GenoSkyline annotations for seven tissues were also included in the comparison. Our

annotations outperformed these methods, showing stronger fold enrichment and more signifi-

cant p-values (S8 Table).

Identify shared genetic components between AD and PD

Our results showed strong enrichment for both AD and PD in the monocyte functional

genome. Next, we investigate if the enrichment for both diseases is through shared or distinct

genetic components. Recent studies have failed to identify statistically significant genome-

wide pleiotropic effects between AD and PD [35]. We instead hypothesize that the same set of

immune-related genetic components are involved in both diseases. Therefore, we aim to iden-

tify enrichment for pleiotropic effects in the genome localized to regions of monocyte

functionality.

We first partitioned AD and PD heritability by chromosome. Chromosome-wide heritabil-

ity showed moderate correlation between the two diseases (correlation = 0.65; Fig 5A). When

focusing on monocyte functional elements, chromosome-wide heritability showed high con-

cordance between AD and PD (correlation = 0.96; Fig 5B). Interestingly, such high concor-

dance cannot be fully explained by chromosome size. In fact, the correlation between

chromosome size and per-chromosome heritability estimates is 0.56 for AD and 0.59 for PD,

both lower than the correlation between AD and PD’s per-chromosome heritability estimates,

especially in the monocyte functional genome. The percentage of explained LOAD heritability

on chromosome 19 is lower than previous estimation [36] due to removal of SNPs with large

effects in the APOE region (Methods). Next, to quantify the shared genetics between AD and

PD, we identified significant enrichment for pleiotropic effects in monocyte functional regions

(enrichment = 1.8; p = 9.4e-4) using a window-based approach (Methods). To account for

potential bias due to the moderate sample overlap between the two GWAS as well as other con-

founding factors, we applied a permutation-based testing approach (Methods). Enrichment

for pleiotropic effects in the monocyte functional genome remained significant (p = 4.6e-3). In

addition, these results were robust with the choice of window size.

We identified 15 candidate loci for pleiotropic effects (Methods; S9 Table), among which

signals at SLC9A9 and AIM1 are the clearest (Fig 5C and 5D). SLC9A9, whose encoded protein

localizes to the late recycling endosomes and plays an important role in maintaining cation

homeostasis (RefSeq, Mar 2012), is associated with multiple pharmacogenomic traits related to

neurological diseases, including response to cholinesterase inhibitor in AD [37], response to

interferon beta in MS [38], response to angiotensin II receptor blockade therapy [39], and mul-

tiple complex diseases including attention-deficit/hyperactivity disorder [40], autism [41], and

non-alcoholic fatty liver [42]. Gene AIM1 is associated with stroke [43], human longevity [44],

and immune diseases including RA [45] and SLE [46].

A few candidate loci pointed to clear gene candidates but showed unclear or distinct peaks

of association (S3 Fig). These include an inflammatory bowel disease risk gene ANKRD33B

Tissue-specific functional annotation and Alzheimer’s disease genetics
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[47]. PRUNE2 is a gene associated with response to amphetamine [48] and hippocampal

atrophy which is a quantitative trait for AD [49]. HBEGF is associated with AD in APOE
ε4- population [50] and involved in Aβ clearance [51]. PROK2 is a gene involved in Aβ-

induced neurotoxicity [52]. Additionally, the protein product of AXIN1 negatively affects

phosphorylation of tau protein [53]. Other gene candidates include CCDC158, PRSS16, and

ZNF615, which are previously identified risk genes for PD, SCZ, and BIP, respectively [54–56].

Some other windows showed complex structures of linkage disequilibrium (LD) and con-

tained large association peaks spanning a number of genes (S4 Fig), which include the region

near PD risk gene PRSS8 [54] and the HLA region. Interestingly, we also identified the sur-

rounding region of MAPT, a gene that encodes the tau protein which is a critical component

of both AD and PD pathologies [50, 54, 57, 58].

Pathway enrichment analysis for genes in 15 pleiotropic candidate loci identified significant

enrichment in immune-related pathways staphylococcus aureus infection (KEGG:05150;

p = 1.9e-5) and systemic lupus erythematosus (KEGG:05322; p = 3.7e-04; Methods). Both

pathways remained significant after removing two HLA loci from our analysis.

