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Abstract

The dentate gyrus (DG) is thought to perform pattern separation on inputs received from the 

entorhinal cortex, such that the DG forms distinct representations of different input patterns. 

Neuronal responses, however, are known to be variable, and that variability has the potential to 

confuse the representations of different inputs, thereby hindering the pattern separation function. 

This variability can be especially problematic for tissues like the DG, in which the responses can 

persist for tens of seconds following stimulation: the long response duration allows for variability 

from many different sources to accumulate. To understand how the DG can robustly encode 

different input patterns, we investigated a recently-developed in vitro hippocampal dentate gyrus 

preparation that generates persistent responses to transient electrical stimulation. For 10–20s after 

stimulation, the responses are indicative of the pattern of stimulation that was applied, even though 

the responses exhibit significant trial-to-trial variability. Analyzing the dynamical trajectories of 

the evoked responses, we found that, following stimulation, the neural responses follow distinct 

paths through the space of possible neural activations, with a different path associated with each 

stimulation pattern. The neural responses’ trial-to-trial variability shifts the responses along these 

paths rather than between them, maintaining the separability of the input patterns. Manipulations 

that redistributed the variability more isotropically over the space of possible neural activations 

impeded the pattern separation function. Consequently, we conclude that the confinement of 

neuronal variability to these one-dimensional paths mitigates the impacts of variability on pattern 

encoding and thus may be an important aspect of the DG’s ability to robustly encode input 

patterns.
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Introduction

The hippocampal dentate gyrus is thought to perform pattern separation on the inputs it 

receives from the entorhinal cortex [Leutgeb et al., 2007; Myers and Scharfman, 2009]. In 

other words, the dentate should yield distinct responses even when presented with 

overlapping stimulus patterns [O’Reilly and McClelland, 1994]. Confounding this function 

is the fact that, even over repeat presentations of the same stimulus, neural activities tend to 

be highly variable [Britten et al., 1993; Softky and Koch, 1993; Faisal et al., 2008]. This 

variability within the representation can confuse the representations of different input 

patterns, leading us to wonder how the dentate can robustly encode these patterns.

The issue of robust representation in the presence of variability has been relatively well-

studied in the peripheral sensory systems [Faisal et al., 2008; Hu et al., 2014; Aver beck et 

al., 2006; Romo et al., 2003; Cayco-Gajic et al., 2015; Shamir, 2014; da Silveira and Berry, 

2014], where we have a rapidly-deepening understanding of how robust population codes 

can be constructed from variable single-cell responses. While similarly high levels of 

variability are observed in the “deeper” cortical structures, our understanding of how those 

systems form robust representations is relatively poor. The problem of robustness is 

especially important in the context of persistent mnemonic (symbolic) representations — 

involved in functions like working memory — where the long duration of the representation 

means that there is ample time for noise from different sources to accumulate.

To address the questions of robust sustained pattern encoding, we exploited a recently-

developed in vitro hippocampal dentate gyrus preparation that exhibits sustained responses 

to electrical stimulation that last for more than 20s after the stimulus is turned off [Hyde and 

Strowbridge 2012]. Importantly, no pharmacological manipulations are needed to trigger 

these persistent activities: they are innate properties of the tissue. We previously [Hyde and 

Strowbridge 2012] demonstrated that these responses, when averaged over the duration of 

the response, could be decoded on a trial-by-trial basis to reveal the pattern of stimulation 

that was applied. Does the same separability persists on shorter time scales — so that, at any 

epoch, the stimulation patterns can be distinguished based on the current neural activations? 

Or are the patterns only separable after lengthy integration of the neural responses, that can 

“average away” the variability? For example, in Fig. 1A, the responses to different stimuli 

overlap relatively little on an epoch-by-epoch and trial-by-trial basis, and so they could be 

decoded in short time windows to recover the applied stimulus. For contrast, in Fig. 1B, 

there are epochs at which the responses to different stimuli overlap significantly, and so the 

responses could not be accurately decoded, on an epoch-by epoch and / or trial-by-trial 

basis, to recover the stimulus identity.