Reprioritize AD risk loci through integrative analysis of functional

annotation

Finally, we reprioritize AD risk loci using monocyte and liver annotation tracks. We integrated

IGAP stage-I summary statistics with GenoSkyline-Plus using genome-wide association

Fig 5. Identify genetic correlation between LOAD and PD. (A) estimated chromosome-by-chromosome heritability percentage for

LOAD and PD. (B) chromosome-by-chromosome heritability in the monocyte functional genome. (C-D) Association peaks in pleiotropic

loci SLC9A9 and AIM1. The upper and the lower panels represent associations for LOAD and PD, respectively. Monocyte-specific

functional regions are highlighted by red dots at the bottom of the figure above the gene annotations.

https://doi.org/10.1371/journal.pgen.1006933.g005
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prioritizer (GenoWAP [59]), and ranked all SNPs based on their GenoWAP posterior scores

(Methods). Under a posterior cutoff of 0.95, we identified 8 loci that were not reported in the

IGAP GWAS meta-analysis using monocyte annotation and 4 loci using the liver annotation

track (S10 Table).

We then sought replication for SNPs with the highest posterior score at each of these loci

using inferred IGAP stage-II z-scores (Methods). After removing shared SNPs between mono-

cyte- and liver-based analyses, 10 SNPs remained in the analysis, 7 of which showed consistent

effect directions between the discovery and the replication cohorts (Fig 6A). One SNP was suc-

cessfully replicated in the inferred IGAP stage-II dataset, i.e. rs4456560 (p = 0.013). SNP

rs4456560 is located in SCIMP (Fig 6B), a gene that encodes a lipid tetraspanin-associated

transmembrane adaptor protein that is expressed in antigen-presenting cells and localized in

the immunological synapse [60].

A moderate replication rate in the IGAP stage-II cohort was expected since we focused on

loci that did not reach genome-wide significance in the IGAP meta-analysis and the IGAP

stage-II cohort is relatively small (n = 19,884) compared to the data in the discovery stage. Fur-

thermore, data from IGAP stage-II cohort are not publicly available and we were limited to the

inverse inference approach shown here. It is possible additional loci will replicate when IGAP

stage-II summary or individual-level data are made available. However, all identified loci have

been linked to AD or relevant phenotypes in the literature. RPN1 was linked to AD through a

network-based technique [61]. Association between ECHDC3 and AD risk was established

through a joint analysis of AD and lipid traits [62]. Association between DLST and AD has

also been previously reported [63]. BZRAP1 and MINK1 were shown to be associated with cog-

nitive function and blood metabolites, respectively [64, 65]. A pleiotropic effect candidate gene

HBEGF showed up again in the SNP reprioritization analysis. Multiple genes in the sorting

nexin family have been found to participate in APP metabolism and Aβ generation [66]. Asso-

ciation between SNX1 and AD has also been previously identified using gene-based tests [67].

Finally, during the peer review process of this paper, three new genome-wide significant loci

(i.e. PFDN1/HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1) were reported in a trans-ethnic

Fig 6. Reprioritize AD GWAS loci using functional annotations. (A) Effect size estimates for 10 SNPs of

interest in the discovery and the replication cohort. Intervals in the discovery stage indicate 95% confidence.

Asterisk indicates significant effects in the replication cohort. Red and green squares highlight loci identified

using monocyte or liver annotation track, respectively. (B) The successfully replicated SCIMP locus. The

vertical axis shows the GenoWAP posterior probability based on monocyte annotation track. Functional

regions in monocyte are highlighted by red dots.

https://doi.org/10.1371/journal.pgen.1006933.g006
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GWAS meta-analysis for AD [68], all of which were among our reprioritized list of risk loci.

Further, the most significant SNPs at loci PFDN1/HBEGF (rs11168036, p = 7.1e-9) and BZRA-
P1-AS1 (rs2632516, p = 4.4e-8) matched with our top reprioritized SNPs (Fig 6A).

Discussion

Increasing evidence suggests that non-coding regulatory DNA elements may be the primary

regions harboring risk variants in human complex diseases. In this work, we have substantially

expanded our previously established GenoSkyline annotation by incorporating RNA-seq and

DNA methylation into its framework, imputing incomplete epigenomic and transcriptomic

annotation tracks, and extending it to more than 100 human tissue and cell types. With the

help of integrative functional annotations, we identified strong enrichment for LOAD herita-

bility in functional DNA elements related to innate immunity and liver tissue using hypothe-

sis-free tissue-specific enrichment analysis. This enrichment was also found in immune-

related DNA elements using PD data. Our analysis also clearly indicated that monocyte func-

tional elements in particular appear to be highly relevant in explaining AD and PD heritability.

Of note, we analyzed 45 complex diseases and traits in addition to AD and PD. The substantial

enrichment for multiple psychiatric and neurological traits in the brain functional genome

shows that the lack of brain enrichment in neurodegeneration is not due to poor quality of

brain annotations. Further, the monocytes annotation track was the most significantly

enriched for Crohn’s disease among the 45 GWAS, and was not ubiquitously enriched for a

large number of traits. Consistent and biologically interpretable enrichment results on a large

collection of complex traits demonstrate the effectiveness of our approach and increase the

validity of novel findings.

It is worth noting that multiple studies have highlighted the role of myeloid cells in the

genetic susceptibility of neurodegenerative diseases [11]. Several genes expressed in myeloid

cells (e.g. ABCA7, CD33, and TREM2) have been identified in GWAS and sequencing-based

association studies for AD [8, 69, 70]. Further, AD risk alleles identified in GWASs have been

shown to enrich for cis-eQTLs in monocytes [9]. In addition, two recent papers identified

enrichment for AD heritability in active genome regions in myeloid cells [71, 72], which sug-

gested a polygenic genetic architecture for immune-related DNA elements in AD etiology and

hinted at a large number of unidentified, immune-related genes for AD. Compared to the

aforementioned work, our study utilizes a better set of tissue-specific genome annotations and

explicitly accounts for the similarity between different cell types through a multiple regression

model. One major limitation in our analysis is lack of data for other potentially AD-relevant

cell types such as microglia. Whether our findings correctly reflected the direct involvement

of peripheral immune cells in neurodegenerative diseases rather than the detection of epige-

nomic similarities between monocytes and microglia remains to be carefully investigated in

the future.

Furthermore, we successfully identified enrichment for shared genetic components

between AD and PD in the monocyte functional genome, which hints at a shared neuroin-

flammation pathway between these two neurodegenerative diseases. We note that several can-

didate loci with potential pleiotropic effects showed fairly marginal associations with AD and

PD, which explains why they have been missed in traditional SNP-based association analysis.

Importantly, SNPs in immune-related DNA elements explain a large proportion of AD and

PD heritability in total. These results suggest that weak but pervasive associations related with

immunity still remain unidentified. Further evaluations of these relationships using GWAS

with larger sample sizes may provide insights into the shared biology of these neurodegenera-

tive conditions.
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Through multi-tier enrichment analyses on 45 GWAS, an in-depth case study of neurode-

generative diseases, and validation of known non-coding tissue-specific regulatory machinery,

we have demonstrated the ability of GenoSkyline-Plus to provide unbiased, genome-wide

insights into the genetic basis of human complex diseases. The analyzed GWAS represent a

variety of human complex diseases and traits, highlighting the effectiveness of our method in

different contexts and genetic architecture. However, while our non-coding validation study

demonstrated that GenoSkyline-Plus annotations indeed captured tissue-specific activity in a

variety of intergenic machinery, there is a need to develop a more statistically robust frame-

work to identify new non-coding elements rather than validate existing ones. Our approach of

identifying the functionally active proportion of all elements in aggregate is only able to iden-

tify tissue specificity while considering large groups of highly specific non-coding elements.

The availability of over 100 different annotation tracks introduces many multiple-testing issues

that should be addressed in the case of a statistically sound analysis for tissue-specificity. We

have also demonstrated how GenoSkyline-Plus and its explanatory power improve with the

addition of more data. Currently, functionality in 28% of exonic regions still remains to be

identified. As the quantity and quality of high-throughput epigenomic data continue to grow,

GenoSkyline-Plus has the potential to further evolve and provide even more comprehensive

annotations of tissue-specific functionality in the human genome. We will update our annota-

tions when data for new tissue and cell types from the Roadmap consortium become available.