Herein, we find that the stimulation patterns can be distinguished, epoch-by-epoch, based on 

the neural activations on individual trials, for up to 20s following stimulation. Next, we 

identify the structure of the neural responses that maintains the separability of input patterns 

over time. Given that a brain that required long integration times to identify input patterns 

would lead to slow behavioral reactions, the neural response structures we identified — that 

allow for pattern encoding using short integration windows — could be important to the 

hippocampus’ (and thus the brain’s) reaction speed.
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More specifically, we found that, following stimulation, the activities of neural populations 

in our hippocampal preparation tend to travel along distinct paths in the space of possible 

neural activations, with a different path for each applied stimulus. This observation suggests 

that the stimulus identity is most persistently reflected in the identity of the path on which 

the neural responses lie, rather than any specific pattern of neural activities over the 

population. The variability in the neural responses tends to spread the response trajectories 

out along the appropriate paths, rather than between them. Our results show that this 

structure makes the neural representation of input patterns more robust because the noise 

tends not to push the responses towards the “other” paths, corresponding to stimuli other 

than the one that was presented (for illustration, compare Figs. 1AB).

Materials and Methods

Experimental Set-up

Herein, we revisit the data from a previous study [Hyde and Strowbridge, 2012]. The 

preparation consists of horizontal slices of rat brain that pass through the hippocampal 

formation. In each slice, we identified the perforant path (PP: which provides inputs to the 

hippocampus from the entorhinal cortex), and implanted an array of stimulating electrodes 

into the PP (Fig. 2A). We then transiently stimulated the PP with brief (200 μs) shocks from 

one of four stimulating electrodes, and thereafter we recorded intracellularly from triplets of 

mossy cells (MCs) in the dentate gyrus [Scharfman and Schwartzkroin, 1988]. Hilar mossy 

cells have extensive dendritic arbors, and therefore, they broadly sample the population of 

upstream granule cells and semilunar granule cells (Fig. 2A) [Larimer and Strowbridge, 

2010; Williams et al., 2007]. For our analyses, we extracted the rates of excitatory post-

synaptic potentials (EPSPs) received by our three mossy cells, measured over 1-second-long 

intervals at different times post-stimulation (from 1s up to >20s post-stimulation).

Each stimulus was applied between 3 and 5 times, and a total of 4 different stimuli were 

applied to each slice. Owing to the long duration of the evoked responses, there was a 210s 

delay between subsequent stimulation events, to allow the tissue to return to its resting state. 

The amount of time per trial (210s), and the limited (~1h) duration of the slice experiments 

restricted the number of repeats of each stimulus. The experiment and associated analyses 

were repeated on 9 different slices. The data from each slice were analyzed separately, and 

the results reported herein are average quantities (averaged over those 9 slices).

In vivo, stimuli will not necessary arrive in isolation and well-separated in time: randomly-

timed barrages of stimuli are more likely. In our recordings, however, the stimuli were 

intentionally well-separated in time, so that the network synaptic activity assayed by 

intracellular recordings could return to its baseline activity level between stimuli. For 

contrast, if the stimuli were more closely spaced, and the activity levels did not return to the 

resting state between stimuli, then contextual effects (as in [Hyde and Strowbridge, 2012]) 

would impact the neural activity patterns. Our experimental protocol removed this confound, 

allowing us to cleanly investigate the neural activity patterns responsible for encoding the 

stimulation position.
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Decoding the Mossy Cell Responses

To quantify the representation of the applied stimulation patterns by the hilar neural 

activities, we sought to estimate the applied stimulus given the resultant neural activities. To 

do so, we used the standard k-nearest neighbors (KNN) algorithm, as follows. For each 

experiment, we went through the recorded data points one-by-one, and tried to guess which 

stimulus generated the recorded response (each data point is the mean EPSP rates of the 3 

cells in a given 1-s-long window, on a given trial, of a given stimulus). For each such “test” 

data point, we computed the K nearest-neighboring data points from that experiment 

(smallest Euclidean distance). In other words, among all time epochs, trials, and stimuli, we 

found those data points most similar to the test point. Next, we took a majority vote over the 

stimulus labels from those K neighbors, and used that as our guess for the stimulus that 

generated the “test” data point. We used K=5, and verified that other choices of K yield very 

similar results. After recording the guesses for all recorded data points, we computed the 

fraction of such guesses that were correct in a given epoch, and averaged the results over all 

9 slice experiments.