Finally, several recent papers have introduced novel models to integrate functional annotations

in tissue-specific enrichment analysis [73, 74]. Many models that do not explicitly incorporate

functional annotation information have also emerged in transcriptome-wide association stud-

ies and other closely-related applications in human genetics research [75–78]. Our annota-

tions, in conjunction with rapidly advancing statistical techniques and steadily increasing

sample sizes in genetics studies, may potentially benefit a variety of human genetics applica-

tions and promise a bright future for complex disease genetics research.

Methods

Annotation data preprocessing

Chromatin data were extracted from the Epigenomics Roadmap Project’s consolidated refer-

ence epigenomes database (http://egg2.wustl.edu/roadmap/). Specifically, ChIP-seq peak calls

were collected for each epigenetic mark (H3k4me1, H3k4me3, H3k36me3, H3k27me3,

H3k9me3, H3k27ac, H3k9ac, and DNase I Hypersensitivity) in each Roadmap consolidated

epigenome where available. Peak calls imputed using ChromImpute [79] were used in place of

missing data. Next, peak files were reduced to a per-nucleotide binary encoding of presence or

absence of contiguous regions of strong ChIP-seq signal enrichment compared to input (Pois-

son p-value threshold of 0.01).

DNA methylation data were also collected from the Roadmap’s reference epigenomes data-

base. CpG islands were identified in each sample using the CpG Islands Track of the UCSC

Genome Browser (http://genome.ucsc.edu/), and unmethylated islands were those CpG

islands with less than 0.5 fractionated methylation based on imputed methylation signal tracks

in the Roadmap reference epigenomes database. Presence of an unmethylated CpG island was

then encoded for each nucleotide as a binary variable. Finally, Roadmap’s RNA-seq data were

dichotomized using an rpkm cutoff of 0.5 at 25-bp resolution and included in our annotations.

GenoSkyline-Plus model

We adapt the existing framework established by Lu et al. to a broader set of genomic data [12].

Briefly, given a set of Annotations A and a binary indicator of genomic functionality Z, the
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joint distribution of A along the genome is assumed to be a mixture of annotations at func-

tional nucleotides and non-functional nucleotides. Assuming that each of the annotations in A
is conditionally independent given Z, we factorize the conditional joint density of A given Z
as:

f ðAjZ ¼ cÞ ¼
Y10

i¼1
fiðAijZ ¼ cÞ; c ¼ 0; 1 ð1Þ

All annotations have been preprocessed into binary classifiers, and the marginal functional

likelihood given each individual annotation can be modeled with a Bernoulli distribution

fiðAijZ ¼ cÞ ¼ pAi
ic ð1 � picÞ

1� Ai ; i ¼ 1; . . . ; 10; c ¼ 0; 1 ð2Þ

With an assumed prior probability π of functionality, the parameter pic of each individual

annotation can be estimated with the Expectation-Maximization (EM) algorithm. The poste-

rior probability of functionality at a nucleotide, known as the GenoSkyline-Plus score, is then:

PðZ ¼ 1jAÞ ¼
p
Q10

i¼1
fiðAijZ ¼ 1Þ

p
Q10

i¼1
fiðAijZ ¼ 1Þ þ ð1 � pÞ

Q10

i¼1
fiðAijZ ¼ 0Þ

ð3Þ

Giving us with 21 parameters for each annotation track:

Y ¼ ðp; p1;0; p2;0; . . . ; p10;0; p1;1; p2;1; . . . ; p10;1Þ ð4Þ

These parameters were estimated using the GWAS Catalog, downloaded from the NHGRI

website (http://www.genome.gov/gwastudies/). 13,070 unique SNPs found to be significant in

at least one published GWAS were expanded into 1kb bp intervals and formed a sampling cov-

ering 12,801,840 bp of the genome. This sampling method has been shown to be a robust

representation of functional and non-functional regions along the genome [6]. Notably, other

models have been recently developed to predict functional non-coding SNPs [34].

Data for validating annotation quality

Quantile-normalized expression values were downloaded for all mature miRNAs profiled in

Ludwig et al [17]. Due to inconsistent levels of miRNA specificity in the two donors in this

study and to avoid diluting miRNA specificity, we used miRNA data from only body 1, which

had a higher fraction of tissue specific miRNAs. TSI values were calculated as described in the

study:

TSIj ¼

PN
i¼1
ð1 � xj;iÞ

N � 1
ð5Þ

Where N is the total number of tissues measured, xj,i is the expression intensity of tissue i
divided by the maximum expression across all tissues for miRNA j. We extract any miRNAs

with a TSI score greater than the median value of 0.75 to produce a sufficiently large collection

of miRNAs with expression highly specific to only a few tissues that we can then attempt re-

identify using GenoSkyline-Plus. We next download genomic positions and identify the high-

est expressed tissue for each TSI-filtered miRNA. miRNA coordinates were extracted from

miRbase (http://mirbase.org/) and mapped to hg19 using the UCSC liftover tool (http://

genome.ucsc.edu/). lncRNA data was prepared similarly to miRNA. Expression data of 9,747

lncRNA transcripts based on GENCODE v3c annotation across 31 human tissues [19] (GEO

accession: GSE34894) was downloaded. As above, the TSI of each lncRNA transcript was
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calculated, and transcripts with a TSI greater than 0.75 were labeled for genomic position and

maximally expressed tissue.

Pre-defined enhancer differentially expressed cell facets [21] were downloaded from

PrESSto database (http://enhancer.binf.ku.dk/presets/). Andersson et al. define their enhancer

sets via bi-directional CAGE expression collected by the FANTOM consortium [80]. Cell fac-

ets were manually constructed using hierarchical FANTOM5 cell ontology term mappings to

create mutually exclusive and broadly covered histological and functional annotations.

Enhancers were considered differentially expressed in a facet using Kruskal-Wallis rank sum

test and subsequent pair-wise post-hoc tests to identify enhancers with significantly differential

expression between pairs of facets. Based on this method, an enhancer is considered differen-

tially expressed in a facet if it is significantly differentially expressed compared to any other

facet and has overall positive standard linear statistics.

For each of the three data validation sets, functional specificity is assessed by calculating the

per-nucleotide functional proportion of all non-coding elements across a tissue. Functionality

is defined by a Genoskyline-Plus score greater than 0.5 at that nucleotide. For Roadmap sam-

ples with multiple donors (e.g. skeletal muscle and rectal mucosa) we took the average GenoS-

kyline-Plus score at each nucleotide across the samples. For each set of non-coding elements

we selected the top three tissues with the largest sample size that had matching annotations in

Genoskyline-Plus. For example, we did not calculate scores for enhancers with maximal

expressions in human testis because there is no corresponding Roadmap sample in which we

would detect tissue-specific functionality.

To examine cell-specific functionality of the IL17A LCR in T-cell subsets, we extracted Gen-

oSkyline-Plus scores for each nucleotide along the ~200 kilobase region between the genes

PKHD1 and MCM3 [23]. While scores for Th17 and Th1/Th2 subsets (i.e. ‘CD4+ CD25- IL17

+ PMA-Ionomycin stimulated Th17 Primary Cells’ and ‘CD4+ CD25- IL17- PMA-Ionomycin

stimulated MACS purified Th Primary Cells’; S1 Table) were extracted as-is, we took the aver-

age score of the two available CD4+ naïve T-cell subsets (i.e. ‘CD4 Naïve Primary Cells’ and

‘CD4+ CD25- CD45RA+ Naïve Primary Cells’). We identified the analogous human regions

of previously identified functional murine CNS regions [25] by taking the top 20 most con-

served intergenic sites between mouse and human in the LCR region using the VISTA browser

(http://pipeline.lbl.gov/cgi-bin/gateway2). GenoSkyline-Plus scores in the 20 CNS sites and

their 200-bp flanking regions were compared across different cell types.