We emphasize that the test point is not used in building the classifier (i.e., the test data point 

is not allowed to be its own neighbor). However, one potential concern with our approach is 

that the response data points used in building the classifier include those recorded on the 

same trial as the test point (albeit at different epochs). Data points recorded on the same trial 

may be atypically similar, posing a potential confound to our analysis. One possible way to 

address this concern would be to modify the KNN analysis so that, in classifying the test 

point, the classifier uses only responses recorded on trials other than the one from which the 

test point was taken. This approach, however, is problematic because the number of trials is 

small (3–5), and so removing a whole trial makes the classifier perform very poorly 

(regardless of the correlations between data points).

However, we still wanted to verify that our classification result is not confounded by the 

autocorrelation (within each trial). To do this, we generated surrogate data via a method 

(described below) that is guaranteed to yield independence of neighboring time points, even 

within the same trial. To do this, we did the following:

1. For each experiment, we went through the data stimulus-by-stimulus and epoch-

by-epoch. Thus, for each stimulus / epoch, we extracted the EPSP rates of the 3 

cells on the 3–5 different trials.

2. We computed the mean and covariance (over trials) of these data points.

3. We generated surrogate data by drawing Gaussian random variables with the 

same mean and covariance as the actual data. For consistency with the analysis 

of the actual data, and with the “random rotation” analysis (described below), we 

generated the same number of surrogate trials as there were in the actual data.

4. We repeated steps 1–3 independently for each epoch. Accordingly, the different 

epochs on a given surrogate trial are no more correlated than are data points from 

different surrogate trials.
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5. We repeated this surrogate-data generation procedure for all different stimuli 

from a given experiment, and performed the KNN analysis as described above.

6. We repeated steps 1–5 for all 9 slice experiments, and averaged the results.

This analysis shows very similar classification rates (not shown) as did the analysis done on 

the “actual” data, giving us added confidence that the KNN performance is not confounded 

by autocorrelation within trials.

Measuring Distances From Mean Trajectories

To understand where (in the space of possible neural responses) the trial-to-trial variability is 

most concentrated, we measured the deviations of responses on individual trials from the 

mean stimulus-evoked trajectories. This measurement is described schematically in Fig. 3A.

To carry out this measurement, we computed the mean trajectory following each stimulus by 

averaging over all responses to that stimulus within each epoch (mean trajectories shown in 

Figs. 2B and 3A). We then interpolated between these (22) data points to “fill in the curve”, 

and measured the Euclidean distance from each data point to the nearest point on the mean 

trajectory, to yield the data shown in Fig. 3C. Similarly, for the results in Fig. 6B we 

measured the distances from each response data point to the nearest point on the mean 

trajectories associated with stimuli other than the one that generated the responses.

Measuring Distances Between Mean Trajectories

To estimate the distances between the mean stimulus-evoked trajectories (Fig. 3D), we took 

each trajectory and, for each epoch, we found the nearest (in Euclidean distance) of the other 

mean trajectories. We then recorded the distance between these nearest-neighboring 

trajectories at this epoch. This procedure was repeated for all epochs, to trace out the 

distance vs time curve: data shown are averaged over all stimuli and experiments.

Measuring Average Levels of Variability

To estimate the overall level of trial-to-trial variability in the neural activities (Fig. 3E), we 

took all responses of a given cell to a given stimulus, in a given post-stimulation epoch. We 

then computed the trial-to-trial variance of these responses, and average that quantity over 

all 3 cells, to quantify the overall levels of trial-to-trial variability. To compute the coefficient 

of variation (Fig. 3B), we divided the square root of each cell’s variance by its mean 

response (again, for each epoch and stimulus) and averaged those values over all cells.

Perturbing the Structure of the Response Variability

To construct surrogate data in which the “confined” structure of the trial-to-trial variability is 

interrupted, we did the following. For each stimulus, and each post-stimulation epoch, we 

computed the mean response (over all trials), and subtracted that from the responses on each 

trial. This yielded the residuals, which are 3-dimensional vectors describing the trial-to-trial 

fluctuations in the population responses. We then randomly rotated these vectors in the 3-

dimensional space, and added these rotated residuals to the mean responses (Fig. 4AB).
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To randomly rotate the residual vectors — thereby redistributing trial-to-trial variability in 

random directions in the response space — we generated random rotation matrices. We then 

multiplied the residual vectors by these rotation matrices. A different random rotation was 

applied for each post-stimulation epoch.