GWAS data details

Summary statistics for 45 GWAS are publicly accessible. Details for these studies are summa-

rized in S3 Table. IGAP is a large two-stage study based upon genome-wide association studies

(GWAS) on individuals of European ancestry. In stage-I, IGAP used genotyped and imputed

data on 7,055,881 SNPs to meta-analyze four previously-published GWAS datasets consisting

of 17,008 Alzheimer’s disease cases and 37,154 controls (The European Alzheimer’s disease

Initiative–EADI, the Alzheimer Disease Genetics Consortium–ADGC, The Cohorts for Heart

and Aging Research in Genomic Epidemiology consortium–CHARGE, and The Genetic and

Environmental Risk in AD consortium–GERAD). In stage-II, 11,632 SNPs were genotyped

and tested for association in an independent set of 8,572 AD cases and 11,312 controls. Finally,

a meta-analysis was performed combining results from stages I and II. IGAP stage-I GWAS

summary data is publicly accessible from IGAP consortium website (http://web.pasteur-lille.

fr/en/recherche/u744/igap/igap_download.php). GWAS summary statistics for PD was

acquired from dbGap (accession: pha002868.1). Details for AD and PD studies have been pre-

viously reported [8, 29].
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Stratify heritability by tissue and cell type

Heritability stratification and enrichment analyses were performed using LD score regression

implemented in the LDSC software (https://github.com/bulik/ldsc/). Annotation-stratified LD

scores were estimated using dichotomized annotations, 1000 Genomes (1KG) samples with

European ancestry [81], and a default 1-centiMorgan window. Enrichment was defined as the

ratio between the percentage of heritability explained by variants in each annotated category

and the percentage of variants covered by that category.

Enrichment ¼
% Heritability explained

% Genome covered
ð6Þ

A resampling-based approach was used to assess standard error estimates [26]. Three tiers

of annotations of different resolutions were used in enrichment analyses:

1. Generally functional genome predicted by GenoCanyon annotation smoothed along 10-kb

windows.

2. Seven unique tissue and cell type clusters (i.e. immune, brain, CV, muscle, GI, epithelium,

and other), representing common, physiologically related organ systems. Each category is

defined as the union of functional regions in related tissue and cell types (S2 Table).

3. GenoSkyline-Plus annotations for 66 selected tissue and cell types (S2 Table).

The smoothing strategy for GenoCanyon improves its ability to identify general functional-

ity in the human genome [59]. GenoSkyline-Plus and smoothed GenoCanyon annotations

were dichotomized using a cutoff of 0.5. Such dichotomization is robust to the cutoff choice

due to the bimodal nature of annotation scores [6]. We selected 66 annotation tracks in the

tier-3 analysis by removing all the fetal and embryonic cells, and taking the union of different

Roadmap epigenomes for the same cell type (S2 Table). The 53 baseline annotations of LD

score regression were always included in the model across all analyses as suggested in the

LDSC user manual. Smoothed GenoCanyon annotation track was also included in tier-2 and

tier-3 analyses to account for unobserved tissue and cell types. Of note, the proposed multiple

regression model explicitly takes the overlapped functional regions across biologically-related

cell types into account. Further, the linear mixed-effects model in LDSC does not assume link-

age equilibrium, and therefore LD will most likely not introduce bias into heritability estima-

tion and enrichment calculation. We removed the MHC region from our analysis due to its

unique LD patterns.

A slightly different strategy was adopted when comparing the performance of different

computation annotation tools. To make fair comparison, we dichotomized all annotation

tracks using each score’s top 90% quantile calculated from SNPs with minor allele count

greater than five in 1000 Genomes samples with European ancestry. We then followed the sug-

gested protocol of LDSC and kept baseline annotations in the model while adding each anno-

tation track one at a time.

Pleiotropy analysis

We calculated chromosome-by-chromosome heritability percentage through summing up

and normalizing per-SNP heritability estimated using LD score regression and tier-3 annota-

tion tracks. Of note, since only GWAS summary statistics were used as the input, popular heri-

tability estimation tools such as GCTA [82] could not be applied. The sums over complete

chromosomes are compared with the sums over monocyte functional regions only. Notably,

LDSC is conceptually different from some other tools (e.g. GCTA [82]) in its estimation of
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trait heritability. GCTA estimates the proportion of phenotypic variability that can be

explained by SNPs in the GWAS dataset while LDSC aims to estimate the proportion of phe-

notypic variability explained by all the SNPs in samples from the 1KG Project. In practice,

LDSC only uses HAPMAP SNPs to fit the LD score regression model and assumes that HAP-

MAP SNPs are sufficient for tagging all 1KG SNPs through LD [26]. Additionally, LDSC

applies a few stringent SNP filtering steps for quality control reasons, e.g. removing SNPs with

very large effect sizes (i.e. χ2 > 80), which leads to the removal of some SNPs in the APOE
region in our analysis. Finally, we note that a recent method may potentially improve the heri-

tability estimates based on LDSC [75].

To evaluate enrichment of pleiotropic sites in the monocyte functional genome, we parti-

tion the genome into windows with length of 1M bases. Sex chromosomes and windows with-

out SNPs are removed in our datasets. For each disease (i.e. AD and PD), we label a window 1

if the following criteria are met.

1. There is at least one SNP with p-value < 1e-3 in the window.

2. Among SNPs that meet condition 1, at least one is located in the monocyte-specific func-

tional genome.

Otherwise, the window is labeled 0. This labeling results in two binary vectors, one for each

disease. A window marked as 1 for both AD and PD is a window of interest that suggests a pos-

sible association in monocytes-related DNA for both diseases in that region. We use a hyper-

geometric test to assess if such a pattern of local association appears more often than by

chance. Windows marked as 1 for both diseases are subsequently curated to identify the associ-

ation peaks that potentially have pleiotropic effects for AD and PD.

There is a moderate overlap of control samples between IGAP AD GWAS and the PD

GWAS (KORA controls, N~480). To account for the bias introduced by sample overlap and

other confounding factors, we designed a permutation-based approach. In each permutation

step, we shuffle the annotation status while keeping the total proportion of annotated regions,

and then pick out windows that meet condition 2. We calculate the p-value through compar-

ing the observed number of windows that meet conditions 1 and 2 for both diseases with the

empirical distribution acquired in permutations.

Of note, we also applied this approach using a window size of 500K bases. Results in all

related tests remained similar.

GWAS loci reprioritization

We briefly describe the SNP reprioritization approach implemented in the GenoWAP software

available on our server (http://genocanyon.med.yale.edu/GenoSkyline). First, we identify three

disjoint cases for SNPs in a given GWAS dataset.

1. The SNP is in a genomic region that is functional for the given phenotype and tissue

(ZD = 1, ZT = 1).

2. The SNP is in a genomic region that is functional in the given tissue, but that region has no

functionality for the phenotype (ZD = 0, ZT = 1).

3. The SNP is in a genomic region that is not functional in the given tissue (ZT = 0).

A useful metric for prioritizing SNPs is the conditional probability that the SNP is classified

under case-1 given its p-value in the GWAS study, i.e. P(ZD = 1, ZT = 1 | p). We can denote this
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probability using Bayes formula as follows:

PðZD ¼ 1;ZT ¼ 1 j pÞ ¼ PðCase 1 j pÞ ¼
f ðpjCase 1Þ � PðCase 1Þ

P3

k¼1
f ðpjCase kÞ � PðCase kÞ

ð7Þ

First, P(Case 3) = 1 − P(ZT = 1) can be directly identified using GenoSkyline-Plus scores.

We partition all the SNPs into two subgroups based on a mean GenoSkyline-Plus score thresh-

old of 0.1. Notably, these probabilities are not sensitive to changing threshold [6]. In this way,

we can directly estimate f(p|Case 3) = f(p|ZT = 0) by applying a histogram approach on the

SNP subgroup with low GenoSkyline-Plus scores.

Next, we assume that SNPs that are functional in a tissue but not relevant to the phenotype

will have the same p-value distribution to all other SNPs that are not relevant to the phenotype,

which in turn behave similarly to SNPs that are not functional at all. We have previously dem-

onstrated that this assumption is backed by empirical evidence [6]. More formally, this rela-

tionship is denoted as follows:

f ðpjCase 2Þ ¼ f ðpjZD ¼ 0; ZT ¼ 1Þ ¼ f ðpjZD ¼ 0Þ ¼ f ðpjZ ¼ 0Þ ð8Þ

We estimate the distribution f(p|Z = 0) by using a similar approach to estimating f(p|ZT =

0), but partitioning SNPs using the general functionality GenoCanyon score instead of tissue-

specific GenoSkyline-Plus score.