For the results in Fig. 5, that compare the decoding performance on the surrogate vs. actual 

data, we estimated the decoding performance with our KNN algorithm for each random 

rotation, and averaged the result over 10,000 surrogate datasets, each of which had different 

random rotations.

Results

In vitro persistent mnemonic representations

Herein, we revisit the data from a previous study [Hyde and Strowbridge, 2012]. The 

preparation consists of horizontal slices of rat brain, which pass through the hippocampal 

formation. In each slice, we identified the perforant path (PP: which provides inputs to the 

hippocampus from the entorhinal cortex), and implanted an array of stimulating electrodes 

into the PP (Fig. 2A). We then transiently stimulated the PP with brief (200 μs) shocks from 

one of four stimulating electrodes, and thereafter we recorded intracellularly from triplets of 

mossy cells (MCs) in the dentate gyrus. As in [Hyde and Strowbridge, 2012], we extracted 

from these intracellullar recordings the rates of excitatory post-synaptic potentials (EPSPs) 

received by our three mossy cells. Hilar mossy cells have extensive dendritic arbors, and 

therefore, they broadly sample the population of upstream granule cells and semilunar 

granule cells (Fig. 2A) [Larimer and Strowbridge, 2010; Williams et al., 2007]. For our 

analyses, we considered the three MCs’ EPSP rates over 1-second-long intervals at different 

times post-stimulation (from 1s up to >20s post-stimulation). Each stimulus was repeated 3–

5 times, and the same procedure was performed on 9 different slices.

Mnemonic representations in the presence of noise

To confirm that our preparation does indeed form persistent mnemonic (symbolic) 

representations, we attempted to decode the mossy cell EPSP rates to identify which of the 

four stimulating electrodes (labelled “A”, “B”, “C”, and “D”) was used to stimulate the PP. 

For the decoding, we used the k-nearest neighbors (KNN) algorithm, which is a simplified 

form of maximum likelihood estimation that works well with even modest amounts of data. 

The KNN algorithm takes a given response data point, and then identifies the most similar 

(smallest Euclidean distance) of the other data points. The algorithm then asks which 

stimulus was responsible for the majority of the nearest-neighboring response points, and 

uses that as the guess for the stimulus that caused the response under consideration. We then 

recorded this guess for each response data point, and computed the fraction of those guesses 

that correctly identified the stimulus that was applied to the PP. All classifications were 

performed using a procedure in which the classifier was constructed without including the 

test point. When we repeated our analysis on data with shuffled stimulus labels, the correct 

classification rate was approximately 25% for estimating which of four different (roughly 

equiprobable) stimuli was presented — this value is what we use to define “chance” 

performance.
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For tasks with no fixed delay period, it is important that the representation can be readout at 

any time post-stimulation. We thus repeated our decoding analysis on the responses 

observed at different post-stimulation epochs. The data points used in building the classifier 

included those recorded at all epochs. We observed that the responses can identify the 

applied stimulus at levels well above chance for more than 20s after the stimulus is received 

(Fig. 2D, blue curve, p<10−6 for all epochs, based on a binomial test, based on EPSP 

frequencies in 1s-long windows).

The KNN analysis presented herein improves upon the linear discriminant analysis (LDA) 

we used in [Hyde and Strowbridge, 2012] because it does not assume that the responses to 

different stimuli will be linearly separable, and because it was applied to the neural 

responses in shorter time windows, thereby showing that the representation can be read-out 

relatively quickly, without requiring long integration times.

The sustained nature of the representation is interesting because the responses change 

dramatically over the post-stimulation period (Fig. 2B; mean trajectories following each 

different stimulus from one of our 9 slice experiments), and because the level of trial-to-trial 

variability in the neural responses — which corrupts the stimulus representation — increases 

significantly following stimulation (Fig. 3E, p<0.05 for comparisons of overall variability at 

t=1 s and t=12 s post-stimulation, based on a two-sided paired t-test; and Fig. 3B, p<10−6 for 

comparisons of coefficient of variation at t=1 s and t=12 s post-stimulation, based on a two-

sided paired t-test).