Finally, all remaining terms in Formula 6 can be estimated using the EM algorithm. The p-

value distribution of the subset of SNPs located in tissue-specific functional regions (i.e. ZT =

1) is the following mixture:

f ðpjZT ¼ 1Þ ¼ PðZD ¼ 1jZT ¼ 1Þ � f ðpjCase 1Þ þ PðZD ¼ 0jZT ¼ 1Þ � f ðpjCase 2Þ ð9Þ

Density function f(p|Case 2) has been estimated in Formula (8) and f(p|Case 2) is assumed

to follow a beta distribution, which guarantees a closed-form expression in the EM algorithm.

ðpjZD ¼ 1;ZT ¼ 1Þ � Betaða; 1Þ; 0 < a < 1 ð10Þ

Notably, the APOE region was removed in the SNP reprioritization analysis for LOAD.

Inverse inference of IGAP stage-II z-scores

Summary statistics from both IGAP stage-I GWAS and stage-I+II meta-analysis are publicly

available (http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php). We

inferred z-scores from IGAP stage-II replication cohort using the following formula.

Z1þ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 þ N2

p
� Z1 �

ffiffiffiffiffiffi
N1

p

ffiffiffiffiffiffi
N2

p ð11Þ

In this formula, Z1 and Z1+2 indicate z-scores from the stage-I GWAS and the combined

meta-analysis, respectively. Ni indicates the sample size from the ith stage. This formula was

derived from the sample size based meta-analysis model, an approach known to be asymptoti-

cally equivalent to inverse variance based meta-analysis [83].

Data accessibility and other bioinformatics tools

GenoSkyline-Plus annotation tracks, tiers 1–3 LD score files, and scripts for generating GenoS-

kyline-Plus scores are freely available on the GenoSkyline server (http://genocanyon.med.yale.

edu/GenoSkyline). All annotation tracks can be visualized using UCSC genome browser. Web

server g:Profiler was used to perform pathway enrichment analysis [84]. The g:SCS threshold
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implemented in g:Profiler was applied to account for multiple testing. Locus plots were gener-

ated using LocusZoom [85]. Gene plots were generated using R package “Gviz”.

Supporting information

S1 Fig. Enrichment analysis for three schizophrenia studies. Overall enrichment pattern for

schizophrenia remains stable as sample size increases. Sample sizes for the three studies shown

below are 21,856, 32,143, and 82,315, respectively.

(PNG)

S2 Fig. Enrichment analysis for LOAD after removing the APOE region.

(PNG)

S3 Fig. Nine pleiotropic loci for LOAD and PD. For each locus, the upper and lower panels

show associations for LOAD and PD, respectively. Monocyte functional regions are marked

by red dots above gene names.

(PNG)

S4 Fig. Four pleiotropic loci that span a large number of candidate genes. For each locus,

the upper and lower panels show associations for LOAD and PD, respectively. Monocyte func-

tional regions are marked by red dots above gene names.

(PNG)

S1 Table. List of 127 GenoSkyline-Plus annotation tracks. Epigenome ID and cell type list

are acquired from Epigenomics Roadmap Project and ENCODE.

(XLSX)

S2 Table. Curated annotation tracks used in tissue-specific enrichment analysis.

(XLSX)

S3 Table. Details of 45 genome-wide association studies.

(PDF)

S4 Table. P-values for tissue-specific enrichment analysis (tiers 1 and 2).

(XLSX)

S5 Table. Fold change for tissue-specific enrichment analysis (tiers 1 and 2).

(XLSX)

S6 Table. P-values for tissue-specific enrichment analysis (tier 3).

(XLSX)

S7 Table. Fold change for tissue-specific enrichment analysis (tier 3).

(XLSX)

S8 Table. AD enrichment in other computational annotations.

(XLSX)

S9 Table. Candidate loci for pleiotropic effect between AD and PD.

(PDF)

S10 Table. Top loci based on GenoWAP posterior scores. Subscripts indicate stage-I discov-

ery cohort, stage-II replication cohort, or stage-I+II meta-analysis. Each locus may contain

multiple genes. SNP rs143560707 was not genotyped in the IGAP stage-II cohort.

(XLSX)
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