Variability is unevenly spread out over the neural response space

We observed (above) that the neural responses evolve dramatically, and show a significant 

increase in variability during the period following stimulation, but can nevertheless be 

decoded on a trial-by-trial (and epoch-by-epoch) basis to identify the applied stimulus. 

Based on theoretical studies about signal vs noise in the nervous system [Hu et al., 2014; 

Averbeck et al., 2006; da Silveira and Berry, 2013], we postulated that the neural responses 

are confined to relatively non-overlapping regions of the neural response space, with a 

different region corresponding to each applied stimulus. In other words, the set of responses 

to stimulus “A” might lie in a thin cylindrical region around the black curve (mean 

trajectory) in Fig. 2B, whereas the set of responses to stimulus “C” might lie in another 

cylindrical region around the green curve in Fig. 2B, and so on. The thinness of these 

cylinders reduces the extent to which they can overlap. For contrast, if the trial-by-trial 

responses were relatively spread out away from the mean trajectories — corresponding to 

“fat” cylinders — this would allow the responses to different stimuli to overlap more, 

thereby hindering the representation of distinct stimulation patterns (see, for examples, Figs. 

1AB).

To investigate this hypothesis, we took each response to stimulus “A” (measured at different 

epochs post-stimulation), and measured the Euclidean distance from those data points to the 

nearest point on the mean trajectory that the responses follow after the application of 

stimulus “A” (Fig. 3A): this effectively measures the radius of the “cylinder” described 

above. We then repeated this analysis on the responses to the other stimuli, in all cases 

measuring the distance from each data point to the nearest point on the mean trajectory 
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following the applied stimulus (Fig. 3C). A comparison of Figs. 3BCE shows that, for the 

first ~10–15s of the neural responses, the overall variability in the responses increases (Figs. 

3BE), but that variability is not evenly distributed in all directions in the response space; 

indeed, the spread of trajectories away from the mean trajectory actually decreases during 

that period (Fig. 3C, p<10−3 for comparisons of distance from mean trajectory at t=1 s and 

t=12 s post-stimulation, based on a two-sided paired t-test). This indicates that the increasing 

variability (Figs. 3BE) is not evenly spread out over the neural response space; the 

variability is structured such that the neural responses are constrained to lie relatively near 

the mean stimulus-evoked trajectories.

For comparison with the levels of variability in the neural responses, we also show the 

distances between each of the mean trajectories, and their nearest-neighboring mean 

trajectory (Fig. 3D). These distances decrease over time. Accordingly, if the response data 

points did not converge to the mean trajectories over time, the responses to different stimuli 

would quickly blend together, destroying the representation. However, the responses do 

converge towards the mean trajectories (Fig. 3C), and hence the representational accuracy 

stays relatively high (Fig. 2D).

Having variability constrained to lie near the mean trajectories imparts robustness to the 
representation

We have seen that, despite significant variability (Fig. 3BE), the neural responses can be 

decoded epoch-by-epoch to identify the applied stimulation pattern (Fig. 2D). Is the 

robustness of the representation a result of the fact that the variability is unevenly spread 

over different parts of the neural response space, such that the neural responses are 

constrained to lie near the mean stimulus-evoked trajectories (Fig. 3C)?

To address this question, we constructed surrogate data in which the mean trajectories, and 

the levels of trial-to-trial variability in the neural responses were the same as in our 

experimental data, but the “constrained” structure of the trial-to-trial variability was 

disrupted by randomly rotating the constellations of data points obtained at each epoch about 

the mean response trajectory (Fig. 4AB; see Methods for details). A different random 

rotation was applied at each epoch.

This procedure yielded surrogate data that have the same mean trajectories and the same 

overall levels of variability as in the original data (compare Fig. 3E and Fig. 4D, which are 

identical by construction). However, the variability in the surrogate data is spread out in 

random directions in the response space, and not necessarily constrained to be near the mean 

trajectory. As a result, the surrogate data do not show the same decrease over time in the 

distances from their mean trajectories as do the actual experimental data (Fig. 4C, p < 0.05 

at all epochs for comparisons of the distances to the mean trajectories in the surrogate data 

and the actual data, based on a paired two-sided t-test). Thus, our random rotation procedure 

maintained the mean response trajectories, and the overall levels of trial-to-trial variability, 

but successfully disrupted the confined nature of the neural variability.

We could thus compare the stimulus representation formed by the actual, and the surrogate 

data, to test the impact of the confined response variability on the population code. To do 
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this, we repeated our KNN classification on the surrogate responses, and observed that they 

were significantly less decodable to identify the location of applied stimulation than were 

the real neural responses (Fig. 5; blue bars are for the experimentally observed “raw” 

responses, green bars are for artificially perturbed surrogate responses. Green and blue bars 

are different, with p<0.01, for the epochs of 1–5s post-stimulation, 6–10s post-stimulation, 

and 11–15s post-stimulation, based on a binomial test, and green bars are below blue ones 

for all epochs). This effect was strongest in the first 10 or 15 s post-stimulation, which is the 

period in which response variability is the largest (Fig. 3E). Our results indicate that the 

structure of the trial-to-trial variability in the hilar populations, wherein that variability is 

constrained to lie near the mean stimulus-evoked trajectories, increases the robustness of 

mnemonic representations by reducing the similarity between responses to different stimuli.

While the stimulus decoding performance obtained with the raw responses, and that 

obtained with the surrogate responses, are statistically significantly different, that difference 

is — depending on the epoch — somewhat modest in magnitude. This is because the mean 

trajectories are fairly well-separated in the space of neural responses. Accordingly, the 

responses to a particular stimulus (say, “A”) are typically quite far from the paths associated 

with the other stimuli (“B”, “C”, and “D” for this example) (Fig. 6B). Consequently, an 

increase in the distances of responses from the paths associated with the applied stimulus, 

caused by the perturbation to the structure of trial-to-trial variability (as in Fig. 4C) can have 

a modest impact on stimulus decodability. For contrast, were the mean trajectories closer 

together, the impact could be much larger. We thus expect that the phenomenon we 

identified — of variability constrained to lie near the appropriate response “paths” — could 

have a larger impact on pattern separation in situations where there are more different 

patterns to store and / or separate. In that situation, the paths associated with different 

patterns will be — on average — closer together, and so the importance of responses staying 

close to the correct paths will be magnified.

Discussion

Herein, we report that the trial-to-trial variability of stimulus-specific persistent responses 

recorded in populations of hilar neurons is constrained to lie near the mean stimulus-evoked 

trajectories. This structure significantly facilitated decoding of which stimulation pattern 

was presented, and may thus be an important aspect of the dentate’s ability to separately 

encode different patterns of applied stimuli [Leutgeb et al., 2007; Myers and Scharfman, 

2009; O’Reilly and McClelland, 1994]. Moreover, because neural systems typically display 

high levels of variability [Faisal et al., 2008; Hu et al., 2014; Averbeck et al., 2006; Romo et 

al., 2003], and the “confined” structure provides robustness against this “noise”, our results 

may have implications for other preparations.

In the DG, the consistent average response trajectories we defined likely reflect the 

triggering of plateau potentials in similar subgroups of semilunar granule cells (SGC’s) on 

each trial [Larimer and Strowbridge 2010; Williams et al., 2007]. Response variability, in 

turn, may arise from trial-to-trial differences in the durations of these plateau potentials. This 

mechanism would force population responses in downstream hilar neurons to follow similar 

trajectories through a high dimensional neural response space, albeit with different velocities 
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on each trial, depending on when the plateau potentials begin to decay in each presynaptic 

SGC. Accordingly, though there may be significant trial-to-trial variability in the neural 

responses, those responses would nonetheless all lie near the same mean trajectory (as we 

observed herein).

In addition to enhancing the ability to accurately decode population responses at one specific 

time point (e.g., at the offset of a visual cue in a working memory task, as in [Funahashi et 

al., 1993]), the response structure we identified in the DG activities enables time-

independent decoding of population responses. In particular, the stimulus is persistently 

encoded in the identity of the path on (or near) which the responses lie. This finding 

suggests novel time-invariant mechanisms for decoding transient inputs, and predicts that 

biological systems that decode time invariant memories may take advantage of these 

structures. It may be possible that downstream neural structures perform “path-based” 

decoding rather than decoding based on static patterns of activity. Given the importance of 

persistent representations, formed by dynamical neural activities [Druckmann and 

Chklovskii, 2012], we suspect that similar representational structures might be quite 

ubiquitous within the nervous system.

Relatedly, there are many prior reports of neural responses being constrained to low-

dimensional regions of the space of possible neural responses [Ganguli et al., 2008; Seung, 

1996; Wimmer et al., 2005; Yoon et al., 2013]. The current study adds to this literature the 

observation that trial-to-trial variability (in addition to mean neural responses) in the dentate 

is also confined to low-dimensional subspaces. In vivo, these low-dimensional neural-

representational structures have the potential to reflect the animal’s memories and / or 

decision-making, and thus their identification in awake behaving animals could yield major 

advances in connecting brain function to behavior.
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Fig. 1. Constraining fluctuations near stimulus-evoked response trajectories may yield robust 
representations
In the cartoons (A and B), we consider the space of all possible neural responses. Each axis 

in the space is the response of a given neuron, and the dimensionality of the space is equal to 

the number of neurons in the population. Within this space, we consider the dynamical 

trajectories of the evoked neural responses. The cartoons show both the mean response 

trajectories (solid line), and two example trajectories — observed on different trials (dashed 

lines) — generated in response to 2 different stimuli. In (A), the variability is structured such 

that responses to each stimulus remain close to the mean trajectory. For contrast, in (B), the 

trial-by-trial fluctuations are more spread out from the mean trajectory. Accordingly, the 

responses to different stimuli in (B) overlap more — and thus the stimulus identity is more 

ambiguously encoded in the neural activities.
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Fig. 2. Persistent mnemonic representations formed by variable neural activities
(A) (Left) Diagram of excitatory synaptic connections within the dentate gyrus. Perforant 

path (PP) input from entorhinal cortical neurons excites both granule cells (GC) and 

semilunar granule cells (SGCs). Both cell types are excitatory and project toward the CA3 

subfield of the hippocampus. While GCs respond transiently to PP inputs, SGCs can fire 

persistently in response to brief synaptic input. Axon collaterals of both GCs and SGCs 

synapse on mossy cells (MC) in the dentate hilus. (Right) To probe the structure of the 

dentate’s persistent representations, we implanted an array of four stimulating electrodes 

(labelled “A”, “B”, “C”, and “D”) into the perforant path. We transiently stimulated the PP 

using one stimulating electrode at a time, and then recorded from downstream mossy cells. 

The mossy cells receive persistent synaptic inputs from semilunar granule cells, in the 

molecular layer (ML) of the dentate gyrus. The granule cell layer (GCL) is also shown. (B) 

Mean EPSP frequency response trajectories of the 3 recorded mossy cells, in response to 

four different stimuli (labelled “A”, “B”, “C”, and “D”). (C) Responses to the 4 stimuli on 

each of 5 trials are shown. The circles are data recorded 2s after stimulation, whereas the 

squares are 20s post-stimulation. As time passes after stimulation, the responses to different 

stimuli drift towards the origin and blend together, hindering the representation. (D) (blue 

curve) Accuracy of the mnemonic representation, quantified by fraction of correctly 

classified responses, as a function of when they occurred after the stimulus offset. Error bars 

are 95% confidence intervals, using data from all 9 slice experiments. Red horizontal line 

represents chance performance.
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Fig. 3. Structure of the trial-to-trial variability in the evoked responses
(A) Responses of one mossy cell triplet to one location of stimulation. Each dot represents 

the mean EPSP frequencies in a 1s window on a given trial; 5 trials are shown. The colors of 

the dots indicate the time since stimulation. Black line represents the mean trajectory, 

averaged over trials. (B) Average coefficient of variation (standard deviation divided by 

mean) of the neural responses, as a function of when they were observed. (C) For each data 

point, we measured the distance to the nearest point on the mean trajectory. The mean of 

these distances (averaged over trials) is shown as a function of time since stimulation. 

During the first ~12s of the responses, these distances decrease. (D) For comparison, we also 

show the mean squared distances between the mean trajectories and their nearest-

neighboring trajectory. (E) Average (over cells and stimuli) of the trial-to-trial variance in 

neural responses, as a function of time since stimulation. The (average) level of variability 

increases over the first ~10s of the responses, then decreases. Thus, during the first ~10s of 

the responses, the overall response variability increases (BE) while the distances from the 

data points to the mean trajectories decrease (C), underlining the fact that response 

variability is not evenly spread over the space of possible neural activities. Error bars in all 

panels represent the standard error of the mean (S.E.M.) over all 4 stimuli and 9 slice 

experiments.
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Fig. 4. Perturbed constrained variability
(A) We constructed surrogate data in which the mean trajectories evoked by each stimulus 

(black solid curve; data shown are for one stimulus), and the overall levels of trial-to-trial 

variability, matched the recorded data, but the variability was distributed relatively 

isotropically over the space of neural responses. To do this, we took the constellations of 

points recorded at each epoch, and rotated them in a random direction about the mean 

response recorded at that epoch; this is shown schematically for the teal data points, 

corresponding to responses recorded 8s post-stimulation. (B) The raw data points observed 

8s post-stimulation (teal circles) are shown alongside an example of the randomly-rotated 

data points (stars) from that same epoch. (C) For these perturbed surrogate data, we 

computed the distance from each response to the mean response trajectory associated with 

the applied stimulus. We then averaged these over all stimuli and experiments, and show 

those distances as a function of time post-stimulation (green curve). This is similar to the 

measurement shown schematically in Fig. 3A. For comparison, we also show the same 

quantity for the actual experimental data, in which the structure of the fluctuations was left 

intact (blue curve; same data as in Fig. 3C). (D). As in Fig. 3E, we measured the average 

trial-to-trial variability in the surrogate responses (with perturbed trial-to-trial variability) as 

a function of time. By construction, this level of variability is identical to that which was 

displayed by the actual (unperturbed) responses (in Fig. 3E). Error bars in all panels 

represent the standard error of the mean (S.E.M.) over all 4 stimuli and 9 slice experiments.
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Fig. 5. Variability constrained to lie near mean trajectories enhances pattern separability in the 
dentate gyrus
We used our KNN classifier to identify the stimulus responsible for the neural responses (as 

in Fig. 2D). The classifier was applied to both the actual experimental data (blue bars), and 

the surrogate data (green bars) in which the structure of the trial-to-trial variability was 

perturbed (as in Fig. 4AB), reducing the tendency of fluctuations to lie along / near the mean 

stimulus-evoked trajectories. The classification was performed on the mean EPSP 

frequencies measured in 1s windows post-stimulation, and the bar heights indicate the 

fraction of successfully classified responses, in 4 different post-stimulation epochs. Error 

bars indicate 95% confidence intervals. To generate the green bars, we repeated the random 

rotation procedure 10,000 times, yielding enough surrogate trials that the error bars 

associated with the performance values are vanishingly small. At each epoch, we show the 

p-values for comparisons between the performance obtained with the raw, and the surrogate, 

data; these p-values come from binomial tests.
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Fig. 6. Responses are typically far from the “wrong” trajectories
(A) Mean response trajectories of one mossy cell triplet following two locations of 

stimulation (“A” and “B”, corresponding to black and red solid lines, respectively). Also 

shown are the mean EPSP frequencies in 1s windows on individual trials in which stimulus 

“A” was presented; 5 such trials are shown (black dots). The schematic arrows indicate the 

measurement of distances from these response data points to the nearest points on the two 

mean trajectory curves. (B) (blue curve; same as Fig. 3C) We computed the distance from 

each recorded response to the nearest point on the mean trajectory associated with the 

applied stimulus. For comparison, we also computed the distances from the recorded 

responses to the nearest points on the mean trajectories associated with stimuli other than the 

one that was actually applied (red curve: mean +/− S.E.M. over the 9 slice experiments and 4 

stimuli). For example, if the response was evoked by stimulus “A”, we measured the 

(average) distance to the mean trajectories evoked by stimuli “B”, “C”, and “D”. The 

distances to the mean trajectories evoked by “other” stimuli (red curve) are typically much 

larger than the distances to the mean trajectories evoked by the “correct” stimulus (blue 

curve).
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